Package ‘randomForestExplainer’

July 11, 2020

Title Explaining and Visualizing Random Forests in Terms of Variable Importance

Version 0.10.1

Description A set of tools to help explain which variables are most important in a random forests. Various variable importance measures are calculated and visualized in different settings in order to get an idea on how their importance changes depending on our criteria (Hemant Ishwaran and Udaya B. Kogalur and Eiran Z. Gorodeski and Andy J. Minn and Michael S. Lauer (2010) <doi:10.1198/jasa.2009.tm08622>, Leo Breiman (2001) <doi:10.1023/A:1010933404324>).

Depends R (>= 3.0)

License GPL

Encoding UTF-8

LazyData true

Imports data.table (>= 1.10.4), dplyr (>= 0.7.1), DT (>= 0.2), GGally (>= 1.3.0), ggplot2 (>= 2.2.1), ggrepel (>= 0.6.5), randomForest (>= 4.6.12), ranger(>= 0.9.0), reshape2 (>= 1.4.2), rmarkdown (>= 1.5)

Suggests knitr, MASS (>= 7.3.47), testthat

VignetteBuilder knitr

RoxygenNote 7.1.0

URL https://github.com/ModelOriented/randomForestExplainer

NeedsCompilation no

Author Aleksandra Paluszynska [aut], Przemyslaw Biecek [aut, ths], Yue Jiang [aut, cre] (<https://orcid.org/0000-0002-9798-5517>)

Maintainer Yue Jiang <rivehill@gmail.com>

Repository CRAN

Date/Publication 2020-07-11 20:30:02 UTC
R topics documented:

- explain_forest .. 2
- important_variables ... 3
- measure_importance ... 4
- min_depth_distribution ... 5
- min_depth_interactions .. 5
- plot_importance_ggpairs .. 6
- plot_importance_rankings ... 7
- plot_min_depth_distribution 8
- plot_min_depth_interactions 9
- plot_multi_way_importance 9
- plot_predict_interaction ... 10

Index

<table>
<thead>
<tr>
<th>explain_forest</th>
<th>Explain a random forest</th>
</tr>
</thead>
</table>

Description

Explains a random forest in a html document using plots created by randomForestExplainer

Usage

```r
explain_forest(
  forest,                  # A randomForest object created with the option localImp = TRUE
  path = NULL,             # Path to write output html to
  interactions = FALSE,    # Logical value: should variable interactions be considered (this may be time-consuming)
  data = NULL,             # The data frame on which forest was trained - necessary if interactions = TRUE
  vars = NULL,             # A character vector with variables with respect to which interactions will be considered if NULL then they will be selected using the important_variables() function
  no_of_pred_plots = 3,    # Number of predictions to be plotted
  pred_grid = 100,         # Number of grid points for each prediction
  measures = NULL         # Additional measures to be plotted
)
```

Arguments

- **forest**
- **path**
- **interactions**
- **data**
- **vars**
important_variables

no_of_pred_plots
The number of most frequent interactions of numeric variables to plot predictions for

pred_grid
The number of points on the grid of plot_predict_interaction (decrease in case memory problems)

measures
A character vector specifying the importance measures to be used for plotting ggpairs

Value

A html document. If path is not specified, this document will be "Your_forest_explained.html" in your working directory

Examples

```r
## Not run:
forest <- randomForest::randomForest(Species ~ ., data = iris, localImp = TRUE)
explain_forest(forest, interactions = TRUE)
## End(Not run)
```

important_variables
Extract k most important variables in a random forest

Description

Get the names of k variables with highest sum of rankings based on the specified importance measures

Usage

```r
important_variables(
    importance_frame,
    k = 15,
    measures = names(importance_frame)[2:min(5, ncol(importance_frame))],
    ties_action = "all"
)
```

Arguments

importance_frame
A result of using the function measure_importance() to a random forest or a randomForest object

k
The number of variables to extract

measures
A character vector specifying the measures of importance to be used

ties_action
One of three: c("none", "all", "draw"); specifies which variables to pick when ties occur. When set to "none" we may get less than k variables, when "all" we may get more and "draw" makes us get exactly k.
measure_importance

Value
A character vector with names of k variables with highest sum of rankings

Examples
forest <- randomForest::randomForest(Species ~ ., data = iris, localImp = TRUE, ntree = 300)
important_variables(measure_importance(forest), k = 2)

measure_importance Importance of variables in a random forest

Description
Get a data frame with various measures of importance of variables in a random forest

Usage
measure_importance(forest, mean_sample = "top_trees", measures = NULL)

Arguments

 forest A random forest produced by the function randomForest with option localImp = TRUE
 mean_sample The sample of trees on which mean minimal depth is calculated, possible values
 are "all_trees", "top_trees", "relevant_trees"
 measures A vector of names of importance measures to be calculated - if equal to NULL
 then all are calculated; if "p_value" is to be calculated then "no_of_nodes" will
 be too. Suitable measures for classification forests are: mean_min_depth,
 accuracy_decrease, gini_decrease, no_of_nodes, times_a_root. For regression
 forests choose from: mean_min_depth, mse_increase, node_purity_increase,
 no_of_nodes, times_a_root.

Value
A data frame with rows corresponding to variables and columns to various measures of importance
of variables

Examples
forest <- randomForest::randomForest(Species ~ ., data = iris, localImp = TRUE, ntree = 300)
measure_importance(forest)
min_depth_distribution

Calculate minimal depth distribution of a random forest

Description

Get minimal depth values for all trees in a random forest

Usage

```r
min_depth_distribution(forest)
```

Arguments

- `forest` A randomForest or ranger object

Value

A data frame with the value of minimal depth for every variable in every tree

Examples

```r
min_depth_distribution(randomForest::randomForest(Species ~ ., data = iris, ntree = 100))
min_depth_distribution(ranger::ranger(Species ~ ., data = iris, num.trees = 100))
```

min_depth_interactions

Calculate mean conditional minimal depth

Description

Calculate mean conditional minimal depth with respect to a vector of variables

Usage

```r
min_depth_interactions(
  forest,
  vars = important_variables(measure_importance(forest)),
  mean_sample = "top_trees",
  uncond_mean_sample = mean_sample
)
```
 Arguments

- **forest**: A randomForest object
- **vars**: A character vector with variables with respect to which conditional minimal depth will be calculated; by default it is extracted by the important_variables function but this may be time consuming
- **mean_sample**: The sample of trees on which conditional mean minimal depth is calculated, possible values are "all_trees", "top_trees", "relevant_trees"
- **uncond_mean_sample**: The sample of trees on which unconditional mean minimal depth is calculated, possible values are "all_trees", "top_trees", "relevant_trees"

 Value

A data frame with each observation giving the means of conditional minimal depth and the size of sample for a given interaction

 Examples

```r
forest <- randomForest::randomForest(Species ~ ., data = iris, ntree = 100)
min_depth_interactions(forest, c("Petal.Width", "Petal.Length"))
```

plot_importance_ggpairs

Plot importance measures with ggpairs

 Description

Plot selected measures of importance of variables in a forest using ggpairs

 Usage

```r
plot_importance_ggpairs(
  importance_frame,
  measures = NULL,
  main = "Relations between measures of importance"
)
```

 Arguments

- **importance_frame**: A result of using the function measure_importance() to a random forest or a randomForest object
- **measures**: A character vector specifying the measures of importance to be used
- **main**: A string to be used as title of the plot
plot_importance_rankings

Value
A ggplot object

Examples

```r
forest <- randomForest::randomForest(Species ~ ., data = iris, localImp = TRUE, ntree = 200)
frame <- measure_importance(forest, measures = c("mean_min_depth", "times_a_root"))
plot_importance_ggpairs(frame, measures = c("mean_min_depth", "times_a_root"))
```

Description

Plot against each other rankings of variables according to various measures of importance

Usage

```r
plot_importance_rankings(
  importance_frame,
  measures = NULL,
  main = "Relations between rankings according to different measures"
)
```

Arguments

- `importance_frame`
 A result of using the function `measure_importance()` to a random forest or a randomForest object
- `measures`
 A character vector specifying the measures of importance to be used.
- `main`
 A string to be used as title of the plot

Value

A ggplot object

Examples

```r
forest <- randomForest::randomForest(Species ~ ., data = iris, localImp = TRUE, ntree = 300)
frame <- measure_importance(forest, measures = c("mean_min_depth", "times_a_root"))
plot_importance_ggpairs(frame, measures = c("mean_min_depth", "times_a_root"))
```
plot_min_depth_distribution

Plot the distribution of minimal depth in a random forest

Description
Plot the distribution of minimal depth in a random forest

Usage

```r
plot_min_depth_distribution(
  min_depth_frame,
  k = 10,
  min_no_of_trees = 0,
  mean_sample = "top_trees",
  mean_scale = FALSE,
  mean_round = 2,
  main = "Distribution of minimal depth and its mean"
)
```

Arguments

- `min_depth_frame`: A data frame output of `min_depth_distribution` function or a `randomForest` object.
- `k`: The maximal number of variables with lowest mean minimal depth to be used for plotting.
- `min_no_of_trees`: The minimal number of trees in which a variable has to be used for splitting to be used for plotting.
- `mean_sample`: The sample of trees on which mean minimal depth is calculated, possible values are "all_trees", "top_trees", "relevant_trees".
- `mean_scale`: Logical: should the values of mean minimal depth be rescaled to the interval [0,1]?
- `mean_round`: The number of digits used for displaying mean minimal depth.
- `main`: A string to be used as title of the plot.

Value

A `ggplot` object.

Examples

```r
forest <- randomForest::randomForest(Species ~ ., data = iris, ntree = 300)
plot_min_depth_distribution(min_depth_distribution(forest))
```
plot_min_depth_interactions

Plot the top mean conditional minimal depth

Description

Plot the top mean conditional minimal depth

Usage

plot_min_depth_interactions(
 interactions_frame,
 k = 30,
 main = paste0("Mean minimal depth for ", paste0(k, " most frequent interactions"))
)

Arguments

interactions_frame
 A data frame produced by the min_depth_interactions() function or a random-
 Forest object

k
 The number of best interactions to plot, if set to NULL then all plotted

main
 A string to be used as title of the plot

Value

A ggplot2 object

Examples

forest <- randomForest::randomForest(Species ~ ., data = iris, ntree = 100)
plot_min_depth_interactions(min_depth_interactions(forest, c("Petal.Width", "Petal.Length")))

plot_multi_way_importance

Multi-way importance plot

Description

Plot two or three measures of importance of variables in a random fores. Choose importance mea-
ures from the colnames(importance_frame).
plot_multi_way_importance(
 importance_frame,
 x_measure = "mean_min_depth",
 y_measure = "times_a_root",
 size_measure = NULL,
 min_no_of_trees = 0,
 no_of_labels = 10,
 main = "Multi-way importance plot"
)

Arguments

importance_frame
 A result of using the function measure_importance() to a random forest or a
 randomForest object
x_measure
 The measure of importance to be shown on the X axis
y_measure
 The measure of importance to be shown on the Y axis
size_measure
 The measure of importance to be shown as size of points (optional)
min_no_of_trees
 The minimal number of trees in which a variable has to be used for splitting to
 be used for plotting
no_of_labels
 The approximate number of best variables (according to all measures plotted) to
 be labeled (more will be labeled in case of ties)
main
 A string to be used as title of the plot

Value

A ggplot object

Examples

forest <- randomForest::randomForest(Species ~ ., data = iris, localImp = TRUE)
plot_multi_way_importance(measure_importance(forest))
Usage

```r
plot_predict_interaction(
  forest,
  data,
  variable1,
  variable2,
  grid = 100,
  main = paste0("Prediction of the forest for different values of ", paste0(variable1,
                  " and ", variable2)),
  time = NULL
)
```

Arguments

- `forest`: A randomForest or ranger object
- `data`: The data frame on which forest was trained
- `variable1`: A character string with the name a numerical predictor that will on X-axis
- `variable2`: A character string with the name a numerical predictor that will on Y-axis
- `grid`: The number of points on the one-dimensional grid on x and y-axis
- `main`: A string to be used as title of the plot
- `time`: A numeric value specifying the time at which to predict survival probability, only applies to survival forests. If not specified, the time closest to predicted median survival time is used

Value

A ggplot2 object

Examples

```r
forest <- randomForest::randomForest(Species ~., data = iris)
plot_predict_interaction(forest, iris, "Petal.Width", "Sepal.Width")
forest_ranger <- ranger::ranger(Species ~., data = iris)
plot_predict_interaction(forest, iris, "Petal.Width", "Sepal.Width")
```
Index

explain_forest, 2
important_variables, 3
measure_importance, 4
min_depth_distribution, 5
min_depth_interactions, 5
plot_importance_ggpairs, 6
plot_importance_rankings, 7
plot_min_depth_distribution, 8
plot_min_depth_interactions, 9
plot_multi_way_importance, 9
plot_predict_interaction, 10