Package ‘tracerer’

May 30, 2021

Type Package

Title Tracer from R

Version 2.2.2

Maintainer Richèl J.C. Bilderbeek <richel@richelbilderbeek.nl>

Description ‘BEAST2’ (<https://www.beast2.org>) is a widely used

Bayesian phylogenetic tool, that uses DNA/RNA/protein data

and many model priors to create a posterior of jointly estimated

phylogenies and parameters.

‘Tracer’ (<https://github.com/beast-dev/tracer/>) is a GUI tool
to parse and analyze the files generated by ‘BEAST2’.

This package provides a way to parse and analyze ‘BEAST2’ input
files without active user input, but using
R function calls instead.

License GPL-3

Imports jsonlite, Rcpp, testit

Suggests ape, ggplot2, hunspell, knitr, markdown, phangorn, rappdirs,

rbenchmark, reshape2, rmarkdown, spelling, stringr, testthat

(>= 2.1.0)

VignetteBuilder knitr

RoxygenNote 7.1.1

URL https://docs.ropensci.org/tracerer/ (website)

https://github.com/ropensci/tracerer/

BugReports https://github.com/ropensci/tracerer/issues

LinkingTo Rcpp

Language en-US

Encoding UTF-8

NeedsCompilation yes

Author Richèl J.C. Bilderbeek [aut, cre]

(<https://orcid.org/0000-0003-1107-7049>),

Joëlle Barido-Sottani [rev] (Joëlle reviewed the package for rOpenSci,
R topics documented:

see https://github.com/ropensci/onboarding/issues/209),
David Winter [rev] (David reviewed the package for rOpenSci, see https://github.com/ropensci/onboarding/issues/209)

Repository CRAN
Date/Publication 2021-05-30 09:40:03 UTC

R topics documented:
calc_act ... 3
calc_act_cpp .. 4
calc_act_r ... 4
calc_ess .. 5
calc_esses ... 6
calc_geom_mean ... 7
calc_hpd_interval ... 7
calc_mode ... 8
calc_stderr_mean ... 9
calc_std_error_of_mean_cpp 10
calc_summary_stats 10
calc_summary_stats_trace 12
calc_summary_stats_traces 13
check_trace ... 14
count_trees_in_file 14
cs_std_dev ... 15
default_params_doc 15
extract_operators_lines 16
get_tracerer_path 17
get_tracerer_paths 18
get_tracerer_tempfilename 19
is_posterior ... 19
is_trees_file .. 20
is_trees_posterior .. 21
parse_beast_log ... 21
parse_beast_output_files 22
parse_beast_posterior 23
parse_beast_state_operators 24
parse_beast_tracelog_file 25
parse_beast_trees .. 26
remove_burn_in .. 26
remove_burn_ins ... 27
save_beast_estimates 28
save_beast_trees ... 28
tracerer .. 29

Index 30
calc_act
Calculate the auto-correlation time, alternative implementation

Description

Calculate the auto-correlation time, alternative implementation

Usage

```r
calc_act(trace, sample_interval)
```

Arguments

- `trace`: the values
- `sample_interval`: the interval in timesteps between samples

Value

the auto_correlation time

Author(s)

The original Java version of the algorithm was from Remco Bouckaert, ported to R and adapted by Richèl J.C. Bilderbeek

See Also

Java code can be found here: https://github.com/CompEvol/beast2/blob/9f040ed0357c4b946ea276a481a4c654ad4f(src/beast/core/util/ESS.java#L161]

Examples

```r
trace <- sin(seq(from = 0.0, to = 2.0 * pi, length.out = 100))
# 38.18202
calc_act(trace = trace, sample_interval = 1)
```
calc_act_cpp

Description

Calculate the auto correlation time from https://github.com/beast-dev/beast-mcmc/blob/800817772033c13061f026226e41128d21fd14f3/src/dr/inference/trace/TraceCorrelation.java#L159 # nolint

Usage

```
calc_act_cpp(sample, sample_interval)
```

Arguments

- `sample`: sample
- `sample_interval`: sample interval

Value

the auto correlation time

Author(s)

Richèl J.C. Bilderbeek

calc_act_r

Description

Calculate the auto-correlation time using only R. Consider using `calc_act` instead, as it is orders of magnitude faster

Usage

```
calc_act_r(trace, sample_interval)
```
Argument

- **trace**
 - the values without burn-in
- **sample_interval**
 - the interval in timesteps between samples

Value

- the effective sample size

Author(s)

The original Java version of the algorithm was from Remco Bouckaert, ported to R and adapted by Richèl J.C. Bilderbeek

See Also

Java code can be found here: https://github.com/CompEvol/beast2/blob/9f040ed0357c4b946ea276a481a4c654ad4f/src/beast/core/util/ESS.java#L161 #nolint URLs can be long

Examples

```r
trace <- sin(seq(from = 0.0, to = 2.0 * pi, length.out = 100))
calc_act_r(trace = trace, sample_interval = 1) # 38.18202
```

calc_ess
Calculates the Effective Sample Size

Description

Calculates the Effective Sample Size

Usage

`calc_ess(trace, sample_interval)`

Arguments

- **trace**
 - the values without burn-in
- **sample_interval**
 - the interval in timesteps between samples

Value

- the effective sample size

Author(s)

The original Java version of the algorithm was from Remco Bouckaert, ported to R and adapted by Richèl J.C. Bilderbeek
See Also

Java code can be found here: https://github.com/CompEvol/beast2/blob/9f040ed0357c4b946ea276a481a4c654ad4f src/beast/core/util/ESS.java#L161 # nolint URLs can be long

Examples

```r
filename <- get_tracerer_path("beast2_example_output.log")
estimates <- parse_beast_tracelog_file(filename)
calc_ess(estimates$posterior, sample_interval = 1000)
```

```
calc_esses       Calculates the Effective Sample Sizes from a parsed BEAST2 log file

Description

Calculates the Effective Sample Sizes from a parsed BEAST2 log file

Usage

calc_esses(traces, sample_interval)

Arguments

- `traces`: a dataframe with traces with removed burn-in
- `sample_interval`: the interval in timesteps between samples

Value

the effective sample sizes

Author(s)

Richèl J.C. Bilderbeek

Examples

```r
Parse an example log file
estimates <- parse_beast_tracelog_file(
 get_tracerer_path("beast2_example_output.log")
)

Calculate the effective sample sizes of all parameter estimates
calc_esses(estimates, sample_interval = 1000)
```
**calc_geom_mean**

*Calculate the geometric mean*

**Description**
Calculate the geometric mean

**Usage**
calc_geom_mean(values)

**Arguments**
values a numeric vector of values

**Value**
returns the geometric mean if all values are at least zero, else returns NA

**Author(s)**
Richèl J.C. Bilderbeek

**calc_hpd_interval**

*Calculate the Highest Probability Density of an MCMC trace that has its burn-in removed*

**Description**
Calculate the Highest Probability Density of an MCMC trace that has its burn-in removed

**Usage**
calc_hpd_interval(trace, proportion = 0.95)

**Arguments**
trace a numeric vector of parameter estimates obtained from an MCMC run. Must have its burn-in removed
proportion the proportion of numbers within the interval. For example, use 0.95 for a 95 percentage interval

**Value**
a numeric vector, with at index 1 the lower boundary of the interval, and at index 2 the upper boundary of the interval
calc_mode

Author(s)

The original Java version of the algorithm was from J. Heled, ported to R and adapted by Richèl J.C. Bilderbeek

See Also

The function remove_burn_in removes a burn-in. The Java code that inspired this function can be found here: https://github.com/beast-dev/beast-mcmc/blob/98705c59db65e4f406a420bbade949aeecfe05d0/src/dr/stats/DiscreteStatistics.java#L317 # nolint URLs can be long

Examples

```r
estimates <- parse_beast_tracelog_file(
 get_tracerer_path("beast2_example_output.log")
)

Values will be 0.453 and 1.816
calc_mode(values)
```

Description

Calculate the mode of values If the distribution is bi or multimodal or uniform, NA is returned

Usage

calc_mode(values)

Arguments

values numeric vector to calculate the mode of

Value

the mode of the trace

Author(s)

Richèl J.C. Bilderbeek
calc_stderr_mean

Examples

# In a unimodal distribution, find the value that occurs most
calc_mode(c(1, 2, 2))
calc_mode(c(1, 1, 2))

# For a uniform distribution, NA is returned
tracerer:::calc_mode(c(1, 2))

calc_stderr_mean Calculate the standard error of the mean

Description

Calculate the standard error of the mean

Usage

calc_stderr_mean(trace)

Arguments

trace the values

Value

the standard error of the mean

Author(s)

The original Java version of the algorithm was from Remco Bouckaert, ported to R and adapted by Riché J.C. Bilderbeek

See Also

Java code can be found here: https://github.com/beast-dev/beast-mcmc/blob/800817772033c13061f026226e41128d21fd14f3/src/dr/inference/trace/TraceCorrelation.java#L159 # nolint URLs can be long

Examples

trace <- sin(seq(from = 0.0, to = 2.0 * pi, length.out = 100))
calc_stderr_mean(trace) # 0.4347425
calc_std_error_of_mean_cpp

*Calculates the standard error of the mean*

**Description**

Calculates the standard error of the mean

**Usage**

```r
calc_std_error_of_mean_cpp(sample)
```

**Arguments**

- **sample**: numeric vector of values

**Value**

the standard error of the mean

**Author(s)**

Richèl J.C. Bilderbeek

---

calc_summary_stats

*Calculates the Effective Sample Sizes of one estimated variable’s trace.*

**Description**

Calculates the Effective Sample Sizes of one estimated variable’s trace.

**Usage**

```r
calc_summary_stats(traces, sample_interval)
```

**Arguments**

- **traces**: one or more traces, supplies as either, (1) a numeric vector or, (2) a data frame of numeric values.
- **sample_interval**: the interval (the number of state transitions between samples) of the MCMC run that produced the trace. Using a different `sample_interval` than the actually used sampling interval will result in bogus return values.
The `calc_summary_stats` function allows the user to calculate summary statistics of traces. It takes either a numeric vector or a data frame of traces as input. When a numeric vector is supplied, it returns a list with elements described below. If the traces are supplied as a data frame, a data frame is returned with these elements as column names.

**Elements:**
- `mean`: mean
- `stderr_mean`: standard error of the mean
- `stdev`: standard deviation
- `variance`: variance
- `mode`: mode
- `geom_mean`: geometric mean
- `hpd_interval_low`: lower bound of 95% highest posterior density
- `hpd_interval_high`: upper bound of 95% highest posterior density
- `act`: auto correlation time
- `ess`: effective sample size

**Note**
This function assumes the burn-in is removed. Use `remove_burn_in` (on a vector) or `remove_burn_ins` (on a data frame) to remove the burn-in.

**Author(s)**
Richèl J.C. Bilderbeek

**See Also**
Use `calc_summary_stats_trace` to calculate the summary statistics of one trace (stored as a numeric vector). Use `calc_summary_stats_traces` to calculate the summary statistics of more traces (stored as a data frame).

**Examples**

```r
estimates_all <- parse_beast_tracelog_file(
 get_tracerer_path("beast2_example_output.log")
)
estimates <- remove_burn_ins(estimates_all, burn_in_fraction = 0.1)

From a single variable's trace
calc_summary_stats(
 estimates$posterior,
 sample_interval = 1000
)

From all variables' traces
```
calc_summary_stats_trace

*Calculates the Effective Sample Sizes of one estimated variable’s trace.*

description

Calculates the Effective Sample Sizes of one estimated variable’s trace.

Usage

```
calc_summary_stats_trace(trace, sample_interval)
```

Arguments

- `trace`: a numeric vector of values. Assumes the burn-in is removed.
- `sample_interval`: the interval in timesteps between samples

Value

- the effective sample sizes

Author(s)

- Richèl J.C. Bilderbeek

See Also

- `remove_burn_in` to remove the burn-in of a trace

Examples

```
estimates_all <- parse_beast_tracelog_file(get_tracerer_path("beast2_example_output.log"))
estimates <- remove_burn_ins(estimates_all, burn_in_fraction = 0.1)
calc_summary_stats_trace(
estimates$posterior,
sample_interval = 1000
)
```
Calculation Effective Sample Sizes of the traces of multiple estimated variables.

Usage

```
calc_summary_stats_traces(traces, sample_interval)
```

Arguments

- `traces`: a data frame with traces of estimated parameters. Assumes the burn-ins are removed.
- `sample_interval`: the interval in timesteps between samples

Value

the effective sample sizes

Author(s)

Richèl J.C. Bilderbeek

See Also

Use `remove_burn_ins` to remove the burn-ins of all traces

Examples

```
estimates_all <- parse_beast_tracelog_file(
 get_tracerer_path("beast2_example_output.log")
)
estimates <- remove_burn_ins(estimates_all, burn_in_fraction = 0.1)
calc_summary_stats_traces(
 estimates,
 sample_interval = 1000
)
```
check_trace  
\textit{Check if the trace is a valid. Will \texttt{stop} if not}

\textbf{Description}  
Check if the trace is a valid. Will \texttt{stop} if not

\textbf{Usage}  
\texttt{check_trace(trace)}

\textbf{Arguments}  
\begin{itemize}
  \item \texttt{trace} the values
\end{itemize}

\textbf{Author(s)}  
Richèl J.C. Bilderbeek

\textbf{Examples}  
\begin{itemize}
  \item \texttt{check_trace(seq(1, 2))}
\end{itemize}

\begin{center}
\textbf{count_trees_in_file} \textit{Count the number of trees in a .trees file}
\end{center}

\textbf{Description}  
Count the number of trees in a .trees file

\textbf{Usage}  
\texttt{count_trees_in_file(trees_filename)}

\textbf{Arguments}  
\begin{itemize}
  \item \texttt{trees_filename} name of a BEAST2 posterior .trees file, as can be read using \texttt{parse_beast_trees}
\end{itemize}

\textbf{Value}  
the number of trees

\textbf{Author(s)}  
Richèl J.C. Bilderbeek

\textbf{See Also}  
if the .trees file is invalid, use \texttt{is_trees_file} with \texttt{verbose = TRUE} for the reason
cs_std_dev

Calculate the corrected sample standard deviation.

**Description**

Calculate the corrected sample standard deviation.

**Usage**

```python
 cs_std_dev(values)
```

**Arguments**

- `values` : numeric values

**Value**

the corrected sample standard deviation

**Author(s)**

Richèl J.C. Bilderbeek

---

default_params_doc

Documentation of general function arguments. This function does nothing. It is intended to inherit function argument documentation.

**Description**

Documentation of general function arguments. This function does nothing. It is intended to inherit function argument documentation.

**Usage**

```python
 default_params_doc(
 log_filename,
 sample_interval,
 state_filename,
 trace,
 tracelog_filename,
 trees_filename,
 trees_filenames,
 verbose
)
```
extract_operators_lines

Extract the JSON lines out of a .xml.state with the unparsed BEAST2 MCMC operator acceptances file with the operators.

Description

Extract the JSON lines out of a .xml.state with the unparsed BEAST2 MCMC operator acceptances file with the operators.

Usage

extract_operators_lines(filename)

Arguments

filename name of the BEAST2 .xml.state output file

Value

the JSON lines of a .xml.state file with the unparsed BEAST2 MCMC operator acceptances.
get_tracerer_path

Author(s)

Richèl J.C. Bilderbeek

Description

Get the full path of a file in the inst/extdata folder

Usage

get_tracerer_path(filename)

Arguments

filename the file’s name, without the path

Value

the full path to the filename

Author(s)

Richèl J.C. Bilderbeek

See Also

for more files, use get_tracerer_paths

Examples

get_tracerer_path("beast2_example_output.log")
get_tracerer_path("beast2_example_output.trees")
get_tracerer_path("beast2_example_output.xml")
get_tracerer_path("beast2_example_output.xml.state")
**get_tracerer_paths**

Get the full paths of files in the inst/extdata folder

**Description**

Get the full paths of files in the inst/extdata folder

**Usage**

get_tracerer_paths(filenames)

**Arguments**

filenames the files’ names, without the path

**Value**

the filenames’ full paths

**Author(s)**

Richèl J.C. Bilderbeek

**See Also**

for one file, use get_tracerer_path

**Examples**

get_tracerer_paths(
  c(
    "beast2_example_output.log",
    "beast2_example_output.trees",
    "beast2_example_output.xml",
    "beast2_example_output.xml.state"
  )
)
get_tracerer_tempfilename

Get a temporary filename

Description

Get a temporary filename, similar to tempfile, except that it always writes to a temporary folder named tracerer.

Usage

get_tracerer_tempfilename(pattern = "file", fileext = "")

Arguments

pattern       a non-empty character vector giving the initial part of the name.
fileext       a non-empty character vector giving the file extension

Value

name for a temporary file

Note

this function is added to make sure no temporary cache files are left undeleted

is_posterior

Determines if the input is a BEAST2 posterior

Description

Determines if the input is a BEAST2 posterior

Usage

is_posterior(x)

Arguments

x           the input

Value

TRUE if the input contains all information of a BEAST2 posterior. Returns FALSE otherwise.
is_trees_file

Measure if a file a valid BEAST2 .trees file

Description

Measure if a file a valid BEAST2 .trees file

Usage

is_trees_file(trees_filename, verbose = FALSE)

Arguments

trees_filename  name of a BEAST2 posterior .trees file, as can be read using parse_beast_trees
verbose  set to TRUE for more output

Value

TRUE if trees_filename is a valid .trees file

Author(s)

Richèl J.C. Bilderbeek

See Also

Most of the work is done by read.nexus

Examples

# TRUE
is_trees_file(get_tracerer_path("beast2_example_output.trees"))

is_trees_file(get_tracerer_path("unplottable_anthus_aco.trees"))

is_trees_file(get_tracerer_path("anthus_2_4_a.trees"))

is_trees_file(get_tracerer_path("anthus_2_4_b.trees"))

# FALSE
is_trees_file(get_tracerer_path("mcbette_issue_8.trees"))
is_trees_posterior  
Determines if the input is a BEAST2 posterior, as parsed by
parse_beast_trees

Description
Determines if the input is a BEAST2 posterior, as parsed by parse_beast_trees

Usage
is_trees_posterior(x)

Arguments
x  the input

Value
TRUE or FALSE

Author(s)
Richèl J.C. Bilderbeek

parse_beast_log  
Deprecated function to parse a BEAST2 .log output file. Use
parse_beast_tracelog_file instead

Description
Deprecated function to parse a BEAST2 .log output file. Use parse_beast_tracelog_file instead

Usage
parse_beast_log(tracelog_filename, filename = "deprecated")

Arguments
tracelog_filename  name of the BEAST2 tracelog .log output file, as can be read using parse_beast_tracelog_file
filename  deprecated name of the BEAST2 .log output file

Value
data frame with the parameter estimates
parse_beast_output_files

Parse all BEAST2 output files

Description
Parse all BEAST2 output files

Usage
parse_beast_output_files(log_filename, trees_filenames, state_filename)

Arguments

log_filename  deprecated name of the BEAST2 tracelog .log output file. Use tracelog_filename instead

trees_filenames  the names of one or more a BEAST2 posterior .trees file. Each .trees file can be read using parse_beast_trees

state_filename  name of the BEAST2 state .xml.state output file

Value
a list with the following elements:

- item estimates: parameter estimates
- item [alignment_id]_trees: the phylogenies in the BEAST2 posterior. [alignment_id] is the ID of the alignment.
- item operators: the BEAST2 MCMC operator acceptances

Author(s)
Richèl J.C. Bilderbeek

Examples

# Deprecated
parse_beast_log(
    tracelog_filename = get_tracerer_path("beast2_example_output.log")
)
# Use the function 'parse_beast_tracelog_file' instead
parse_beast_tracelog_file(
    tracelog_filename = get_tracerer_path("beast2_example_output.log")
)
parse_beast_posterior

See Also

Use remove_burn_ins to remove the burn-in from out$estimates

Examples

trees_filenames <- get_tracerer_path("beast2_example_output.trees")
log_filename <- get_tracerer_path("beast2_example_output.log")
state_filename <- get_tracerer_path("beast2_example_output.xml.state")
parse_beast_output_files(
  log_filename = log_filename,
  trees_filenames = trees_filenames,
  state_filename = state_filename
)

parse_beast_posterior  Parses BEAST2 output files to a posterior

Description

Parses BEAST2 output files to a posterior

Usage

parse_beast_posterior(
  trees_filenames,
  tracelog_filename,
  log_filename = "deprecated"
)

Arguments

trees_filenames  the names of one or more a BEAST2 posterior .trees file. Each .trees file can be read using parse_beast_trees

tracelog_filename  name of the BEAST2 tracelog .log output file, as can be read using parse_beast_tracelog_file

log_filename  deprecated name of the BEAST2 tracelog .log output file. Use tracelog_filename instead

Value

a list with the following elements:

itemestimates: parameter estimates item [alignment_id].trees: the phylogenies in the BEAST2 posterior. [alignment_id] is the ID of the alignment.
Author(s)

Richèl J.C. Bilderbeek

See Also

Use remove_burn_ins to remove the burn-ins from the posterior’s estimates (posterior$estimates)

Examples

trees_filenames <- get_tracerer_path("beast2_example_output.trees")
tracelog_filename <- get_tracerer_path("beast2_example_output.log")
posterior <- parse_beast_posterior(
  trees_filenames = trees_filenames,
  tracelog_filename = tracelog_filename
)

parse_beast_state_operators

Parses a BEAST2 state .xml.state output file to get only the operators acceptances

Description

Parses a BEAST2 state .xml.state output file to get only the operators acceptances

Usage

parse_beast_state_operators(
  state_filename = get_tracerer_path("beast2_example_output.xml.state"),
  filename = "deprecated"
)

Arguments

state_filename name of the BEAST2 state .xml.state output file
filename deprecated name of the BEAST2 .xml.state output file, use state_filename instead

Value

data frame with all the operators’ success rates

Author(s)

Richèl J.C. Bilderbeek
parse_beast_tracelog_file

**Examples**

```r
parse_beast_state_operators(
 state_filename = get_tracerer_path("beast2_example_output.xml.state")
)
```

---

**parse_beast_tracelog_file**

*Parses a BEAST2 tracelog .log output file*

---

**Description**

Parses a BEAST2 tracelog .log output file

**Usage**

```r
parse_beast_tracelog_file(tracelog_filename)
```

**Arguments**

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>tracelog_filename</td>
<td>name of the BEAST2 tracelog .log output file, as can be read using <code>parse_beast_tracelog_file</code></td>
</tr>
</tbody>
</table>

**Value**

data frame with the parameter estimates

**Author(s)**

Richèl J.C. Bilderbeek

**See Also**

Use `remove_burn_ins` to remove the burn-in from the returned parameter estimates. Use `save_beast_estimates` to save the estimates to a .log file.

**Examples**

```r
parse_beast_tracelog_file(
 tracelog_filename = get_tracerer_path("beast2_example_output.log")
)
```
parse_beast_trees  Pares a BEAST2 .trees output file

Description
Parses a BEAST2 .trees output file

Usage
parse_beast_trees(filename)

Arguments
filename  name of the BEAST2 .trees output file

Value
the phylogenies in the posterior

Author(s)
Richèl J.C. Bilderbeek

See Also
Use save_beast_trees to save the phylogenies to a .trees file. Use is_trees_file with verbose = TRUE to find out why a file is invalid

Examples
trees_filename <- get_tracerer_path("beast2_example_output.trees")
parse_beast_trees(trees_filename)

remove_burn_in  Removed the burn-in from a trace

Description
Removed the burn-in from a trace

Usage
remove_burn_in(trace, burn_in_fraction)
Arguments

trace the values
burn_in_fraction the fraction that needs to be removed, must be \([0,1]\)

Value

the values with the burn-in removed

Author(s)

Richèl J.C. Bilderbeek

Examples

# Create a trace from one to and including ten
v <- seq(1, 10)

# Remove the first ten percent of its values,
# in this case removes the first value, which is one
w <- remove_burn_in(trace = v, burn_in_fraction = 0.1)

Description

Removed the burn-ins from a data frame

Usage

remove_burn_ins(traces, burn_in_fraction = 0.1)

Arguments

traces a data frame with traces
burn_in_fraction the fraction that needs to be removed, must be \([0,1]\). Its default value of 10 as of Tracer

Value

the data frame with the burn-in removed

Author(s)

Richèl J.C. Bilderbeek
save_beast_estimates

Save the BEAST2 estimates as a BEAST2 .log file. There will be some differences: a BEAST2 .log file also saves the model as comments and formats the numbers in a way non-standard to R

Usage

save_beast_estimates(estimates, filename)

Arguments

estimates a data frame of BEAST2 parameter estimates
filename name of the .log file to save to

Value

nothing

Author(s)

Richèl J.C. Bilderbeek

See Also

Use parse_beast_log to read a BEAST2 .log file

save_beast_trees

Save the BEAST2 trees as a BEAST2 .log file. There will be some differences: a BEAST2 .log file also saves the model as comments and formats the numbers in a way non-standard to R

Usage

save_beast_trees(trees, filename)
Arguments

- trees: BEAST2 posterior trees, of type ape::multiPhylo
- filename: name of the .trees file to save to

Value

- nothing

Author(s)

Richèl J.C. Bilderbeek

See Also

- Use `parse_beast_log` to read a BEAST2 .log file

---

**tracerer**  
*tracerer: A package to parse BEAST2 output files.*

Description

`tracerer` allows to parse BEAST2 input files, using an R interface. 'tracerer' closely follows the functionality of Tracer, a GUI tool bundled with BEAST and BEAST2, including its default settings.

See Also

These are packages associated with `tracerer`:

- The package `beautier` can create BEAST2 input files from R
- The package `beastier` can run BEAST2 from R
- The package `mauricer` manages BEAST2 packages from R
- The package `babette` combines the functionality of `beautier`, `beastier`, `tracerer` and `mauricer` and into a single workflow

If something is (still) missing from `tracerer`, the `coda` package may have the functionality you need.
Index

calc_act, 3, 4
calc_act_cpp, 4
calc_act_r, 4
calc_ess, 5
calc_esses, 6
calc_geom_mean, 7
calc_hpd_interval, 7
calc_mode, 8
calc_std_error_of_mean_cpp, 10
calc_stderr_mean, 9
calc_summary_stats, 10
calc_summary_stats_trace, 11, 12
calc_summary_stats_traces, 11, 13
check_trace, 14
count_trees_in_file, 14
cs_std_dev, 15
default_params_doc, 15
extract_operators_lines, 16
get_tracerer_path, 17, 18
get_tracerer_paths, 17, 18
get_tracerer_tempfilename, 19
is_posterior, 19
is_trees_file, 14, 20, 26
is_trees_posterior, 21
parse_beast_log, 21, 28, 29
parse_beast_output_files, 22
parse_beast_posterior, 23
parse_beast_state_operators, 24
parse_beast_tracelog_file, 16, 21, 23, 25, 27
parse_beast_trees, 14, 16, 20, 22, 23, 26
read.nexus, 20
remove_burn_in, 8, 11, 12, 26
remove_burn_ins, 11, 13, 23–25, 27
save_beast_estimates, 25, 28
save_beast_trees, 26, 28
stop, 14
tempfile, 19
tracerer, 19, 29