Package ‘simputation’

June 16, 2022

Maintainer Mark van der Loo <mark.vanderloo@gmail.com>
License GPL-3
Title Simple Imputation
Type Package
LazyLoad yes
Description Easy to use interfaces to a number of imputation methods
that fit in the not-a-pipe operator of the ‘magrittr’ package.
Version 0.2.8
Depends R (>= 4.0.0)
Imports stats, utils, MASS, rpart, gower, VIM, randomForest, glmnet,
missForest, norm
URL https://github.com/markvanderloo/simputation
BugReports https://github.com/markvanderloo/simputation/issues
Suggests tinytest, knitr, rmarkdown, dplyr
RoxygenNote 7.2.0
VignetteBuilder knitr
NeedsCompilation yes
Author Mark van der Loo [aut, cre]
Repository CRAN
Date/Publication 2022-06-16 14:30:02 UTC

R topics documented:

 deparse ... 2
 foretell .. 2
 glimpse_na ... 3
 impute ... 5
 impute_cart ... 6
 impute_hotdeck ... 8
foretell

Alternative to 'predict' returning values of correct type.

Description

Te default predict function doesn’t always return the predicted variable by default. For example, when estimating a binomial model using glm, by default the log-odds are returned. foretell wraps predict while setting options so that the actual predicted value is returned.
Usage

foretell(object, ...)

Default S3 method:
foretell(object, ...)

S3 method for class 'glm'
foretell(object, newdata = NULL, type, ...)

S3 method for class 'rpart'
foretell(object, newdata, type, ...)

Arguments

object A model object (lm, glm, ...)
... Further arguments passed to predict.
newdata [data.frame] a data frame in which to look for variables with which to predict. For glmnet models this argument is mandatory.
type [character] Type of output. If missing, the type of predicted variable is returned.

glimpse_na Show the number of (remaining) missing values.

Description

Quick indication of the amount and location of missing values. The function uses na_status to print the missing values, but returns the original x (invisibly) and therefore can be used in an imputation pipeline to peek at the NA's status.

Usage

glimpse_na(x, show_only_missing = TRUE, ...)

lhs %>% rhs

Arguments

x an R object carrying data (e.g. data.frame)
show_only_missing if TRUE only columns with NA's will be printed.
... arguments passed to na_status.
lhs left hand side of pipe
rhs right hand side of pipe
Details

glimpse_na is especially helpful when interactively adding imputation methods. glimpse_na is named after glimpse in dplyr.
Operator %>% is syntactic sugar: it inserts a glimpse_na in the pipe.

Examples

```r
irisNA <- iris

# How many NA's?
na_status(irisNA)

# add an imputation method one at a time
iris_imputed <-
  irisNA |>  
glimpse_na() # same as above

# ok, glimpse_na says "Sepal.Width" has NA's
# fix that:
iris_imputed <-
  irisNA |>  
impute_const(Sepal.Width ~ 7) |>  
glimpse_na() # end NA

# Sepal.Length is having NA's
iris_imputed <-
  irisNA |>  
impute_const(Sepal.Width ~ 7) |>  
impute_cart(Sepal.Length ~ .) |>  
glimpse_na() # end NA

# in an existing imputation pipeline we can peek with
# glimpse_na or %>%
iris_imputed <-
  irisNA |>  
glimpse_na() |>  # shows the begin NA  
impute_const(Sepal.Width ~ 7) |>  
glimpse_na() |>  # after 1 imputation  
impute_cart(Sepal.Length ~ .) |>  
glimpse_na()  # end NA

# or
iris_imputed <-
  irisNA %>%  
impute_const(Sepal.Width ~ 7) %>%
```
Description

Impute one or more variables using a single R object representing a previously fitted model.

Usage

impute(dat, formula, predictor = foretell, ...)

impute_(dat, variables, model, predictor = foretell, ...)

Arguments

- **dat** [data.frame] The data to be imputed.
- **formula** [formula] object of the form <imputed variables> ~ <model object>
- **predictor** [function] with signature object, newdata, ... that returns predicted values given a model object and a new dataset newdata. By default foretell is used.
- **...** Extra arguments passed to predictor
- **variables** [character] Names of columns in dat to impute.
- **model** A model object.

Model specification

Formulas are of the form

IMPUTED_VARIABLES ~ MODEL_OBJECT

The left-hand-side of the formula object lists the variable or variables to be imputed. The right-hand-side must be a model object for which an S3 predict method is implemented. Alternatively, one can specify a custom predicting function. This function must accept at least a model and a dataset, and return one predicted value for each row in the dataset.

foretell implements usefull predict methods for cases where by default the predicted output is not of the same type as the predicted variable (e.g. when using certain link functions in glm)

Details

impute_ is an explicit version of impute that works better in programming contexts, especially in cases involving nonstandard evaluation.
impute_cart

See Also

Other imputation: `impute_cart()`, `impute_hotdeck`, `impute_lm()`

Examples

```r
irisNA <- iris
iris[1:3,1] <- NA
my_model <- lm(Sepal.Length ~ Sepal.Width + Species, data=iris)
impute(irisNA, Sepal.Length ~ my_model)
```

impute_cart
Decision Tree Imputation

Description

Imputation based on CART models or Random Forests.

Usage

```r
impute_cart(
  dat,
  formula,
  add_residual = c("none", "observed", "normal"),
  cp,
  na_action = na.rpart,
  ...
)
```

```r
impute_rf(
  dat,
  formula,
  add_residual = c("none", "observed", "normal"),
  na_action = na.omit,
  ...
)
```

Arguments

- `dat` [data.frame], with variables to be imputed and their predictors.
- `formula` [formula] imputation model description (see Details below).
- `add_residual` [character] Type of residual to add. "normal" means that the imputed value is drawn from N(\(\mu\), \(\sigma\)) where \(\mu\) and \(\sigma\) are estimated from the model’s residuals (\(\mu\) should equal zero in most cases). If `add_residual = "observed"`, residuals are drawn (with replacement) from the model’s residuals. Ignored for non-numeric predicted variables.
impute_cart

cp The complexity parameter used to **prune** the CART model. If omitted, no pruning takes place. If a single number, the same complexity parameter is used for each imputed variable. If of length \# of variables imputed, the complexity parameters used must be in the same order as the predicted variables in the model formula.

na_action [function] what to do with missings in training data. By default cases with missing values in predicted or predictors are omitted (see ‘Missings in training data’).

Further arguments passed to

- **rpart** for `impute_cart`
- **randomForest** for `impute_rf`

Model specification

Formulas are of the form

```
IMPUTED_VARIABLES ~ MODEL_SPECIFICATION [ | GROUPING_VARIABLES ]
```

The left-hand-side of the formula object lists the variable or variables to be imputed. Variables on the right-hand-side are used as predictors in the CART or random forest model.

If grouping variables are specified, the data set is split according to the values of those variables, and model estimation and imputation occur independently for each group.

Grouping using `dplyr::group_by` is also supported. If groups are defined in both the formula and using `dplyr::group_by`, the data is grouped by the union of grouping variables. Any missing value in one of the grouping variables results in an error.

Methodology

CART imputation by `impute_cart` can be used for numerical, categorical, or mixed data. Missing values are estimated using a Classification and Regression Tree as specified by Breiman, Friedman and Olshen (1984). This means that prediction is fairly robust against missingness in predictors.

Random Forest imputation with `impute_rf` can be used for numerical, categorical, or mixed data. Missing values are estimated using a Random Forest model as specified by Breiman (2001).

References

See Also

Other imputation: `impute_hotdeck`, `impute_lm()`, `impute()`
impute_hotdeck

Description

Hot-deck imputation methods include random and sequential hot deck, k-nearest neighbours imputation and predictive mean matching.

Usage

```r
impute_rhd(
  dat,
  formula,
  pool = c("complete", "univariate", "multivariate"),
  prob,
  backend = getOption("simputation.hdbackend", default = c("simputation", "VIM")),
  ...)
```

```r
impute_shd(
  dat,
  formula,
  pool = c("complete", "univariate", "multivariate"),
  order = c("locf", "nocb"),
  backend = getOption("simputation.hdbackend", default = c("simputation", "VIM")),
  ...)
```

```r
impute_pmm(
  dat,
  formula,
  predictor = impute_lm,
  pool = c("complete", "univariate", "multivariate"),
  ...)
```

```r
impute_knn(
  dat,
  formula,
  pool = c("complete", "univariate", "multivariate"),
  k = 5,
  backend = getOption("simputation.hdbackend", default = c("simputation", "VIM")),
  ...)
```

Arguments

- `dat` [data.frame], with variables to be imputed and their predictors.
impute_hotdeck

formula [formula] imputation model description (see Details below).
pool [character] Specify donor pool when backend="simputation"
 • "complete". Only records for which the variables on the left-hand-side of
 the model formula are complete are used as donors. If a record has multiple
 missings, all imputations are taken from a single donor.
 • "univariate". Imputed variables are treated one by one and independently
 so the order of variable imputation is unimportant. If a record has multiple
 missings, separate donors are drawn for each missing value.
 • "multivariate". A donor pool is created for each missing data pattern.
 If a record has multiple missings, all imputations are taken from a single
 donor.
prob [numeric] Sampling probability weights (passed through to sample). Must be
 of length nrow(dat).
backend [character] Choose the backend for imputation. If backend="VIM" the vari-
 ables used to sort the data (in case of sequential hot deck) may not coincide with
 imputed variables.
... further arguments passed to VIM::hotdeck if VIM is chosen as backend, other-
 wise they are passed to
 • order for impute_shd and backend="simputation"
 • VIM::hotdeck for impute_shd and impute_rhd when backend="VIM".
 • VIM:kNN for impute_knn when backend="VIM"
 • The predictor function for impute_pmm.
order [character] Last Observation Carried Forward or Next Observarion Carried
 Backward. Only for backend="simputation"
predictor [function] Imputation to use for predictive part in predictive mean matching.
 Any of the impute_ functions of this package (it makes no sense to use a hot-
 deck imputation).
k [numeric] Number of nearest neighbours to draw the donor from.

Model specification

Formulas are of the form

IMPUTED_VARIABLES ~ MODEL_SPECIFICATION [| GROUPING_VARIABLES]

The left-hand-side of the formula object lists the variable or variables to be imputed. The interpre-
 tation of the independent variables on the right-hand-side depends on the imputation method.

• impute_rhd Variables in MODEL_SPECIFICATION and/or GROUPING_VARIABLES are used to
 split the data set into groups prior to imputation. Use ~ 1 to specify that no grouping is to be
 applied.
• impute_shd Variables in MODEL_SPECIFICATION are used to sort the data. When multiple
 variables are specified, each variable after the first serves as tie-breaker for the previous one.
• impute_knn The predictors are used to determine Gower’s distance between records (see
 gower_topn). This may include the variables to be imputed.
impute_hotdeck

- **impute_pmm** Predictive mean matching. The MODEL_SPECIFICATION is passed through to the predictor function.

If grouping variables are specified, the data set is split according to the values of those variables, and model estimation and imputation occur independently for each group.

Grouping using `dplyr::group_by` is also supported. If groups are defined in both the formula and using `dplyr::group_by`, the data is grouped by the union of grouping variables. Any missing value in one of the grouping variables results in an error.

Methodology

Random hot deck imputation with `impute_rhd` can be applied to numeric, categorical or mixed data. A missing value is copied from a sampled record. Optionally samples are taken within a group, or with non-uniform sampling probabilities. See Andridge and Little (2010) for an overview of hot deck imputation methods.

Sequential hot deck imputation with `impute_rhd` can be applied to numeric, categorical, or mixed data. The dataset is sorted using the `predictor variables`. Missing values or combinations thereof are copied from the previous record where the value(s) are available in the case of LOCF and from the next record in the case of NOCF.

Predictive mean matching with `impute_pmm` can be applied to numeric data. Missing values or combinations thereof are first imputed using a predictive model. Next, these predictions are replaced with observed (combinations of) values nearest to the prediction. The nearest value is the observed value with the smallest absolute deviation from the prediction.

K-nearest neighbour imputation with `impute_knn` can be applied to numeric, categorical, or mixed data. For each record containing missing values, the k most similar completed records are determined based on Gower’s (1977) similarity coefficient. From these records the actual donor is sampled.

Using the VIM backend

The VIM package has efficient implementations of several popular imputation methods. In particular, its random and sequential hotdeck implementation is faster and more memory-efficient than that of the current package. Moreover, VIM offers more fine-grained control over the imputation process than simputation.

If you have this package installed, it can be used by setting `backend="VIM"` for functions supporting this option. Alternatively, one can set `options(simputation.hdbackend="VIM")` so it becomes the default.

Simputation will map the simputation call to a function in the VIM package. In particular:

- `impute_rhd` is mapped to `VIM::hotdeck` where imputed variables are passed to the `variable` argument and the union of predictor and grouping variables are passed to `domain_var`. Extra arguments in `...` are passed to `VIM::hotdeck` as well. Argument `pool` is ignored.

- `impute_shd` is mapped to `VIM::hotdeck` where imputed variables are passed to the `variable` argument, predictor variables to `ord_var` and grouping variables to `domain_var`. Extra arguments in `...` are passed to `VIM::hotdeck` as well. Arguments `pool` and `order` are ignored. In VIM the donor pool is determined on a per-variable basis, equivalent to setting `pool="univariate"` with the simputation backend. VIM is LOCF-based. Differences between simputation and VIM likely occur when the sorting variables contain missings.
impute_lm

- impute_knn is mapped to VIM::kNN where imputed variables are passed to variable, predictor variables are passed to dist_var and grouping variables are ignored with a message. Extra arguments in ... are passed to VIM::kNN as well. Argument pool is ignored. Note that simputation adheres strictly to the Gower's original definition of the distance measure, while VIM uses a generalized variant that can take ordered factors into account.

By default, VIM’s imputation functions add indicator variables to the original data to trace what values have been imputed. This is switched off by default for consistency with the rest of the simputation package, but it may be turned on again by setting imp_var=TRUE.

References

See Also
Other imputation: impute_cart(), impute_lm(), impute()

impute_lm

(Robust) Linear Regression Imputation

Description
Regression imputation methods including linear regression, robust linear regression with M-estimators, regularized regression with lasso/elasticnet/ridge regression.

Usage
impute_lm(
 dat,
 formula,
 add_residual = c("none", "observed", "normal"),
 na_action = na.omit,
 ...)

impute_rlm(
 dat,
 formula,
 add_residual = c("none", "observed", "normal"),
 na_action = na.omit,
 ...)

impute_en(
 dat,
 formula,
 add_residual = c("none", "observed", "normal"),
 na_action = na.omit,
 family = c("gaussian", "poisson"),
 s = 0.01,
 ...
)

Arguments

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>dat</td>
<td>[data.frame], with variables to be imputed and their predictors.</td>
</tr>
<tr>
<td>formula</td>
<td>[formula] imputation model description (See Model description)</td>
</tr>
<tr>
<td>add_residual</td>
<td>[character] Type of residual to add. "normal" means that the imputed value is drawn from $N(\mu, \sigma)$ where μ and σ are estimated from the model's residuals (μ should equal zero in most cases). If <code>add_residual = "observed"</code>, residuals are drawn (with replacement) from the model's residuals. Ignored for non-numeric predicted variables.</td>
</tr>
<tr>
<td>na_action</td>
<td>[function] what to do with missings in training data. By default cases with missing values in predicted or predictors are omitted (see 'Missings in training data').</td>
</tr>
<tr>
<td>family</td>
<td>Response type for elasticnet / lasso regression. For <code>family="gaussian"</code> the imputed variables are general numeric variables. For <code>family="poisson"</code> the imputed variables are nonnegative counts. See <code>glmnet</code> for details.</td>
</tr>
<tr>
<td>s</td>
<td>The value of λ to use when computing predictions for lasso/elasticnet regression (parameter s of <code>predict.glmnet</code>). For <code>impute_en</code> the (optional) parameter <code>lambda</code> is passed to <code>glmnet</code> when estimating the model (which is advised against).</td>
</tr>
</tbody>
</table>

Value

dat, but imputed where possible.

Model specification

Formulas are of the form

```
IMPUTED_VARIABLES ~ MODEL_SPECIFICATION [ | GROUPING_VARIABLES ]
```

The left-hand-side of the formula object lists the variable or variables to be imputed. The right-hand side excluding the optional GROUPING_VARIABLES model specification for the underlying predictor.

If grouping variables are specified, the data set is split according to the values of those variables, and model estimation and imputation occur independently for each group.
Grouping using `dplyr::group_by` is also supported. If groups are defined in both the formula and using `dplyr::group_by`, the data is grouped by the union of grouping variables. Any missing value in one of the grouping variables results in an error.

Grouping is ignored for `impute_const`.

Methodology

Linear regression model imputation with `impute_lm` can be used to impute numerical variables based on numerical and/or categorical predictors. Several common imputation methods, including ratio and (group) mean imputation can be expressed this way. See `lm` for details on possible model specification.

Robust linear regression through M-estimation with `impute_rlm` can be used to impute numerical variables employing numerical and/or categorical predictors. In M-estimation, the minimization of the squares of residuals is replaced with an alternative convex function of the residuals that decreases the influence of outliers.

Also see e.g. Huber (1981).

Lasso/elastic net/ridge regression imputation with `impute_en` can be used to impute numerical variables employing numerical and/or categorical predictors. For this method, the regression coefficients are found by minimizing the least sum of squares of residuals augmented with a penalty term depending on the size of the coefficients. For lasso regression (Tibshirani, 1996), the penalty term is the sum of squares of the coefficients. For ridge regression (Hoerl and Kennard, 1970), the penalty term is the sum of absolute values of the coefficients. Elasticnet regression (Zou and Hastie, 2010) allows switching from lasso to ridge by penalizing by a weighted sum of the sum-of-squares and sum of absolute values term.

References

See Also

Getting started with simputation,

Other imputation: `impute_cart`, `impute_hotdeck`, `impute()`

Examples

```r
data(iris)
irisNA <- iris
irisNA[1:4, "Sepal.Length"] <- NA
```
impute a single variable (Sepal.Length)
i1 <- impute_lm(irisNA, Sepal.Length ~ Sepal.Width + Species)

impute both Sepal.Length and Sepal.Width, using robust linear regression
i2 <- impute_rlm(irisNA, Sepal.Length + Sepal.Width ~ Species + Petal.Length)

impute_median

Impute (group-wise) medians

Description

Impute medians of group-wise medians.

Usage

```r
impute_median(
  dat,
  formula,
  add_residual = c("none", "observed", "normal"),
  type = 7,
  ...
)
```

Arguments

- **dat** (*data.frame*), with variables to be imputed and their predictors.
- **formula** (*formula*) imputation model description (See Model description)
- **add_residual** (*character*) Type of residual to add. "normal" means that the imputed value is drawn from $N(\mu, \sigma)$ where μ and σ are estimated from the model’s residuals (μ should equal zero in most cases). If `add_residual = "observed"`, residuals are drawn (with replacement) from the model’s residuals. Ignored for non-numeric predicted variables.
- **type** (*integer*) Specifies the algorithm to compute the median. See the ‘details’ section of `quantile`
- **...** Currently not used.

Model Specification

Formulas are of the form

```
IMPUTED_VARIABLES ~ MODEL_SPECIFICATION [ | GROUPING_VARIABLES ]
```

The left-hand-side of the formula object lists the variable or variables to be imputed. Variables in `MODEL_SPECIFICATION` and/or `GROUPING_VARIABLES` are used to split the data set into groups prior to imputation. Use ~ 1 to specify that no grouping is to be applied.
Examples

```r
# group-wise median imputation
irisNA <- iris
a <- impute_median(irisNA, Sepal.Length ~ Species)
head(a)

# group-wise median imputation, all variables except species
a <- impute_median(irisNA, . - Species ~ Species)
head(a)
```

impute_multivariate
Multivariate, model-based imputation

Description

Models that simultaneously optimize imputation of multiple variables. Methods include imputation based on EM-estimation of multivariate normal parameters, imputation based on iterative Random Forest estimates and stochastic imputation based on bootstrapped EM-estimation of multivariate normal parameters.

Usage

```r
impute_em(dat, formula, verbose = 0, ...)

impute_mf(dat, formula, ...)
```

Arguments

- **dat**
 [data.frame] with variables to be imputed.
- **formula**
 [formula] imputation model description
- **verbose**
 [numeric] Control amount of output printed to screen. Higher values mean more output, typically per iteration.
 - 0 or a number ≥ 1 for `impute_em`
 - 0, 1, or 2 for `impute_mf`
- **...**
 Options passed to
 - `norm::em.norm` for `impute_em`
 - `missForest::missForest` for `impute_mf`
Model specification

Formulas are of the form

\[\text{IMPUTED_VARIABLES} \sim \text{MODEL_SPECIFICATION} \ [\ | \ \text{GROUPING_VARIABLES}] \]

When IMPUTED_VARIABLES is empty, every variable in MODEL_SPECIFICATION will be imputed. When IMPUTED_VARIABLES is specified, all variables in IMPUTED_VARIABLES and MODEL_SPECIFICATION are part of the model, but only the IMPUTED_VARIABLES are imputed in the output.

GROUPING_VARIABLES specify what categorical variables are used to split-impute-combine the data. Grouping using dplyr::group_by is also supported. If groups are defined in both the formula and using dplyr::group_by, the data is grouped by the union of grouping variables. Any missing value in one of the grouping variables results in an error.

Methodology

EM-based imputation with impute_em only works for numerical variables. These variables are assumed to follow a multivariate normal distribution for which the means and covariance matrix is estimated based on the EM-algorithm of Dempster Laird and Rubin (1977). The imputations are the expected values for missing values, conditional on the value of the estimated parameters.

Multivariate Random Forest imputation with impute_mf works for numerical, categorical or mixed data types. It is based on the algorithm of Stekhoven and Buehlman (2012). Missing values are imputed using a rough guess after which a predictive random forest is trained and used to re-impute them missing values. This is iterated until convergence.

References

--

impute_proxy
Impute by variable derivation

Description

Impute missing values by a constant, by copying another variable computing transformations from other variables.

Usage

```r
impute_proxy(dat, formula, add_residual = c("none", "observed", "normal"), ...)
impute_const(dat, formula, add_residual = c("none", "observed", "normal"), ...)
```
Arguments

dat [data.frame], with variables to be imputed and their predictors.
formula [formula] imputation model description (See Model specification)
add_residual [character] Type of residual to add. "normal" means that the imputed value is
drawn from $N(\mu, \sigma)$ where μ and σ are estimated from the model’s residuals
(μ should equal zero in most cases). If add_residual = "observed", residuals are drawn (with replacement) from the model’s residuals. Ignored for non-
numeric predicted variables.
...
Currently unused

Model Specification

Formulas are of the form

IMPUTED_VARIABLES ~ MODEL_SPECIFICATION [| GROUPING_VARIABLES]

The left-hand-side of the formula object lists the variable or variables to be imputed.
For impute_const, the MODEL_SPECIFICATION is a single value and GROUPING_VARIABLES are
ignored.
For impute_proxy, the MODEL_SPECIFICATION is a variable or expression in terms of variables in
the dataset that must result in either a single number of in a vector of length nrow(dat).
If grouping variables are specified, the data set is split according to the values of those variables,
and model estimation and imputation occur independently for each group.
Grouping using dplyr::group_by is also supported. If groups are defined in both the formula and
using dplyr::group_by, the data is grouped by the union of grouping variables. Any missing value
in one of the grouping variables results in an error.

Examples

irisNA <- iris

impute a constant
a <- impute_const(irisNA, Sepal.Width ~ 7)
head(a)

a <- impute_proxy(irisNA, Sepal.Width ~ 7)
head(a)

copy a value from another variable (where available)
a <- impute_proxy(irisNA, Sepal.Width ~ Sepal.Length)
head(a)

group mean imputation
a <- impute_proxy(irisNA,
 Sepal.Length ~ mean(Sepal.Length,na.rm=TRUE) | Species)
head(a)
random hot deck imputation
a <- impute_proxy(irisNA, Sepal.Length ~ mean(Sepal.Length, na.rm=TRUE)
 , add_residual = "observed")

ratio imputation (but use impute_lm for that)
a <- impute_proxy(irisNA,
 Sepal.Length ~ mean(Sepal.Length,na.rm=TRUE)/mean(Sepal.Width,na.rm=TRUE) * Sepal.Width)

na.roughfix

Rough imputation for handling missing predictors.

Description

This function is re-exported from randomForest::na.roughfix when available. Otherwise it will throw a warning and resort to options("na.action")

Usage

na.roughfix(object, ...)

Arguments

- **object**
 - an R object carrying data (e.g. data.frame)
- **...**
 - arguments to be passed to other methods.

na_status

Show the number of (remaining) missing values.

Description

Quick indication of the amount and location of missing values.

Usage

na_status(
 x,
 show_only_missing = TRUE,
 sort_columns = show_only_missing,
 show_message = TRUE,
 ...
)
Arguments

- **x**: an R object carrying data (e.g. data.frame)
- **show_only_missing**: if TRUE only columns with NA’s will be printed.
- **sort_columns**: If TRUE the columns are sorted descending by the number of missing values.
- **show_message**: if TRUE message will be printed.
- **...**: arguments to be passed to other methods.

Value

data.frame with the column and number of NA’s

See Also

glimpse_na

Examples

```r
irisNA <- iris
na_status(irisNA)

# impute a constant
a <- impute_const(irisNA, Sepal.Width ~ 7)
na_status(a)
```

Description

A package to make imputation simpler.

Details

To get started, see the introductory vignette.
Index

* imputation
 impute, 5
 impute_cart, 6
 impute_hotdeck, 8
 impute_lm, 11
%>% (glimpse_na), 3

deparse, 2
foretell, 2, 5

glimpse, 4
glimpse_na, 3, 19
glm, 2
glmnet, 12
gower_topn, 9

 impute, 5, 7, 11, 13
 impute_(impute), 5
 impute_cart, 6, 11, 13
 impute_const(impute_proxy), 16
 impute_em(impute_multivariate), 15
 impute_en(impute_lm), 11
 impute_hotdeck, 6, 7, 8, 13
 impute_knn(impute_hotdeck), 8
 impute_lm, 6, 7, 11, 11
 impute_median, 14
 impute_mf(impute_multivariate), 15
 impute_multivariate, 15
 impute_pmm(impute_hotdeck), 8
 impute_proxy, 16
 impute_rf(impute_cart), 6
 impute_rhd(impute_hotdeck), 8
 impute_rlm(impute_lm), 11
 impute_shd(impute_hotdeck), 8

 lm, 12, 13

missForest::missForest, 15

na_status, 3, 18

na.roughfix, 18

norm::em.norm, 15

order, 9

predict.glmnet, 12

prune, 7

quantile, 14

randomForest, 7
randomForest::na.roughfix, 18

rlm, 12
rpart, 7

sample, 9

simputation, 19

VIM::hotdeck, 9
VIM::kNN, 9