Package ‘prcbench’

January 7, 2021

Type Package
Title Testing Workbench for Precision-Recall Curves
Version 0.9.1
Date 2021-01-07
Description A testing workbench for evaluating precision-recall curves under various conditions.
URL https://takayasaito.github.io/prcbench/,
https://github.com/takayasaito/prcbench
BugReports https://github.com/takayasaito/prcbench/issues
Depends R (>= 3.2.3)
License GPL-3
Language en-US
LazyData TRUE
Imports ROCR (>= 1.0-7), PRROC (>= 1.1), precrec (>= 0.1), rJava (>= 0.9-7), R6 (>= 2.1.1), assertthat (>= 0.1), grid, gridExtra (>= 2.0.0), graphics, ggplot2 (>= 2.1.0), methods, memoise (>= 1.0.0)
RoxygenNote 7.1.1
Encoding UTF-8
Suggests microbenchmark (>= 1.4-2.1), PerfMeas (>= 1.2.1), testthat (>= 0.11.0), knitr (>= 1.11), rmarkdown (>= 0.8.1)
VignetteBuilder knitr
NeedsCompilation no
Author Takaya Saito [aut, cre],
Marc Rehmsmeier [aut]
Maintainer Takaya Saito <takaya.saito@outlook.com>
Repository CRAN
Date/Publication 2021-01-07 16:10:09 UTC
R topics documented:

autoplot.evalcurve ... 2
C1DATA ... 3
C2DATA ... 4
C3DATA ... 4
C4DATA ... 4
create_example_func .. 5
create_testset ... 5
create_toolset ... 7
create_usrdata ... 8
create_usrtool ... 9
prebench ... 10
run_benchmark .. 11
run_evalcurve ... 12
TestDataB .. 13
TestDataC .. 15
ToolAUCCalculator ... 17
ToolIFBase .. 19
ToolPerfMeas ... 21
Toolprecrec .. 22
ToolPRROC ... 24
ToolROCR .. 25

Index 27

autplot evaluates the result of Precision-Recall curve evaluation

Description

The `plot_eval_results` function validates Precision-Recall curves and creates a plot.

Usage

```r
## S3 method for class 'evalcurve'
autplot(
  object,
  base_plot = TRUE,
  ret_grob = FALSE,
  ncol = NULL,
  nrow = NULL,
  use_category = FALSE,
  ...
)
```
Arguments

- **object**: An S3 object that contains evaluation results of Precision-Recall curves.
- **base_plot**: A Boolean value to specify whether the base points are plotted.
- **ret_grob**: A Boolean value to specify whether the function returns a grob object.
- **ncol**: An integer used for the column size of multiple panes.
- **nrow**: An integer used for the row size of multiple panes.
- **use_category**: A Boolean value to specify whether the categorical summary instead of the total summary.
- **...**: Not used by this function.

Value

A data frame with validation results.

Examples

```r
library(ggplot2)

## Plot evaluation results on test datasets r1, r2, and r3
testset <- create_testset("curve", c("c1", "c2", "c3"))
toolset <- create_toolset(set_names = "crv5")
eres1 <- run_evalcurve(testset, toolset)
autoplot(eres1)
```

C1DATA

C1: Pre-calculated Precision-Recall curve

Description

A list contains scores, labels, and pre-calculated recall and precision values as x and y.

Usage

```r
data(C1DATA)
```

Format

A list with 5 items.

- **scores**: input scores
- **labels**: input labels
- **bp_x**: pre-calculated recall values for curve evaluation
- **bp_y**: pre-calculated precision values for curve evaluation
- **tp_x**: x position for displaying the test result in a plot
- **tp_y**: y position for displaying the test result in a plot
<table>
<thead>
<tr>
<th>C2DATA</th>
<th>C2: Pre-calculated Precision-Recall curve</th>
</tr>
</thead>
</table>

Description

A list contains scores, labels, and pre-calculated recall and precision values as x and y.

Usage

\[
data(C2DATA)
\]

Format

See C1DATA.

<table>
<thead>
<tr>
<th>C3DATA</th>
<th>C3: Pre-calculated Precision-Recall curve</th>
</tr>
</thead>
</table>

Description

A list contains scores, labels, and pre-calculated recall and precision values as x and y.

Usage

\[
data(C3DATA)
\]

Format

See C1DATA.

<table>
<thead>
<tr>
<th>C4DATA</th>
<th>C4: Pre-calculated Precision-Recall curve</th>
</tr>
</thead>
</table>

Description

A list contains scores, labels, and pre-calculated recall and precision values as x and y.

Usage

\[
data(C4DATA)
\]

Format

See C1DATA.
create_example_func

Create an example for the func argument of the create_usrtool function

Description

The create_example_func function creates an example for the create_usrtool function.

Usage

create_example_func()

Value

A function as an example for create_usrtool

See Also

create_usrtool requires the same format. create_testset for testset.

Examples

Create a function
func <- create_example_func()
func

create_testset

Create a list of test datasets

Description

The create_testset function creates test datasets either for benchmarking or curve evaluation.

Usage

create_testset(test_type, set_names = NULL)

Arguments

test_type A single string to specify the type of dataset generated by this function.

"bench" Create test datasets for benchmarking
"curve" Create test datasets for curve evaluation

set_names A character vector to specify the names of test datasets.
1. For benchmarking (test_type = "bench")
 This function uses a naming convention for randomly generated data for benchmarking. The format is a prefix ('i' or 'b') followed by the number of dataset. The prefix 'i' indicates a balanced dataset, whereas 'b' indicates an imbalanced dataset. The number can be used with a suffix 'k' or 'm', indicating respectively 1000 or 1 million.
 Below are some examples.
 "b100" A balanced data set with 50 positives and 50 negatives.
 "b10k" A balanced data set with 5000 positives and 5000 negatives.
 "b1m" A balanced data set with 500,000 positives and 500,000 negatives.
 "i100" An imbalanced data set with 25 positives and 75 negatives.
 The function returns a list of TestDataB objects.

2. For curve evaluation (test_type = "curve")
 The following three predefined datasets can be specified for curve evaluation.

<table>
<thead>
<tr>
<th>set name</th>
<th>S3 object</th>
<th>data source</th>
</tr>
</thead>
<tbody>
<tr>
<td>c1 or C1</td>
<td>TestDataC</td>
<td>C1DATA</td>
</tr>
<tr>
<td>c2 or C2</td>
<td>TestDataC</td>
<td>C2DATA</td>
</tr>
<tr>
<td>c3 or C3</td>
<td>TestDataC</td>
<td>C3DATA</td>
</tr>
<tr>
<td>c4 or C4</td>
<td>TestDataC</td>
<td>C4DATA</td>
</tr>
</tbody>
</table>

 The function returns a list of TestDataC objects.

Value
A list of R6 test dataset objects.

See Also
run_benchmark and run_evalcurve require the list of the datasets generated by this function. TestDataB for benchmarking test data. TestDataC, C1DATA, C2DATA, C3DATA, and C4DATA for curve evaluation test data. create_usrdata for creating a user-defined test set.

Examples
```r
## Create a balanced data set with 50 positives and 50 negatives
tset1 <- create_testset("bench", "b100")
tset1

## Create an imbalanced data set with 25 positives and 75 negatives
hset2 <- create_testset("bench", "i100")
hset2

## Create P1 dataset
tset3 <- create_testset("curve", "c1")
tset3

## Create P1 dataset
dset4 <- create_testset("curve", "c2")
dset4
```
create_toolset

```r
tset4 <- create_testset("curve", c("c1", "c2"))
tset4
```

create_toolset Create a set of tools

Description

The `create_toolset` function takes names of predefined tools and generates a list of wrapper functions for Precision-Recall curve calculations.

Usage

```r
create_toolset(
  tool_names = NULL,
  set_names = NULL,
  calc_auc = TRUE,
  store_res = TRUE
)
```

Arguments

- `tool_names`: A character vector to specify the names of performance evaluation tools. The names for the following five tools can be currently used.
 - ROCR
 - AUCCalculator
 - PerfMeas
 - PRROC
 - precrec
- `set_names`: A character vector to specify a predefined set name. Following six sets are currently available.
 - "def5" A set of 5 tools with `calc_auc = TRUE` and `store_res = TRUE`
 - "auc5" A set of 5 tools with `calc_auc = TRUE` and `store_res = FALSE`
 - "crv5" A set of 5 tools with `calc_auc = FALSE` and `store_res = TRUE`
 - "def4" A set of 4 tools with `calc_auc = TRUE` and `store_res = TRUE`
 - "auc4" A set of 4 tools with `calc_auc = TRUE` and `store_res = FALSE`
 - "crv4" A set of 4 tools with `calc_auc = FALSE` and `store_res = TRUE`
- `calc_auc`: A Boolean value to specify whether the AUC score should be calculated.
- `store_res`: A Boolean value to specify whether the calculated curve is retrieved and stored

Value

A list of R6 tool objects.
create_usrdata

See Also

run_benchmark and run_evalcurve require the list of the tools generated by this function ToolROCR, ToolAUCCalculator, ToolPerfMeas, ToolPRROC, and Toolprecrec as R6 tool classes.

Examples

```r
## Create ROCR and precrec
toolset1 <- create_toolset(c("ROCR", "precrec"))
toolset1

## Create auc5 tools
toolset2 <- create_toolset(set_names = "auc5")
toolset2
```

create_usrdatal `Create a user-defined test dataset`

Description

The create_usrdatal function creates various types of test datasets.

Usage

```r
create_usrdatal(
  test_type,
  scores = NULL,
  labels = NULL,
  tsname = NULL,
  base_x = NULL,
  base_y = NULL,
  text_x = NULL,
  text_y = NULL,
  text_x2 = text_x,
  text_y2 = text_y
)
```

Arguments

- test_type: A single string to specify the type of dataset generated by this function.
 - "bench": Create a test dataset for benchmarking
 - "curve": Create a test dataset for curve evaluation
- scores: A numeric vector to set scores.
- labels: A numeric vector to set labels.
- tsname: A single string to specify the name of the dataset.
- base_x: A numeric vector to set pre-calculated recall values for curve evaluation.
create_usrtool

base_y A numeric vector to set pre-calculated precision values for curve evaluation.
text_x A single numeric value to set the x position for displaying the test result in a plot
text_y A single numeric value to set the y position for displaying the test result in a plot
text_x2 A single numeric value to set the x position for displaying the test result (group into categories) in a plot
text_y2 A single numeric value to set the y position for displaying the test result (group into categories) in a plot

Value

A list of R6 test dataset objects.

See Also

create_testset for creating a predefined test set. TestDataB for benchmarking test data. TestDataC for curve evaluation test data.

Examples

```r
## Create a test dataset for benchmarking
testset2 <- create_usrdata("bench", scores = c(0.1, 0.2), labels = c(1, 0),
                         tsname = "m1")
testset2

## Create a test dataset for curve evaluation
testset <- create_usrdata("curve", scores = c(0.1, 0.2), labels = c(1, 0),
                         base_x = c(0, 1.0), base_y = c(0, 0.5))
testset
```

create_usrtool

Create a set of tools

Description

The create_toolset function takes names of predefined tools and generates a list of wrapper functions for Precision-Recall curve calculations.

Usage

```r
create_usrtool(
  tool_name,
  func,
  calc_auc = TRUE,
  store_res = TRUE,
  x = NA,
  y = NA
)
```
Arguments

- **tool_name**: A single string to specify the name of a user-defined tool.
- **func**: A function to calculate a Precision-Recall curve and the AUC. It should take an element of the test dataset generated by `create_testset` as an argument. It also should return a list with three elements - 'x', 'y', and 'auc' that represent calculated recall and precision values plus the AUC score. See `create_example_func` for an example.
- **calc_auc**: A Boolean value to specify whether the AUC score should be calculated.
- **store_res**: A Boolean value to specify whether the calculated curve is retrieved and stored.
- **x**: Set pre-calculated recall values.
- **y**: Set pre-calculated precision values.

Value

A list of R6 tool objects.

See Also

- `create_toolset` to create a predefined tool set. `create_testset` for `testset`. `create_example_func` to create an example function.

Examples

```r
## Create a new tool interface called "xyz"
efunc <- create_example_func()
toolset1 <- create_usrtool("xyz", efunc)
toolset1

## Example function with a correct argument
testset <- create_usrdat("bench", scores = c(0.1, 0.2), labels = c(1, 0))
retf <- efunc(testset[[1]])
retf
```

Description

The prcbench package provides four categories of important functions: tool interface, test data interface, benchmarking, and curve evaluation.
run_benchmark

Tool interface

The `create_toolset` function creates a common interface for five different tools that calculate Precision-Recall curves. These tools are ROCR, AUCCalculator, PerfMeas, PRROC, and precrc. The `create_usrtool` function helps users to make the same interface of the predefined ones for their own tools.

Test data interface

The `create_testset` function creates two different types of test data sets. The first type is for benchmarking, and the second type is for curve evaluation. The `create_usrdata` function helps users to make their own test data sets.

Benchmarking

The `run_benchmark` function takes a tool set and a test data set and run microbenchmark for them.

Curve evaluation

The `run_evalcurve` function takes a tool set and a test data set and evaluates the accuracy of Precision-Recall curves for them.

run_benchmark Run microbenchmark with specified tools and test sets

Description

The `run_benchmark` function runs microbenchmark for specified tools and test datasets

Usage

```r
run_benchmark(testset, toolset, times = 5, unit = "ms", use_sys_time = FALSE)
```

Arguments

testset A character vector to specify a test set generated by `create_testset`.
toolset A character vector to specify a tool set generated by `create_toolset`.
times The number of iteration used in microbenchmark.
unit A single string to specify the unit used in `summary.microbenchmark`.
use_sys_time A Boolean value to specify `system.time` is used instead of `summary.microbenchmark`.

Value

A data frame of microbenchmark results with additional columns.
See Also

create_testset to generate a test dataset. create_toolset to generate a tool set. microbenchmark for benchmarking details.

Examples

```r
## Not run:
## Benchmarking for b10 and i10 test sets and crv5, auc5, and def5 tool sets
testset <- create_testset("bench", c("b10", "i10"))
toolset <- create_toolset(set_names = "def5")
res1 <- run_benchmark(testset, toolset)
res1

## End(Not run)
```

run_evalcurve

Evaluate Precision-Recall curves with specified tools and test sets

Description

The `run_evalcurve` function runs several tests to evaluate the accuracy of Precision-Recall curves.

Usage

```r
run_evalcurve(testset, toolset, auto_combo = TRUE)
```

Arguments

- **testset**: A character vector to specify a test set generated by `create_testset`.
- **toolset**: A character vector to specify a tool set generated by `create_toolset`.
- **auto_combo**: A Boolean value to specify whether a combination of test and tool sets is automatically created.

Value

A data frame with validation results.

See Also

`create_testset` to generate a test dataset. `create_toolset` to generate a tool set.

Examples

```r
## Evaluate curves for c1, c2, c3 test sets and crv5 tool set
testset <- create_testset("curve", c("c1", "c2", "c3"))
toolset <- create_toolset(set_names = "crv5")
res1 <- run_evalcurve(testset, toolset)
res1
```
Description

R6 class of test data set for performance evaluation tools.

Format

An R6 class object.

Details

TestDataB is a class that contains scores and label for performance evaluation tools. It provides necessary methods for benchmarking.

Methods

Public methods:
• `TestDataB$new()`
• `TestDataB$get_tsname()`
• `TestDataB$get_scores()`
• `TestDataB$get_labels()`
• `TestDataB$get_fg()`
• `TestDataB$get_bg()`
• `TestDataB$get_fname()`
• `TestDataB$del_file()`
• `TestDataB$print()`
• `TestDataB$clone()`

Method `new()`: Default class initialization method.

Usage:
`TestDataB$new(scores = NULL, labels = NULL, tsname = NA)`

Arguments:
scores A vector of scores.
labels A vector of labels.
tsname A dataset name.

Method `get_tsname()`: Get the dataset name.

Usage:
`TestDataB$get_tsname()`

Method `get_scores()`: Get a vector of scores.

Usage:
Method `get_scores()`
Get a vector of scores.

Usage:
`TestDataB$get_scores()`

Method `get_labels()`
Get a vector of labels.

Usage:
`TestDataB$get_labels()`

Method `get_fg()`
Get a vector of positive scores.

Usage:
`TestDataB$get_fg()`

Method `get_bg()`
Get a vector of negative scores.

Usage:
`TestDataB$get_bg()`

Method `get_fname()`
Get a file name that contains scores and labels.

Usage:
`TestDataB$get_fname()`

Method `del_file()`
Delete the file with scores and labels.

Usage:
`TestDataB$del_file()`

Method `print()`
Pretty print of the test dataset.

Usage:
`TestDataB$print(...)`

Arguments:
...
Not used.

Method `clone()`
The objects of this class are cloneable with this method.

Usage:
`TestDataB$clone(deep = FALSE)`

Arguments:
deep Whether to make a deep clone.

See Also
`create_testset` for creating a list of test datasets. **TestDataC** is derived from this class for curve evaluation.

Examples

```r
## Initialize with scores, labels, and a dataset name
testset <- TestDataB$new(c(0.1, 0.2, 0.3), c(0, 1, 1), "m1")
testset
```
Description

`TestDataC` is a class that contains scores and label for performance evaluation tools. It provides necessary methods for curve evaluation.

Format

An R6 class object.

Details

`TestDataC` is a class that contains scores and label for performance evaluation tools. It provides necessary methods for curve evaluation.

Super class

`prcbench::TestDataB` -> `TestDataC`

Methods

Public methods:

- `TestDataC$set_basepoints_x()`
- `TestDataC$set_basepoints_y()`
- `TestDataC$get_basepoints_x()`
- `TestDataC$get_basepoints_y()`
- `TestDataC$set_textpos_x()`
- `TestDataC$set_textpos_y()`
- `TestDataC$set_textpos_x2()`
- `TestDataC$set_textpos_y2()`
- `TestDataC$get_textpos_x()`
- `TestDataC$get_textpos_y()`
- `TestDataC$get_textpos_x2()`
- `TestDataC$get_textpos_y2()`
- `TestDataC$clone()`

Method `set_basepoints_x()`: Set pre-calculated recall values for curve evaluation.

Usage:

`TestDataC$set_basepoints_x(x)`

Arguments:

- `x`: A recall value.

Method `set_basepoints_y()`: Set pre-calculated precision values for curve evaluation.
Usage:
TestDataC$set_basepoints_y(y)

Arguments:
y A precision value.

Method get_basepoints_x(): Get pre-calculated recall values for curve evaluation.
Usage:
TestDataC$get_basepoints_x()

Method get_basepoints_y(): Get pre-calculated precision values for curve evaluation.
Usage:
TestDataC$get_basepoints_y()

Method set_textpos_x(): Set the position x for displaying the test result in a plot.
Usage:
TestDataC$set_textpos_x(x)

Arguments:
x Position x of the test result.

Method set_textpos_y(): Set the y position for displaying the test result in a plot.
Usage:
TestDataC$set_textpos_y(y)

Arguments:
y Position y of the test result.

Method set_textpos_x2(): Set the x position for displaying the test result in a plot.
Usage:
TestDataC$set_textpos_x2(x)

Arguments:
x Position x of the test result.

Method set_textpos_y2(): Set the y position for displaying the test result in a plot.
Usage:
TestDataC$set_textpos_y2(y)

Arguments:
y Position y of the test result.

Method get_textpos_x(): Get the position x for displaying the test result in a plot.
Usage:
TestDataC$get_textpos_x()

Method get_textpos_y(): Get the position y for displaying the test result in a plot.
Usage:
Method `get_textpos_x2()`: Get the x position for displaying the test result in a plot.

Usage:
```
TestDataC$get_textpos_x2()
```

Method `get_textpos_y2()`: Get the y position for displaying the test result in a plot.

Usage:
```
TestDataC$get_textpos_y2()
```

Method `clone()`: The objects of this class are cloneable with this method.

Usage:
```
TestDataC$clone(deep = FALSE)
```

Arguments:
- `deep`: Whether to make a deep clone.

See Also
- `create_testset` for creating a list of test datasets. It is derived from `TestDataB`.

Examples

```r
## Initialize with scores, labels, and a dataset name
testset <- TestDataC$new(c(0.1, 0.2), c(1, 0), "c4")
testset

## Set base points
testset$set_basepoints_x(c(0.13, 0.2))
testset$set_basepoints_y(c(0.5, 0.6))
testset
```

ToolAUCCalculator

R6 class of the AUCCalculator tool

Format

An *R6* class object.

Details

`ToolAUCCalculator` is a wrapper class for the `AUCCalculator` tool, which is a Java library that provides calculations of ROC and Precision-Recall curves.
Super class

prcbench::ToolIFBase -> ToolAUCCalculator

Methods

Public methods:

- ToolAUCCalculator$new()
- ToolAUCCalculator$set_jarpath()
- ToolAUC Calculator$set_curvetype()
- ToolAUCCalculator$set_auctype()
- ToolAUCCalculator$clone()

Method new(): Default class initialization method.

Usage:
ToolAUCCalculator$new(...)

Arguments:
... set value for jarpath.

Method set_jarpath(): It sets an AUCCalculator jar file.

Usage:
ToolAUCCalculator$set_jarpath(jarpath = NULL)

Arguments:
jarpath File path of the AUCCalculator jar file, e.g. "/path1/path2/auc2.jar".

Method set_curvetype(): It sets the type of curve.

Usage:
ToolAUCCalculator$set_curvetype(curvetype = "SPR")

Arguments:
curvetype "SPR", "PR", or "ROC"

Method set_auctype(): It sets the type of calculation method

Usage:
ToolAUCCalculator$set_auctype(auctype)

Arguments:
auctype "java" or "r"

Method clone(): The objects of this class are cloneable with this method.

Usage:
ToolAUCCalculator$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.
See Also

This class is derived from ToolIFBase. `create_toolset` for creating a list of tools.

Examples

```r
## Initialization
toolaucalc <- ToolAUCCalculator$new()

## Show object info
toolaucalc

## create_toolset should be used for benchmarking and curve evaluation
toolaucalc2 <- create_toolset("AUCCalculator")
```

<table>
<thead>
<tr>
<th>ToolIFBase</th>
<th>ToolIFBase</th>
</tr>
</thead>
</table>

Description

Base class of performance evaluation tools.

Format

An R6 class object

Details

ToolIFBase is an abstract class to provide a uniform interface for performance evaluation tools.

Methods

Public methods:

- `ToolIFBase$new()`
- `ToolIFBase$call()`
- `ToolIFBase$get_toolname()`
- `ToolIFBase$set_toolname()`
- `ToolIFBase$get_setname()`
- `ToolIFBase$set_setname()`
- `ToolIFBase$get_result()`
- `ToolIFBase$get_x()`
- `ToolIFBase$get_y()`
- `ToolIFBase$get_auc()`
- `ToolIFBase$print()`
- `ToolIFBase$clone()`
Method new(): Default class initialization method.

Usage:
ToolIFBase$new(…)

Arguments:
… set value for setname, calc_auc, store_res, x, y.

Method call(): It calls the tool to calculate precision-recall curves.

Usage:
ToolIFBase$call(testset, calc_auc, store_res)

Arguments:
testset R6 object generated by the create_testset function.
calc_auc A Boolean value to specify whether the AUC score should be calculated.
store_res A Boolean value to specify whether the calculated curve is retrieved and stored.

Method get_toolname(): Get the name of the tool.

Usage:
ToolIFBase$get_toolname()

Method set_toolname(): Set the name of the tool.

Usage:
ToolIFBase$set_toolname(toolname)

Arguments:
toolname Name of the tool.

Method get_setname(): Get the name of the tool set.

Usage:
ToolIFBase$get_setname()

Method set_setname(): Set the name of the tool set.

Usage:
ToolIFBase$set_setname(setname)

Arguments:
setname Name of the tool set.

Method get_result(): Get a list with curve values and the AUC score.

Usage:
ToolIFBase$get_result()

Method get_x(): Get calculated recall values.

Usage:
ToolIFBase$get_x()

Method get_y(): Get calculated precision values.
Usage:
ToolIFBase$get_y()

Method get_auc(): Get the AUC score.
Usage:
ToolIFBase$get_auc()

Method print(): Pretty print of the tool interface
Usage:
ToolIFBase$print(...)
Arguments:
... Not used.

Method clone(): The objects of this class are cloneable with this method.
Usage:
ToolIFBase$clone(deep = FALSE)
Arguments:
deep Whether to make a deep clone.

See Also
ToolROCR, ToolAUCCalculator, ToolPerfMeas, ToolPRPROC, and Toolprecrec are derived from this class. create_toolset for creating a list of tools.

ToolPerfMeas

Description
R6 class of the PerfMeas tool

Format
An R6 class object.

Details
ToolPerfMeas is a wrapper class for the PerfMeas tool, which is an R library that provides several performance measures.

Super class
prcbench::ToolIFBase -> ToolPerfMeas
Methods

Public methods:

- ToolPerfMeas$clone()

Method clone(): The objects of this class are cloneable with this method.

Usage:
ToolPerfMeas$clone(deep = FALSE)

Arguments:
depth Whether to make a deep clone.

See Also

This class is derived from ToolIFBase. create_toolset for creating a list of tools.

Examples

```r
## Initialization
toolperf <- ToolPerfMeas$new()

## Show object info
toolperf

toolperf2 <- create_toolset("PerfMeas")
```

Description

R6 class of the precrec tool

Format

An R6 class object.

Details

Toolprec is a wrapper class for the precrec tool, which is an R library that provides calculations of ROC and Precision-Recall curves.

Super class

prcbench::ToolIFBase -> Toolprec
Methods

Public methods:

- Toolprecrec$new()
- Toolprecrec$set_x_bins()
- Toolprecrec$clone()

Method new(): Default class initialization method.

Usage:
Toolprecrec$new(...)

Arguments:
... set value for x_bins.

Method set_x_bins(): Set the number of supporting points as the number of bins.

Usage:
Toolprecrec$set_x_bins(x_bins)

Arguments:
x_bins set value for x_bins.

Method clone(): The objects of this class are cloneable with this method.

Usage:
Toolprecrec$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

See Also

This class is derived from ToolIFBase. create_toolset for creating a list of tools.

Examples

Initialization
toolprecrec <- Toolprecrec$new()

Show object info
toolprecrec

create_toolset should be used for benchmarking and curve evaluation
toolprecrec2 <- create_toolset("precrec")
Description

R6 class of the PRROC tool

Format

An R6 class object.

Details

ToolPRROC is a wrapper class for the PRROC tool, which is an R library that provides calculations of ROC and Precision-Recall curves.

Super class

prcbench::ToolIFBase -> ToolPRROC

Methods

Public methods:

- ToolPRROC$new()
- ToolPRROC$set_curve()
- ToolPRROC$set_minStepSize()
- ToolPRROC$set_aucType()
- ToolPRROC$clone()

Method new(): Default class initialization method.

Usage:
ToolPRROC$new(...)

Arguments:
... set value for curve, minStepSize, aucType.

Method set_curve(): A Boolean value to specify whether precision-recall curve is calculated.

Usage:
ToolPRROC$set_curve(val)

Arguments:
val TRUE: calculate, FALSE: not calculate.

Method set_minStepSize(): A numeric value to specify the minimum step size between two intermediate points.

Usage:
ToolPRROC$set_minStepSize(val)
Arguments:
val Step size between two points.

Method set_aucType(): Set the AUC calculation method

Usage:
ToolPRROC$set_aucType(val)

Arguments:
val 1: integral, 2: Davis Goadrich

Method clone(): The objects of this class are cloneable with this method.

Usage:
ToolPRROC$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

See Also

This class is derived from ToolIFBase. create_toolset for creating a list of tools.

Examples

Initialization
toolprroc <- ToolPRROC$new()

Show object info
toolprroc

create_toolset should be used for benchmarking and curve evaluation
toolprroc2 <- create_toolset("PRROC")

Description

R6 class of the ROCR tool

Format

An R6 class object.

Details

ToolROCR is a wrapper class for the ROCR tool, which is an R library that provides calculations of various performance evaluation measures.
Super class

\texttt{prcbench::ToolIFBase} \rightarrow \texttt{ToolROCR}

Methods

Public methods:

- \texttt{ToolROCR$clone()}

Method \texttt{clone()}: The objects of this class are cloneable with this method.

\textit{Usage}:

\texttt{ToolROCR$clone(deep = FALSE)}

\textit{Arguments}:

depth Whether to make a deep clone.

See Also

This class is derived from \texttt{ToolIFBase}. \texttt{create_toolset} for creating a list of tools.

Examples

```r
## Initialization
toolrocr <- ToolROCR$new()

## Show object info
toolrocr

## create_toolset should be used for benchmarking and curve evaluation
toolrocr2 <- create_toolset("ROCR")
```
Index

* datasets
 C1DATA, 3
 C2DATA, 4
 C3DATA, 4
 C4DATA, 4

autoplot.evalcurve, 2

C1DATA, 3, 4, 6
C2DATA, 4, 6
C3DATA, 4, 6
C4DATA, 4, 6
create_example_func, 5, 10
create_testset, 5, 9–12, 14, 17
create_toolset, 7, 10–12, 19, 21–23, 25, 26
create_usrdata, 6, 8, 11
create_usrtool, 5, 9, 11

microbenchmark, 11, 12
prcbench, 10
prcbench::TestDataB, 15
prcbench::ToolIFBase, 18, 21, 22, 24, 26

run_benchmark, 6, 8, 11, 11
run_evalcurve, 6, 8, 11, 12

summary.microbenchmark, 11
system.time, 11

TestDataB, 6, 9, 13, 17
TestDataC, 6, 9, 14, 15
ToolAUCCalculator, 8, 17, 21
ToolIFBase, 19, 19, 22, 23, 25, 26
ToolPerfMeas, 8, 21, 21
Toolprecrec, 8, 21, 22
ToolPRROC, 8, 21, 24
ToolROCR, 8, 21, 25