Package ‘pense’

October 3, 2020

Type Package
Title Penalized Elastic Net S/MM-Estimator of Regression
Version 2.0.2
Date 2020-10-03
Copyright See the file COPYRIGHT for copyright details on some of the functions and algorithms used.
Encoding UTF-8
Biarch true
SystemRequirements C++11
URL https://dakep.github.io/pense-rpkg,
https://github.com/dakep/pense-rpkg
BugReports https://github.com/dakep/pense-rpkg/issues
Depends R (>= 3.5.0),
Matrix
Imports Rcpp,
methods,
parallel,
lifecycle (>= 0.2.0),
rlang (>= 0.4.0)
LinkingTo Rcpp,
RcppArmadillo (>= 0.9.600)
Suggests testthat (>= 2.1.0),
nitr,
markdown
License MIT + file LICENSE
NeedsCompilation yes
RoxygenNote 7.1.1
Roxygen list(markdown = TRUE, load = `source")
R topics documented:

- coef.pense_cvfit .. 3
- coef.pense_fit .. 4
- consistency_const 5
- deprecated_en_options 6
- elnet .. 7
- elnet_cv .. 9
- enpy .. 12
- enpy_initial_estimates 13
- enpy_options .. 14
- en_admm_options 15
- en_algorithm_options 16
- en_dal_options 16
- en_lars_options 17
- initest_options 17
- mloc .. 18
- mlocscale .. 19
- mm_algorithm_options 20
- mscale .. 20
- mscale_algorithm_options 21
- mstep_options ... 22
- pense ... 23
- pensem ... 26
- pensem_cv .. 27
- pense_cv ... 30
- pense_options ... 34
- plot.pense_cvfit 35
- plot.pense_fit ... 36
- predict.pense_cvfit 37
- predict.pense_fit 38
- prediction_performance 39
- prinsens ... 40
- regmest ... 41
- regmest_cv .. 44
- residuals.pense_cvfit 47
- residuals.pense_fit 49
- rho_function .. 50
- starting_point 50
- summary.pense_cvfit 52
- tau_size ... 53

Index 54
coef.pense_cvfit

Extract Coefficient Estimates

Description

Extract coefficients from a PENSE (or LS-EN) regularization path with hyper-parameters chosen by cross-validation.

Usage

```r
## S3 method for class 'pense_cvfit'
coef(
  object,
  lambda = c("min", "se"),
  se_mult = 1,
  sparse = NULL,
  exact = deprecated(),
  correction = deprecated(),
  ...
)
```

Arguments

- `object`:
 - PENSE with cross-validated hyper-parameters to extract coefficients from.
- `lambda`:
 - either a string specifying which penalty level to use ("min" or "se") or a single numeric value of the penalty parameter. See details.
- `se_mult`:
 - If `lambda = "se"`, the multiple of standard errors to tolerate.
- `sparse`:
 - should coefficients be returned as sparse or dense vectors? Defaults to the sparse argument supplied to `pense_cv()`. Can also be set to `sparse = 'matrix'`, in which case a sparse matrix is returned instead of a sparse vector.
- `exact`:
 - deprecated. Always gives a warning if `lambda` is not part of the fitted sequence and coefficients are interpolated.
- `correction`:
 - defunct.
- `...`:
 - currently not used.

Details

If `lambda = "se"` and `object` contains fitted estimates for every penalization level in the sequence, extract the coefficients of the most parsimonious model with prediction performance statistically indistinguishable from the best model. This is determined to be the model with prediction performance within `se_mult * cv_se` from the best model.

Value

either a numeric vector or a sparse vector of type `dsparseVector` of size $p + 1$, depending on the `sparse` argument. Note: prior to version 2.0.0 sparse coefficients were returned as sparse matrix of type `dgCMatrix`. To get a sparse matrix, use `sparse = 'matrix'`.
```
# Compute the PENSE regularization path for Freeny's revenue data
# (see ?freeny)
data(freeny)
x <- as.matrix(freeny[, 2:5])
regpath <- pense(x, freeny$y, alpha = 0.5)
plot(regpath)

# Extract the coefficients at a certain penalization level
coef(regpath, lambda = regpath$lambda[40])

# What penalization level leads to good prediction performance?
cv_results <- pense_cv(x, freeny$y, alpha = 0.5, cv_repl = 2, cv_k = 4)
plot(cv_results, se_mult = 1)

# Extract the coefficients at the penalization level with
# smallest prediction error ...
coef(cv_results)
# ... or at the penalization level with prediction error
# statistically indistinguishable from the minimum.
coef(cv_results, lambda = 'se')
```

See Also

Other functions for extracting components: `coef.pense_fit()`, `predict.pense_cvfit()`, `predict.pense_fit()`, `residuals.pense_cvfit()`, `residuals.pense_fit()`

Examples

Description

Extract coefficients from a PENSE (or LS-EN) regularization path fitted by `pense()` or `elnet()`.

Usage

```r
## S3 method for class 'pense_fit'
coef(
  object,
  lambda,
  sparse = NULL,
  exact = deprecated(),
  correction = deprecated(),
  ...
)
```

Arguments

- `object`: PENSE regularization path to extract coefficients from.
- `lambda`: a single value of the penalty parameter.
Get the Constant for Consistency for the M-Scale

Description

Get the Constant for Consistency for the M-Scale
deprecated_en_options

Usage

consistency_const(delta, rho)

Arguments

delta desired breakdown point (between 0 and 0.5)
rho the name of the chosen ρ function.

Value

consistency constant

See Also

Other miscellaneous functions: rho_function()

deprecated_en_options Deprecated

Description

Deprecated

Options for computing EN estimates.

Usage

en_options_aug_lars(use_gram = c("auto", "yes", "no"), eps = 1e-12)
en_options_dal(
 maxit = 100,
 eps = 1e-08,
 eta_mult = 2,
 eta_start_numerator = 0.01,
 eta_start,
 preconditioner = c("approx", "none", "diagonal"),
 verbosity = 0
)

Arguments

use_gram ignored. Should the Gram matrix be pre-computed.
eps ignored. Numeric tolerance for convergence.
maxit maximum number of iterations allowed.
eta_mult multiplier to increase eta at each iteration.
eta_start_numerator
 if eta_start is missing, it is defined by $eta_{start} = \eta_{start_{numerator}} / \lambda$.
eta_start ignored. The start value for eta.
preconditioner ignored. Preconditioner for the numerical solver. If none, a standard solver will be used, otherwise the faster preconditioned conjugate gradient is used.
verbosity ignored.
Functions

• en_options_aug_lars: Superseded by en_lars_options().
• en_options_dal: Superseded by en_dal_options()

Warning

Do not use these functions in new code. They may be removed from future versions of the package.

See Also

Other deprecated functions: enpy(), inittest_options(), mstep_options(), pense_options(), pensem()

elnet

Compute the Least Squares (Adaptive) Elastic Net Regularization Path

Description

Compute least squares EN estimates for linear regression with optional observation weights and penalty loadings.

Usage

elnet(
 x,
 y,
 alpha,
 nlambda = 100,
 lambda_min_ratio,
 lambda,
 penalty_loadings,
 weights,
 intercept = TRUE,
 en_algorithm_opts,
 sparse = FALSE,
 eps = 1e-06,
 standardize = TRUE,
 correction = deprecated(),
 xtest = deprecated(),
 options = deprecated()
)

Arguments

x n by p matrix of numeric predictors.
y vector of response values of length n. For binary classification, y should be a factor with 2 levels.
alpha elastic net penalty mixing parameter with $0 \leq \alpha \leq 1$. alpha = 1 is the LASSO penalty, and alpha = 0 the Ridge penalty.
nlambda number of penalization levels.
The elastic net estimator for the linear regression model solves the optimization problem

$$\argmin_{\mu, \beta} \frac{1}{2n} \sum_i w_i (y_i - \mu - x_i' \beta)^2 + \lambda \sum_j 0.5(1 - \alpha)\beta_j^2 + \alpha l_j |\beta_j|$$

with observation weights w_i and penalty loadings l_j.

Value

A list-like object with the following items:

- `lambda` the sequence of penalization parameters.
- `estimates` a list of estimates. Each estimate contains the following information:
 - `intercept` intercept estimate.
 - `beta` beta (slope) estimate.
 - `lambda` penalization level at which the estimate is computed.
 - `alpha` alpha hyper-parameter at which the estimate is computed.
 - `statuscode` if > 0 the algorithm experienced issues when computing the estimate.
 - `status` optional status message from the algorithm.
 - `call` the original call.
- `predictions` if `xtest` was given, a matrix of predicted values. Each column corresponds to the predictions from the estimate at the `lambda` value at the same index.
See Also

pense() for an S-estimate of regression with elastic net penalty.

coef.pense_fit() for extracting coefficient estimates.

plot.pense_fit() for plotting the regularization path.

Other functions for computing non-robust estimates: elnet_cv()

Examples

Compute the LS-EN regularization path for Freeny's revenue data
(see ?freeny)
data(freeny)
x <- as.matrix(freeny[, 2:5])

regpath <- elnet(x, freeny$y, alpha = 0.75)
plot(regpath)

Extract the coefficients at a certain penalization level
coef(regpath, lambda = regpath$lambda[5])

What penalization level leads to good prediction performance?
cv_results <- elnet_cv(x, freeny$y, alpha = 0.75, cv_repl = 10,
 cv_k = 4, cv_measure = 'tau')
plot(cv_results, se_mult = 1)
plot(cv_results, se_mult = 1, what = 'coef.path')

Extract the coefficients at the penalization level with
smallest prediction error ...
coef(cv_results)
... or at the penalization level with prediction error
statistically indistinguishable from the minimum.
coef(cv_results, lambda = 'se')
Arguments

\(x \)
\(n \) by \(p \) matrix of numeric predictors.

\(y \)
vector of response values of length \(n \). For binary classification, \(y \) should be a factor with 2 levels.

\(\lambda \)
optional user-supplied sequence of penalization levels. If given and not NULL, \(n\lambda \) and \(\lambda_{\text{min ratio}} \) are ignored.

\(\text{cv}_k \)
number of folds per cross-validation.

\(\text{cv}_\text{repl} \)
number of cross-validation replications.

\(\text{cv}_\text{metric} \)
either a string specifying the performance metric to use, or a function to evaluate prediction errors in a single CV replication. If a function, the number of arguments define the data the function receives. If the function takes a single argument, it is called with a single numeric vector of prediction errors. If the function takes two or more arguments, it is called with the predicted values as first argument and the true values as second argument. The function must always return a single numeric value quantifying the prediction performance. The order of the given values corresponds to the order in the input data.

\(\text{fit}_\text{all} \)
If TRUE, fit the model for all penalization levels. Otherwise, only at penalization level with smallest average CV performance.

\(\text{cl} \)
a parallel cluster. Can only be used if \(\text{ncores} = 1 \), because multi-threading can not be used in parallel R sessions on the same host.

\(\text{ncores} \)
deprecated and not used anymore.

...
Arguments passed on to \texttt{elnet}

\(\alpha \)
elastic net penalty mixing parameter with \(0 \leq \alpha \leq 1 \). \(\alpha = 1 \) is the LASSO penalty, and \(\alpha = 0 \) the Ridge penalty.

\(n\lambda \)
number of penalization levels.

\(\lambda_{\text{min ratio}} \)
Smallest value of the penalization level as a fraction of the largest level (i.e., the smallest value for which all coefficients are zero). The default depends on the sample size relative to the number of variables and \(\alpha \). If more observations than variables are available, the default is \(1e-3 \ast \alpha \), otherwise \(1e-2 \ast \alpha \).

\(\text{penalty-loadings} \)
a vector of positive penalty loadings (a.k.a. weights) for different penalization of each coefficient.

\(\text{standardize} \)
standardize variables to have unit variance. Coefficients are always returned in original scale.

\(\text{weights} \)
a vector of positive observation weights.

\(\text{intercept} \)
include an intercept in the model.

\(\text{sparse} \)
use sparse coefficient vectors.

\(\text{en-algorithm-opts} \)
options for the EN algorithm. See \texttt{en_algorithm_options} for details.

\(\text{eps} \)
umerical tolerance.

\(\text{xtest} \)
deprecated. Instead, extract coefficients with \texttt{coef.pense_fit()} and compute predictions manually.

\(\text{options} \)
deprecated. Use \texttt{en_algorithm_opts} instead.

\(\text{correction} \)
defunct. Correction for EN estimates is not supported anymore.
Details

The built-in CV metrics are

- "tau_size" τ-size of the prediction error, computed by `tau_size()` (default).
- "mape" Median absolute prediction error.
- "rmspe" Root mean squared prediction error.
- "auroc" Area under the receiver operator characteristic curve (actually 1 - AUROC). Only sensible for binary responses.

Value

A list with components:

- `lambda` the sequence of penalization levels.
- `cvres` data frame of average cross-validated performance.
- `cv_replications` matrix of cross-validated performance metrics, one column per replication.
 Rows are in the same order as in `cvres`.
- `call` the original call.
- `estimates` the estimates fitted on the full data. Same format as returned by `elnet()`.

See Also

- `elnet()` for computing the LS-EN regularization path without cross-validation.
- `pense_cv()` for cross-validation of S-estimates of regression with elastic net penalty.
- `coef.pense_cvfit()` for extracting coefficient estimates.
- `plot.pense_cvfit()` for plotting the CV performance or the regularization path.

Other functions for computing non-robust estimates: `elnet()`

Examples

```r
# Compute the LS-EN regularization path for Freeny's revenue data
# (see ?freeny)
data(freeny)
x <- as.matrix(freeny[, 2:5])
regpath <- elnet(x, freeny$y, alpha = 0.75)
plot(regpath)

# Extract the coefficients at a certain penalization level
coef(regpath, lambda = regpath$lambda[5])

# What penalization level leads to good prediction performance?
cv_results <- elnet_cv(x, freeny$y, alpha = 0.75, cv_repl = 10,
cv_k = 4, cv_measure = 'tau')
plot(cv_results, se_mult = 1)
plot(cv_results, se_mult = 1, what = 'coef.path')

# Extract the coefficients at the penalization level with
# smallest prediction error ...
coef(cv_results)
# ... or at the penalization level with prediction error
# statistically indistinguishable from the minimum.
coef(cv_results, lambda = 'se')
```
Description

Deprecated

Compute initial estimates for EN S-estimates using ENPY. Superseded by `enpy_initial_estimates()`.

Usage

`enpy(x, y, alpha, lambda, delta, cc, options, en_options)`

Arguments

- `x`: data matrix with predictors.
- `y`: response vector.
- `alpha, lambda`: EN penalty parameters (NOT adjusted for the number of observations in `x`).
- `delta`: desired breakdown point of the resulting estimator.
- `cc`: tuning constant for the S-estimator. Default is chosen based on the breakdown point `delta`. Should never have to be changed.
- `options`: ignored. Additional options for the initial estimator.

Value

- `coeff`: A numeric matrix with one initial coefficient per column
- `objF`: A vector of values of the objective function for the respective coefficient

Warning

Do not use this function in new code. It may be removed from future versions of the package.

See Also

Other deprecated functions: `deprecated_en_options`, `initest_options()`, `mstep_options()`, `pense_options()`, `pensem()`
ENPY Initial Estimates for EN S-Estimators

Description

Compute initial estimates for the EN S-estimator using the EN-PY procedure.

Usage

enpy_initial_estimates(
 x,
 y,
 alpha,
 lambda,
 bdp = 0.25,
 cc,
 intercept = TRUE,
 penalty_loadings,
 enpy_opts = enpy_options(),
 mscale_opts = mscale_algorithm_options(),
 eps = 1e-06,
 sparse = FALSE,
 ncores = 1L
)

Arguments

x n by p matrix of numeric predictors.
y vector of response values of length n.
alpha elastic net penalty mixing parameter with 0 ≤ α ≤ 1. alpha = 1 is the LASSO penalty, and alpha = 0 the Ridge penalty.
lambda a vector of positive values of penalization levels.
bdp desired breakdown point of the estimator, between 0 and 0.5.
cmpy cutoff value for the bisquare rho function. By default, chosen to yield a consistent estimate for the Normal distribution.
intercept include an intercept in the model.
penalty_loadings a vector of positive penalty loadings (a.k.a. weights) for different penalization of each coefficient. Only allowed for alpha > 0.
enpy_opts options for the EN-PY algorithm, created with the enpy_options() function.
mscale_opts options for the M-scale estimation. See mscale_algorithm_options() for details.
eps numerical tolerance.
sparse use sparse coefficient vectors.
ncores number of CPU cores to use in parallel. By default, only one CPU core is used. May not be supported on your platform, in which case a warning is given.
enpy_options

Options for the ENPY Algorithm

Description

Additional control options for the elastic net Peña-Yohai procedure.

Usage

enpy_options(
 max_it = 10,
 keep_psc_proportion = 0.5,
 en_algorithm_opts,
 keep_residuals_measure = c("threshold", "proportion"),
 keep_residuals_proportion = 0.5,
 keep_residuals_threshold = 2,
 retain_best_factor = 2,
 retain_max = 500
)

Arguments

max_it maximum number of EN-PY iterations.
keep_psc_proportion how many observations should to keep based on the Principal Sensitivity Components.
en_algorithm_opts options for the LS-EN algorithm. See en_algorithm_options for details.
keep_residuals_measure how to determine what observations to keep, based on their residuals. If proportion, a fixed number of observations is kept. If threshold, only observations with residuals below the threshold are kept.
keep_residuals_proportion proportion of observations to kept based on their residuals.
en_admm_options

- `keep_residuals_threshold`: only observations with (standardized) residuals less than this threshold are kept.
- `retain_best_factor`: only keep candidates that are within this factor of the best candidate. If <= 1, only keep candidates from the last iteration.
- `retain_max`: maximum number of candidates, i.e., only the best `retain_max` candidates are retained.

Details

The EN-PY procedure for computing initial estimates iteratively cleans the data of observations with possibly outlying residual or high leverage. Least-squares elastic net (LS-EN) estimates are computed on the possibly clean subsets. At each iteration, the Principal Sensitivity Components are computed to remove observations with potentially high leverage. Among all the LS-EN estimates, the estimate with smallest M-scale of the residuals is selected. Observations with largest residual for the selected estimate are removed and the next iteration is started.

Value

Options for the ENPY algorithm.

en_admm_options Use the ADMM Elastic Net Algorithm

Description

Use the ADMM Elastic Net Algorithm

Usage

en_admm_options(max_it = 1000, step_size, acceleration = 1)

Arguments

- `max_it`: maximum number of iterations.
- `step_size`: step size for the algorithm.
- `acceleration`: acceleration factor for linearized ADMM.

Value

Options for the ADMM EN algorithm.

See Also

Other EN algorithms: `en_dal_options()`, `en_lars_options()`
en_dal_options

Use the DAL Elastic Net Algorithm

Description

Use the DAL Elastic Net Algorithm

Usage

en_dal_options(
 max_it = 100,
 max_inner_it = 100,
 eta_multiplier = 2,
 eta_start_conservative = 0.01,
 eta_start_aggressive = 1,
 lambda_relchange_aggressive = 0.25
)

Arguments

max_it maximum number of (outer) iterations.
max_inner_it maximum number of (inner) iterations in each outer iteration.
eta_multiplier multiplier for the barrier parameter. In each iteration, the barrier must be more restrictive (i.e., the multiplier must be > 1).
eta_start_conservative conservative initial barrier parameter. This is used if the previous penalty is undefined or too far away.
Description
Use the LARS Elastic Net Algorithm

Usage
en_lars_options()

See Also
Other EN algorithms: \texttt{en_admm_options()}, \texttt{en_lars_options()}

initest_options

Description
Deprecated
Options for computing initial estimates via ENPY. Superseded by \texttt{enpy_options()}.

Usage
initest_options(
 keep_solutions = 5,
 psc_method = c("exact", "rr"),
 maxit = 10,
 maxit_pense_refinement = 5,
 eps = 1e-06,
 psc_keep = 0.5,
 resid_keep_method = c("proportion", "threshold"),
 resid_keep_prop = 0.6,
 resid_keep_thresh = 2,
 mscale_eps = 1e-08,
 mscale_maxit = 200
)
Arguments

keep_solutions how many initial estimates should be kept to perform full PENSE iterations?
pssc_method The method to use for computing the principal sensitivity components. See details for the possible choices.
maxit maximum number of refinement iterations.
maxit_pense_refinement ignored. Maximum number of PENSE iterations to refine initial estimator.
eps ignored. Numeric tolerance for convergence.
pssc_keep proportion of observations to keep based on the PSC scores.
resid_keep_method
resid_keep_prop, resid_keep_thresh
mscale_eps, mscale_maxit

Warning

Do not use this function in new code. It may be removed from future versions of the package.

See Also

Other deprecated functions: deprecated_en_options, enpy(), mstep_options(), pense_options(), pensem()

mloc

Compute the M-estimate of Location

Description

Compute the M-estimate of location using an auxiliary estimate of the scale.

Usage

mloc(x, scale, rho, cc, opts = mscale_algorithm_options())

Arguments

x numeric values. Missing values are verbosely ignored.
scale scale of the x values. If omitted, uses the mad().
rho the ρ function to use. See rho_function() for available functions.
cc value of the tuning constant for the chosen ρ function. By default, chosen to achieve 95% efficiency under the Normal distribution.
opts a list of options for the M-estimating algorithm, see mscale_algorithm_options() for details.
mlocscale

Value

a single numeric value, the M-estimate of location.

See Also

Other functions to compute robust estimates of location and scale: mlocscale(), mscale(), tau_size()

mlocscale Compute the M-estimate of Location and Scale

Description

Simultaneous estimation of the location and scale by means of M-estimates.

Usage

mlocscale(
x,
 bdp = 0.25,
 scale_cc = consistency_const(bdp, "bisquare"),
 location_rho,
 location_cc,
 opts = mscale_algorithm_options()
)

Arguments

x numeric values. Missing values are verbosely ignored.
bdp desired breakdown point (between 0 and 0.5).
scale_cc cutoff value for the bisquare \(\rho \) function for computing the scale estimate. By default, chosen to yield a consistent estimate for normally distributed values.
location_rho, location_cc \(\rho \) function and cutoff value for computing the location estimate. See rho_function() for a list of available \(\rho \) functions.
opts a list of options for the M-estimating equation, see mscale_algorithm_options() for details.

Value

a vector with 2 elements, the M-estimate of location and the M-scale estimate.

See Also

Other functions to compute robust estimates of location and scale: mloc(), mscale(), tau_size()
Description

Additional options for the MM algorithm to compute EN S- and M-estimates.

Usage

```r
mm_algorithm_options(
  max_it = 500,
  tightening = c("adaptive", "exponential", "none"),
  tightening_steps = 10,
  en_algorithm_opts
)
```

Arguments

- `max_it`: maximum number of iterations.
- `tightening`: how to make inner iterations more precise as the algorithm approaches a local minimum.
- `tightening_steps`: for adaptive tightening strategy, how often to tighten until the desired tolerance is attained.

Value

options for the MM algorithm.

mscale

Compute the M-Scale of Centered Values

Description

Compute the M-scale without centering the values.

Usage

```r
mscale(
  x,
  bdp = 0.25,
  cc = consistency_const(bdp, "bisquare"),
  opts = mscale_algorithm_options(),
  delta = deprecated(),
  rho = deprecated(),
  eps = deprecated(),
  maxit = deprecated()
)
```
Arguments

- **x**: numeric values. Missing values are verbosely ignored.
- **bdp**: desired breakdown point (between 0 and 0.5).
- **cc**: cutoff value for the bisquare rho function. By default, chosen to yield a consistent estimate for the Normal distribution.
- **opts**: a list of options for the M-scale estimation algorithm, see `mscale_algorithm_options()` for details.
- **delta**: deprecated. Use bdp instead.
- **rho, eps, maxit**: deprecated. Instead set control options for the algorithm with the opts arguments.

Value

the M-estimate of scale.

See Also

Other functions to compute robust estimates of location and scale: `mlocscale()`, `mloc()`, `tau_size()`

mscale_algorithm_options

Options for the M-scale Estimation Algorithm

Description

Options for the M-scale Estimation Algorithm

Usage

```r
mscale_algorithm_options(max_it = 200, eps = 1e-08)
```

Arguments

- **max_it**: maximum number of iterations.
- **eps**: numerical tolerance to check for convergence.

Value

options for the M-scale estimation algorithm.
mstep_options Deprecated

Description

Deprecated

Additional options for computing penalized EN MM-estimates. Superseded by `mm_algorithm_options()` and options supplied directly to `pensem_cv()`.

Usage

```r
mstep_options(
  cc = 3.44,
  maxit = 1000,
  eps = 1e-06,
  adjust_bdp = FALSE,
  verbosity = 0,
  en_correction = TRUE
)
```

Arguments

- **cc**: ignored. Tuning constant for the M-estimator.
- **maxit**: maximum number of iterations allowed.
- **eps**: ignored. Numeric tolerance for convergence.
- **adjust_bdp**: ignored. Should the breakdown point be adjusted based on the effective degrees of freedom?
- **verbosity**: ignored. Verbosity of the algorithm.
- **en_correction**: ignored. Should the corrected EN estimator be used to choose the optimal lambda with CV. If TRUE, as by default, the estimator is "bias corrected".

Warning

Do not use this function in new code. It may be removed from future versions of the package.

See Also

Other deprecated functions: `deprecated_en_options`, `enpy()`, `initest_options()`, `pense_options()`, `pensem()`
pense

Compute (Adaptive) Elastic Net S-Estimates of Regression

Description

Compute elastic net S-estimates (PENSE estimates) along a grid of penalization levels with optional penalty loadings for adaptive elastic net.

Usage

```r
pense(
  x, y,
  alpha, nlamba = 50, nlamba_enpy = 10, lambda, lambda_min_ratio,
  enpy_lambda, penalty_loadings, intercept = TRUE,
  bdp = 0.25, cc, add_zero_based = TRUE, enpy_specific = FALSE, other_starts,
  eps = 1e-06, explore_solutions = 10, explore_tol = 0.1, max_solutions = 10,
  comparison_tol = sqrt(eps), sparse = FALSE, ncores = 1,
  standardize = TRUE, algorithm_opts = mm_algorithm_options(),
  mscale_opts = mscale_algorithm_options(), enpy_opts = enpy_options(),
  cv_k = deprecated(), cv_objective = deprecated(),
  ...
)
```

Arguments

- **x**: n by p matrix of numeric predictors.
- **y**: vector of response values of length n. For binary classification, y should be a factor with 2 levels.
- **alpha**: elastic net penalty mixing parameter with $0 \leq \alpha \leq 1$. alpha = 1 is the LASSO penalty, and alpha = 0 the Ridge penalty.
- **nlamba**: number of penalization levels.
nlambda_enpy

number of penalization levels where the EN-PY initial estimate is computed.

lambda

optional user-supplied sequence of penalization levels. If given and not NULL, nlambda and lambda_min_ratio are ignored.

lambda_min_ratio

Smallest value of the penalization level as a fraction of the largest level (i.e., the smallest value for which all coefficients are zero). The default depends on the sample size relative to the number of variables and alpha. If more observations than variables are available, the default is $1e^{-3} \times \alpha$, otherwise $1e^{-2} \times \alpha$.

enpy_lambda

optional user-supplied sequence of penalization levels at which EN-PY initial estimates are computed. If given and not NULL, nlambda_enpy is ignored.

penalty_loadings

a vector of positive penalty loadings (a.k.a. weights) for different penalization of each coefficient. Only allowed for $\alpha > 0$.

intercept

include an intercept in the model.

bdp

desired breakdown point of the estimator, between 0 and 0.5.

cc

tuning constant for the S-estimator. Default is to chosen based on the breakdown point bdp. Does not affect the estimated coefficients, only the estimated scale of the residuals.

add_zero_based

also consider the 0-based regularization path. See details for a description.

enpy_specific

use the EN-PY initial estimates only at the penalization level they are computed for. See details for a description.

other_starts

a list of other staring points, created by starting_point(). If the output of enpy_initial_estimates() is given, the starting points will be shared among all penalization levels. Note that if a the starting point is specific to a penalization level, this penalization level is added to the grid of penalization levels (either the manually specified grid in lambda or the automatically generated grid of size nlambda). If standardize = TRUE, the starting points are also scaled.

eps

numerical tolerance.

explore_solutions

number of solutions to compute up to the desired precision eps.

explore_tol

numerical tolerance for exploring possible solutions. Should be (much) looser than eps to be useful.

max_solutions

only retain up to max_solutions unique solutions per penalization level.

comparison_tol

numeric tolerance to determine if two solutions are equal. The comparison is first done on the absolute difference in the value of the objective function at the solution. If this is less than comparison_tol, two solutions are deemed equal if the squared difference of the intercepts is less than comparison_tol and the squared L_2 norm of the difference vector is less than comparison_tol.

sparse

use sparse coefficient vectors.

ncores

number of CPU cores to use in parallel. By default, only one CPU core is used. May not be supported on your platform, in which case a warning is given.

standardize

logical flag to standardize the x variables prior to fitting the PENSE estimates. Coefficients are always returned on the original scale. This can fail for variables with a large proportion of a single value (e.g., zero-inflated data). In this case, either compute with standardize = FALSE or standardize the data manually.

algorithm_opts

options for the MM algorithm to compute the estimates. See mm_algorithm_options() for details.
pense

- **mscale_opts** options for the M-scale estimation. See `mscale_algorithm_options()` for details.
- **enpy_opts** options for the ENPY initial estimates, created with the `enpy_options()` function. See `enpy_initial_estimates()` for details.
- **cv_k, cv_objective** deprecated and ignored. See `pense_cv()` for estimating prediction performance via cross-validation.

... ignored. See the section on deprecated parameters below.

Value

A list-like object with the following items:

- **lambda** the sequence of penalization levels.
- **estimates** a list of estimates. Each estimate contains the following information:
 - **intercept** intercept estimate.
 - **beta** beta (slope) estimate.
 - **lambda** penalization level at which the estimate is computed.
 - **alpha** alpha hyper-parameter at which the estimate is computed.
 - **objf_value** value of the objective function at the solution.
 - **statuscode** if > 0 the algorithm experienced issues when computing the estimate.
 - **status** optional status message from the algorithm.
- **call** the original call.

Strategies for Using Starting Points

The function supports several different strategies to compute, and use the provided starting points for optimizing the PENSE objective function.

Starting points are computed internally but can also be supplied via `other_starts`. By default, starting points are computed internally by the EN-PY procedure for penalization levels supplied in `enpy_lambda` (or the automatically generated grid of length `nlambda_enpy`). By default, starting points computed by the EN-PY procedure are *shared* for all penalization levels in `lambda` (or the automatically generated grid of length `nlambda`). If the starting points should be *specific* to the penalization level the starting points’ penalization level, set the `enpy_specific` argument to `TRUE`.

In addition to EN-PY initial estimates, the algorithm can also use the "0-based" strategy if `add_zero_based = TRUE` (by default). Here, the 0-vector is used to start the optimization at the largest penalization level in `lambda`. At subsequent penalization levels, the solution at the previous penalization level is also used as starting point.

At every penalization level, all starting points are explored using the loose numerical tolerance `explore_tol`. Only the best `explore_solutions` are computed to the stringent numerical tolerance `eps`. Finally, only the best `max_solutions` are retained and carried forward as starting points for the subsequent penalization level.

Deprecated Arguments

Starting with version 2.0.0, cross-validation is performed by separate function `pense_cv()`. Arguments related cross-validation cause an error when supplied to `pense()`. Furthermore, the following arguments are deprecated as of version 2.0.0: `initial, warm_reset, cl, options, init_options, en_options`. If `pense()` is called with any of these arguments, warnings detail how to replace them.
See Also
pense_cv() for selecting hyper-parameters via cross-validation.
coef.pense_fit() for extracting coefficient estimates.
plot.pense_fit() for plotting the regularization path.
Other functions to compute robust estimates: regmest()

Examples
Compute the PENSE regularization path for Freeny's revenue data
(see ?freeny)
data(freeny)
x <- as.matrix(freeny[, 2:5])
regpath <- pense(x, freeny$y, alpha = 0.5)
plot(regpath)

Extract the coefficients at a certain penalization level
coef(regpath, lambda = regpath$lambda[40])

What penalization level leads to good prediction performance?
cv_results <- pense_cv(x, freeny$y, alpha = 0.5, cv_repl = 2,
cv_k = 4)
plot(cv_results, se_mult = 1)

Extract the coefficients at the penalization level with
smallest prediction error ...
coef(cv_results)
... or at the penalization level with prediction error
statistically indistinguishable from the minimum.
coef(cv_results, lambda = 'se')

pensem

Deprecated Alias of pense_cv

Description
pensem() is a deprecated alias for pense_cv().

Usage
pensem(x, ...)

Arguments
x
either a numeric matrix of predictor values, or a cross-validated PENSE fit from
pense_cv().
...
ignored. See the section on deprecated parameters below.

See Also
Other deprecated functions: deprecated_en_options, enpy(), initest_options(), mstep_options(), pense_options()
Description

This is a convenience wrapper around `pense_cv()` and `regmest_cv()`, for the common use-case of computing a highly-robust S-estimate followed by a more efficient M-estimate using the scale of the residuals from the S-estimate.

Usage

```r
pensem_cv(x, ...)  
## Default S3 method:  
pensem_cv(
  x,
  y,
  alpha = 0.5,
  nlambda = 50,
  lambda_min_ratio,
  lambda_m,
  lambda_s,
  standardize = TRUE,
  penalty_loadings,
  intercept = TRUE,
  bdp = 0.25,
  ncores = 1,
  sparse = FALSE,
  eps = 1e-06,
  cc = 4.7,
  cv_k = 5,
  cv_repl = 1,
  cl = NULL,
  cv_metric = c("tau_size", "mape", "rmspe"),
  add_zero_based = TRUE,
  explore_solutions = 10,
  explore_tol = 0.1,
  max_solutions = 10,
  fit_all = TRUE,
  comparison_tol = sqrt(eps),
  algorithm_opts = mm_algorithm_options(),
  mscale_opts = mscale_algorithm_options(),
  nlambda_enpy = 10,
  enpy_opts = enpy_options(),
  ...
)

## S3 method for class 'pense_cvfit'  
pensem_cv(
  x,
  scale,
```
alpha,
nlambda = 50,
lambda_min_ratio,
lambda_m,
standardize = TRUE,
penalty_loadings,
intercept = TRUE,
bdp = 0.25,
ncores = 1,
sparse = FALSE,
eps = 1e-06,
cc = 4.7,
CV_k = 5,
CV_repl = 1,
c1 = NULL,
cv_metric = c("tau_size", "mape", "rmspe"),
add_zero_based = TRUE,
explore_solutions = 10,
explore_tol = 0.1,
max_solutions = 10,
fit_all = TRUE,
comparison_tol = sqrt(eps),
algorithm_opts = mm_algorithm_options(),
mscale_opts = mscale_algorithm_options(),
x_train,
y_train,
...
)

Arguments

x either a numeric matrix of predictor values, or a cross-validated PENSE fit from
pense_cv().

... ignored. See the section on deprecated parameters below.

y vector of response values of length n. For binary classification, y should be a factor with 2 levels.

alpha elastic net penalty mixing parameter with $0 \leq \alpha \leq 1$. alpha = 1 is the LASSO penalty, and alpha = 0 the Ridge penalty.

nlambda number of penalization levels.

lambda_min_ratio Smallest value of the penalization level as a fraction of the largest level (i.e., the smallest value for which all coefficients are zero). The default depends on the sample size relative to the number of variables and alpha. If more observations than variables are available, the default is $1e^{-3} \times alpha$, otherwise $1e^{-2} \times alpha$.

lambda_m, lambda_s optional user-supplied sequence of penalization levels for the S- and M-estimates. If given and not NULL, nlambda and lambda_min_ratio are ignored for the respective estimate (S and/or M).

standardize logical flag to standardize the x variables prior to fitting the PENSE estimates. Coefficients are always returned on the original scale. This can fail for variables
with a large proportion of a single value (e.g., zero-inflated data). In this case, either compute with `standardize = FALSE` or standardize the data manually.

penalty_loadings
- A vector of positive penalty loadings (a.k.a. weights) for different penalization of each coefficient. Only allowed for `alpha > 0`.

intercept
- Include an intercept in the model.

bdp
- Desired breakdown point of the estimator, between 0 and 0.5.

ncores
- Number of CPU cores to use in parallel. By default, only one CPU core is used. May not be supported on your platform, in which case a warning is given.

sparse
- Use sparse coefficient vectors.

eps
- Numerical tolerance.

cc
- Cutoff constant for Tukey’s bisquare ρ function in the M-estimation objective function.

cv_k
- Number of folds per cross-validation.

cv_repl
- Number of cross-validation replications.

cl
- A parallel cluster. Can only be used if `ncores = 1`, because multi-threading cannot be used in parallel R sessions on the same host.

cv_metric
- Either a string specifying the performance metric to use, or a function to evaluate prediction errors in a single CV replication. If a function, the number of arguments define the data the function receives. If the function takes a single argument, it is called with a single numeric vector of prediction errors. If the function takes two or more arguments, it is called with the predicted values as first argument and the true values as second argument. The function must always return a single numeric value quantifying the prediction performance. The order of the given values corresponds to the order in the input data.

add_zero_based
- Also consider the 0-based regularization path. See details for a description.

explore_solutions
- Number of solutions to compute up to the desired precision `eps`.

explore_tol
- Numerical tolerance for exploring possible solutions. Should be (much) looser than `eps` to be useful.

max_solutions
- Only retain up to `max_solutions` unique solutions per penalization level.

fit_all
- If `TRUE`, fit the model for all penalization levels. Otherwise, only at penalization level with smallest average CV performance.

comparison_tol
- Numeric tolerance to determine if two solutions are equal. The comparison is first done on the absolute difference in the value of the objective function at the solution. If this is less than `comparison_tol`, two solutions are deemed equal if the squared difference of the intercepts is less than `comparison_tol` and the squared L_2 norm of the difference vector is less than `comparison_tol`.

algorithm_opts
- Options for the MM algorithm to compute the estimates. See `mm_algorithm_options()` for details.

mscale_opts
- Options for the M-scale estimation. See `mscale_algorithm_options()` for details.

nlambda_enpy
- Number of penalization levels where the EN-PY initial estimate is computed.

enpy_opts
- Options for the ENPY initial estimates, created with the `enpy_options()` function. See `enpy_initial_estimates()` for details.
scale: initial scale estimate to use in the M-estimation. By default the S-scale from the PENSE fit is used.

x_train, y_train: override arguments x and y as provided in the call to `pense_cv()`. This is useful if the arguments in the `pense_cv()` call are not available in the current environment.

Details

The built-in CV metrics are

- "tau_size" τ-size of the prediction error, computed by `tau_size()` (default).
- "mape" Median absolute prediction error.
- "rmspe" Root mean squared prediction error.
- "auroc" Area under the receiver operator characteristic curve (actually 1 - AUROC). Only sensible for binary responses.

Value

an object of cross-validated regularized M-estimates as returned from `regmest_cv()`.

See Also

`pense_cv()` to compute the starting S-estimate.

Other functions to compute robust estimates with CV: `pense_cv()`, `regmest_cv()`

pense_cv

Cross-validation for (Adaptive) PENSE Estimates

Description

Perform (repeated) K-fold cross-validation for `pense()`.

`adapense_cv()` is a convenience wrapper to compute adaptive PENSE estimates.

Usage

```r
pense_cv(
  x,
  y,
  standardize = TRUE,
  lambda,
  cv_k,
  cv_repl = 1,
  cv_metric = c("tau_size", "mape", "rmspe", "auroc")
  fit_all = TRUE,
  cl = NULL,
  ...
)

adapense_cv(x, y, alpha, alpha_preliminary = 0, exponent = 1, ...)```
Arguments

- **x**: n by p matrix of numeric predictors.
- **y**: vector of response values of length n. For binary classification, y should be a factor with 2 levels.
- **standardize**: whether to standardize the x variables prior to fitting the PENSE estimates. Can also be set to "cv_only", in which case the input data is not standardized, but the training data in the CV folds is scaled to match the scaling of the input data. Coefficients are always returned on the original scale. This can fail for variables with a large proportion of a single value (e.g., zero-inflated data). In this case, either compute with standardize = FALSE or standardize the data manually.
- **lambda**: optional user-supplied sequence of penalization levels. If given and not NULL, nlambda and lambda_min_ratio are ignored.
- **cv_k**: number of folds per cross-validation.
- **cv_repl**: number of cross-validation replications.
- **cv_metric**: either a string specifying the performance metric to use, or a function to evaluate prediction errors in a single CV replication. If a function, the number of arguments define the data the function receives. If the function takes a single argument, it is called with a single numeric vector of prediction errors. If the function takes two or more arguments, it is called with the predicted values as first argument and the true values as second argument. The function must always return a single numeric value quantifying the prediction performance. The order of the given values corresponds to the order in the input data.
- **fit_all**: If TRUE, fit the model for all penalization levels. Otherwise, only at penalization level with smallest average CV performance.
- **cl**: a parallel cluster. Can only be used if ncores = 1, because multi-threading can not be used in parallel R sessions on the same host.

... Arguments passed on to `pense`

- **nlambda**: number of penalization levels.
- **lambda_min_ratio**: Smallest value of the penalization level as a fraction of the largest level (i.e., the smallest value for which all coefficients are zero). The default depends on the sample size relative to the number of variables and alpha. If more observations than variables are available, the default is 1e-3 * alpha, otherwise 1e-2 * alpha.
- **nlambda_enpy**: number of penalization levels where the EN-PY initial estimate is computed.
- **penalty_loadings**: a vector of positive penalty loadings (a.k.a. weights) for different penalization of each coefficient. Only allowed for alpha > 0.
- **enpy_lambda**: optional user-supplied sequence of penalization levels at which EN-PY initial estimates are computed. If given and not NULL, nlambda_enpy is ignored.
- **other_starts**: a list of other starting points, created by `starting_point()`. If the output of `enpy_initial_estimates()` is given, the starting points will be shared among all penalization levels. Note that if a the starting point is specific to a penalization level, this penalization level is added to the grid of penalization levels (either the manually specified grid in lambda or the automatically generated grid of size nlambda). If standardize = TRUE, the starting points are also scaled.
- **intercept**: include an intercept in the model.
bdp  desired breakdown point of the estimator, between 0 and 0.5.
cc  tuning constant for the S-estimator. Default is to chosen based on the breakdown point bdp. Does not affect the estimated coefficients, only the estimated scale of the residuals.
eps  numerical tolerance.
explore_solutions  number of solutions to compute up to the desired precision eps.
explore_tol  numerical tolerance for exploring possible solutions. Should be (much) looser than eps to be useful.
max_solutions  only retain up to max_solutions unique solutions per penalization level.
comparison_tol  numeric tolerance to determine if two solutions are equal. The comparison is first done on the absolute difference in the value of the objective function at the solution. If this is less than comparison_tol, two solutions are deemed equal if the squared difference of the intercepts is less than comparison_tol and the squared $L_2$ norm of the difference vector is less than comparison_tol.
add_zero_based  also consider the 0-based regularization path. See details for a description.
enpy_specific  use the EN-PY initial estimates only at the penalization level they are computed for. See details for a description.
sparse  use sparse coefficient vectors.
ncores  number of CPU cores to use in parallel. By default, only one CPU core is used. May not be supported on your platform, in which case a warning is given.
algorithm_opts  options for the MM algorithm to compute the estimates. See mm_algorithm_options() for details.
mscale_opts  options for the M-scale estimation. See mscale_algorithm_options() for details.
enpy_opts  options for the ENPY initial estimates, created with the enpy_options() function. See enpy_initial_estimates() for details.
cv_objective  deprecated and ignored. See pense_cv() for estimating prediction performance via cross-validation.
alpha  elastic net penalty mixing parameter with $0 \leq \alpha \leq 1$. alpha = 1 is the LASSO penalty, and alpha = 0 the Ridge penalty.
alpha_preliminary  alpha parameter for the preliminary estimate.
exponent  the exponent for computing the penalty loadings based on the preliminary estimate.

Details

The built-in CV metrics are

"tau_size"  $\tau$-size of the prediction error, computed by tau_size() (default).
"mape"  Median absolute prediction error.
"rmspe"  Root mean squared prediction error.
"auroc"  Area under the receiver operator characteristic curve (actually 1 - AUROC). Only sensible for binary responses.
adapense_cv() is a convenience wrapper which performs 3 steps:

1. compute preliminary estimates via `pense_cv(..., alpha = alpha_preliminary)`.
2. computes the penalty loadings from the estimate beta with best prediction performance by `adapense_loadings = 1 / abs(beta)^exponent`, and
3. compute the adaptive PENSE estimates via `pense_cv(..., penalty_loadings = adapense_loadings)`.

Value

a list with components:

- `lambda` the sequence of penalization levels.
- `cvres` data frame of average cross-validated performance.
- `cv_replications` matrix of cross-validated performance metrics, one column per replication. Rows are in the same order as in `cvres`.
- `call` the original call.
- `estimates` the estimates fitted on the full data. Same format as returned by `pense()`.
- `the object returned by adapense_cv()` has additional components
- `preliminary` the CV results for the preliminary estimate.
- `penalty_loadings` the penalty loadings used for the adaptive PENSE estimate.

See Also

- `pense()` for computing regularized S-estimates without cross-validation.
- `coef.pense_cvfit()` for extracting coefficient estimates.
- `plot.pense_cvfit()` for plotting the CV performance or the regularization path.

Other functions to compute robust estimates with CV: `pensem_cv()`, `regmest_cv()`

Other functions to compute robust estimates with CV: `pensem_cv()`, `regmest_cv()`

Examples

```r
Compute the adaptive PENSE regularization path for Freeny's
revenue data (see ?freeny)
data(freeny)
x <- as.matrix(freeny[, 2:5])

Either use the convenience function directly ...
ada_convenience <- adapense_cv(x, freeny$y, alpha = 0.5,
 cv_repl = 2, cv_k = 4)

... or compute the steps manually:
Step 1: Compute preliminary estimates with CV
preliminary_estimate <- pense_cv(x, freeny$y, alpha = 0,
 cv_repl = 2, cv_k = 4)
plot(preliminary_estimate, se_mult = 1)

Step 2: Use the coefficients with best prediction performance
to define the penalty loadings:
prelim_coefs <- coef(preliminary_estimate, lambda = 'min')
pen_loadings <- 1 / abs(prelim_coefs[-1])
```
# Step 3: Compute the adaptive PENSE estimates and estimate their prediction performance.

```r
ada_manual <- pense_cv(x, freeny$y, alpha = 0.5, cv_repl = 2,
 cv_k = 4, penalty_loadings = pen_loadings)
```

# Visualize the prediction performance and coefficient path of the adaptive PENSE estimates (manual vs. automatic)

```r
def.par <- par(no.readonly = TRUE)
layout(matrix(1:4, ncol = 2, byrow = TRUE))
plot(ada_convenience$preliminary)
plot(preliminary_estimate)
plot(ada_convenience)
plot(ada_manual)
par(def.par)
```

---

### pense_options

**Deprecated**

Additional options for computing penalized EN S-estimates. Superseded by `mm_algorithm_options()` and options supplied directly to `pense()`.

**Usage**

```r
pense_options(
 delta = 0.25,
 maxit = 1000,
 eps = 1e-06,
 mscale_eps = 1e-08,
 mscale_maxit = 200,
 verbosity = 0,
 cc = NULL,
 en_correction = TRUE
)
```

**Arguments**

- **delta**: desired breakdown point of the resulting estimator.
- **maxit**: maximum number of iterations allowed.
- **eps**: numeric tolerance for convergence.
- **mscale_eps, mscale_maxit**: maximum number of iterations and numeric tolerance for the M-scale.
- **verbosity**: ignored. Verbosity of the algorithm.
- **cc**: ignored. Tuning constant for the S-estimator. Default is chosen based on the breakdown point `delta`. Should never have to be changed.
- **en_correction**: ignored. Should the corrected EN estimator be used to choose the optimal lambda with CV. If `TRUE`, as by default, the estimator is "bias corrected".
**plot.pense_cvfit**

**Warning**
Do not use this function in new code. It may be removed from future versions of the package.

**See Also**
Other deprecated functions: `deprecated_en_options.enpy()`, `initest_options()`, `mstep_options()`, `pensem()`

---

**plot.pense_cvfit**  
*Plot Method for Penalized Estimates With Cross-Validation*

**Description**
Plot the cross-validation performance or the coefficient path for fitted penalized elastic net S- or LS-estimates of regression.

**Usage**
```r
S3 method for class 'pense_cvfit'
plot(x, what = c("cv", "coef.path"), se_mult = 1, ...)
```

**Arguments**
- `x`: fitted estimates with cross-validation information.
- `what`: plot either the CV performance or the coefficient path.
- `se_mult`: if plotting CV performance, multiplier of the estimated SE.
- `...`: currently ignored.

**See Also**
Other functions for plotting and printing: `plot.pense_fit()`, `prediction_performance()`, `summary.pense_cvfit()`

**Examples**
```r
Compute the PENSE regularization path for Freeny's revenue data
(see ?freeny)
data(freeny)
x <- as.matrix(freeny[, 2:5])
regpath <- pense(x, freeny$y, alpha = 0.5)
plot(regpath)

Extract the coefficients at a certain penalization level
coeff(regpath, lambda = regpath$lambda[40])

What penalization level leads to good prediction performance?
cv_results <- pense_cv(x, freeny$y, alpha = 0.5, cv_repl = 2,
cv_k = 4)
plot(cv_results, se_mult = 1)

Extract the coefficients at the penalization level with
smallest prediction error ...
```
coef(cv_results)
# ... or at the penalization level with prediction error
# statistically indistinguishable from the minimum.
coef(cv_results, lambda = 'se')

plot.pense_fit

Plot Method for Penalized Estimates

Description
Plot the coefficient path for fitted penalized elastic net S- or LS-estimates of regression.

Usage
## S3 method for class 'pense_fit'
plot(x, ...)

Arguments
x fitted estimates.
...
currently ignored.

See Also
Other functions for plotting and printing: plot.pense_cvfit(), prediction_performance(), summary.pense_cvfit()

Examples
# Compute the PENSE regularization path for Freeny's revenue data
# (see ?freeny)
data(freeny)
x <- as.matrix(freeny[, 2:5])
regpath <- pense(x, freeny$y, alpha = 0.5)
plot(regpath)

# Extract the coefficients at a certain penalization level
coef(regpath, lambda = regpath$lambda[40])

# What penalization level leads to good prediction performance?
cv_results <- pense_cv(x, freeny$y, alpha = 0.5, cv_repl = 2, cv_k = 4)
plot(cv_results, se_mult = 1)

# Extract the coefficients at the penalization level with
# smallest prediction error ...
coef(cv_results)
# ... or at the penalization level with prediction error
# statistically indistinguishable from the minimum.
coef(cv_results, lambda = 'se')
**predict.pense_cvfit**  

**Description**  
Predict response values using a PENSE (or LS-EN) regularization path with hyper-parameters chosen by cross-validation.

**Usage**  
```r  
S3 method for class 'pense_cvfit'
predict(
 object,
 newdata,
 lambda = c("min", "se"),
 se_mult = 1,
 exact = deprecated(),
 correction = deprecated(),
 ...
)
```

**Arguments**  
- `object`: PENSE with cross-validated hyper-parameters to extract coefficients from.  
- `newdata`: an optional matrix of new predictor values. If missing, the fitted values are computed.  
- `lambda`: either a string specifying which penalty level to use or a a single numeric value of the penalty parameter. See details.  
- `se_mult`: If `lambda = "se"`, the multiple of standard errors to tolerate.  
- `exact`: deprecated. Always gives a warning if `lambda` is not part of the fitted sequence and coefficients are interpolated.  
- `correction`: defunct.  
- `...`: currently not used.

**Details**  
If `lambda = "se"` and `object` contains fitted estimates for every penalization level in the sequence, extract the residuals of the most parsimonious model with prediction performance statistically indistinguishable from the best model. This is determined to be the model with prediction performance within `se_mult * cv_se` from the best model.

**Value**  
a numeric vector of residuals for the given penalization level.

**See Also**  
Other functions for extracting components: `coef.pense_cvfit()`, `coef.pense_fit()`, `predict.pense_fit()`, `residuals.pense_cvfit()`, `residuals.pense_fit()`
Examples

# Compute the LS-EN regularization path for Freeny's revenue data
# (see ?freeny)
data(freeny)
x <- as.matrix(freeny[, 2:5])
regpath <- elnet(x, freeny$y, alpha = 0.75)

# Predict the response using a specific penalization level
predict(regpath, newdata = freeny[1:5, 2:5],
        lambda = regpath$lambda[10])

# Extract the residuals at a certain penalization level
residuals(regpath, lambda = regpath$lambda[5])

# Select penalization level via cross-validation
cv_results <- elnet_cv(x, freeny$y, alpha = 0.5, cv_repl = 10,
cv_k = 4)

# Predict the response using the "best" penalization level
predict(cv_results, newdata = freeny[1:5, 2:5])

# Extract the residuals at the "best" penalization level
residuals(cv_results)^2
# Extract the residuals at a more parsimonious penalization level
residuals(cv_results, lambda = 'se')

predict.pense_fit

Predict Method for PENSE Fits

Description

Predict response values using a PENSE (or LS-EN) regularization path fitted by `pense()` or `elnet()`.

Usage

```r
S3 method for class 'pense_fit'
predict(
 object,
 newdata,
 lambda,
 exact = deprecated(),
 correction = deprecated(),
 ...
)
```

Arguments

- `object`: PENSE regularization path to extract residuals from.
- `newdata`: an optional matrix of new predictor values. If missing, the fitted values are computed.
- `lambda`: a single value of the penalty parameter.
exact       defunct Always gives a warning if lambda is not part of the fitted sequence and
coefficients need to be interpolated.
correction  defunct.
...         currently not used.

Value

a numeric vector of residuals for the given penalization level.

See Also

Other functions for extracting components: coef.pense_cvfit(), coef.pense_fit(), predict.pense_cvfit(),
residuals.pense_cvfit(), residuals.pense_fit()

Examples

# Compute the LS-EN regularization path for Freeny's revenue data
# (see ?freeny)
data(freeny)
x <- as.matrix(freeny[, 2:5])
regpath <- elnet(x, freeny$y, alpha = 0.75)

# Predict the response using a specific penalization level
predict(regpath, newdata = freeny[1:5, 2:5],
    lambda = regpath$lambda[10])

# Extract the residuals at a certain penalization level
residuals(regpath, lambda = regpath$lambda[5])

# Select penalization level via cross-validation
cv_results <- elnet_cv(x, freeny$y, alpha = 0.5, cv_repl = 10,
    cv_k = 4)

# Predict the response using the "best" penalization level
predict(cv_results, newdata = freeny[1:5, 2:5])

# Extract the residuals at the "best" penalization level
residuals(cv_results)^2
# Extract the residuals at a more parsimonious penalization level
residuals(cv_results, lambda = 'se')
Usage

prediction_performance(..., lambda = c("min", "se"), se_mult = 1)

## S3 method for class 'pense_pred_perf'
print(x, ...)

Arguments

...                  one or more (adaptive) PENSE fits with cross-validation information.
lambda               a string specifying which penalty level to use ("min" or "se"). See details.
se_mult              If lambda = "se", the multiple of standard errors to tolerate.
x                   an object with information on prediction performance created with prediction_performance().

Details

If lambda = "se" and the cross-validation was performed with multiple replications, use the penalty level with prediction performance within se_mult of the best prediction performance.

Value

a data frame with details about the prediction performance of the given PENSE fits. The data frame has a custom print method summarizing the prediction performances.

See Also

summary.pense_cvfit() for a summary of the fitted model.

Other functions for plotting and printing: plot.pense_cvfit(), plot.pense_fit(), summary.pense_cvfit()

---

prinsens              Principal Sensitivity Components

Description

Compute Principal Sensitivity Components for Elastic Net Regression

Usage

prinsens(
  x,
  y,
  alpha,
  lambda,
  intercept = TRUE,
  penalty_loadings,
  en_algorithm_opts,
  eps = 1e-06,
  sparse = FALSE,
  ncores = 1L,
  method = deprecated()
)

Arguments

\( x \)  
\( n \) by \( p \) matrix of numeric predictors.

\( y \)  
vector of response values of length \( n \).

\( \alpha \)  
elastic net penalty mixing parameter with \( 0 \leq \alpha \leq 1 \). \( \alpha = 1 \) is the LASSO penalty, and \( \alpha = 0 \) the Ridge penalty.

\( \lambda \)  
optional user-supplied sequence of penalization levels. If given and not NULL, \( n\lambda \) and \( \lambda_{\text{min}}\) are ignored.

\( \text{intercept} \)  
include an intercept in the model.

\( \text{penalty_loadings} \)  
a vector of positive penalty loadings (a.k.a. weights) for different penalization of each coefficient. Only allowed for \( \alpha > 0 \).

\( \text{en_algorithm_opts} \)  
options for the LS-EN algorithm. See \text{en_algorithm_options} for details.

\( \text{eps} \)  
umerical tolerance.

\( \text{sparse} \)  
use sparse coefficient vectors.

\( \text{ncores} \)  
number of CPU cores to use in parallel. By default, only one CPU core is used. May not be supported on your platform, in which case a warning is given.

\( \text{method} \)  
defunct. PSCs are always computed for EN estimates. For the PY procedure for unpenalized estimation use package \text{pyinit}.

Value

a list of principal sensitivity components, one per element in \( \lambda \). Each PSC is itself a list with items \( \lambda \), \( \alpha \), and \( \text{pscs} \).

References


See Also

Other functions for initial estimates: \text{enpy_initial_estimates()}, \text{starting_point()}

\underline{regmest} \hspace{1cm} \textit{Compute (Adaptive) Elastic Net M-Estimates of Regression}

Description

Compute elastic net M-estimates along a grid of penalization levels with optional penalty loadings for adaptive elastic net.
Usage

regmest(
  x,
  y,
  alpha,
  nlambda = 50,
  lambda,
  lambda_min_ratio,
  scale,
  starting_points,
  penalty_loadings,
  intercept = TRUE,
  cc = 4.7,
  eps = 1e-06,
  explore_solutions = 10,
  explore_tol = 0.1,
  max_solutions = 10,
  comparison_tol = sqrt(eps),
  sparse = FALSE,
  ncores = 1,
  standardize = TRUE,
  algorithm_opts = mm_algorithm_options(),
  add_zero_based = TRUE,
  mscale_bdp = 0.25,
  mscale_opts = mscale_algorithm_options()
)

Arguments

x n by p matrix of numeric predictors.
y vector of response values of length n. For binary classification, y should be a factor with 2 levels.
alpha elastic net penalty mixing parameter with \(0 \leq \alpha \leq 1\). alpha = 1 is the LASSO penalty, and alpha = 0 the Ridge penalty.
nlambda number of penalization levels.
lambda optional user-supplied sequence of penalization levels. If given and not NULL, nlambda and lambda_min_ratio are ignored.
lambda_min_ratio Smallest value of the penalization level as a fraction of the largest level (i.e., the smallest value for which all coefficients are zero). The default depends on the sample size relative to the number of variables and alpha. If more observations than variables are available, the default is 1e-3 * alpha, otherwise 1e-2 * alpha.
scale fixed scale of the residuals.
starting_points a list of staring points, created by starting_point(). The starting points are shared among all penalization levels.
penalty_loadings a vector of positive penalty loadings (a.k.a. weights) for different penalization of each coefficient. Only allowed for alpha > 0.
intercept include an intercept in the model.
cc cutoff constant for Tukey’s bisquare $\rho$ function.
esps numerical tolerance.
explore_solutions number of solutions to compute up to the desired precision eps.
explore_tol numerical tolerance for exploring possible solutions. Should be (much) looser than eps to be useful.
max_solutions only retain up to max_solutions unique solutions per penalization level.
comparison_tol numeric tolerance to determine if two solutions are equal. The comparison is first done on the absolute difference in the value of the objective function at the solution. If this is less than comparison_tol, two solutions are deemed equal if the squared difference of the intercepts is less than comparison_tol and the squared $L_2$ norm of the difference vector is less than comparison_tol.
sparse use sparse coefficient vectors.
ncores number of CPU cores to use in parallel. By default, only one CPU core is used. May not be supported on your platform, in which case a warning is given.
standardize logical flag to standardize the $x$ variables prior to fitting the M-estimates. Coefficients are always returned on the original scale. This can fail for variables with a large proportion of a single value (e.g., zero-inflated data). In this case, either compute with standardize = FALSE or standardize the data manually.
algorithm_opts options for the MM algorithm to compute estimates. See mm_algorithm_options() for details.
add_zero_based also consider the 0-based regularization path in addition to the given starting points.
mscale_bdp, mscale_opts options for the M-scale estimate used to standardize the predictors (if standardize = TRUE).

Value

a list-like object with the following items

lambda the sequence of penalization levels.
scale the used scale of the residuals.
estimates a list of estimates. Each estimate contains the following information:
  intercept intercept estimate.
  beta beta (slope) estimate.
  lambda penalization level at which the estimate is computed.
  alpha alpha hyper-parameter at which the estimate is computed.
  objf_value value of the objective function at the solution.
  statuscode if > 0 the algorithm experienced issues when computing the estimate.
  status optional status message from the algorithm.
call the original call.
See Also

`regmest_cv()` for selecting hyper-parameters via cross-validation.
`coef.pense_fit()` for extracting coefficient estimates.
`plot.pense_fit()` for plotting the regularization path.
Other functions to compute robust estimates: `pense()`

---

**Description**

Perform (repeated) K-fold cross-validation for `regmest()`. `adamest_cv()` is a convenience wrapper to compute adaptive elastic-net M-estimates.

**Usage**

```r
crossval <- regmest_cv(
x, y, standardize = TRUE, lambda, cv_k, cv_repl = 1, cv_metric = c("tau_size", "mape", "rmspe", "auroc"), fit_all = TRUE, cl = NULL,
)
adamest_cv(x, y, alpha, alpha_preliminary = 0, exponent = 1, ...)
```

**Arguments**

- `x`  
  n by p matrix of numeric predictors.

- `y`  
  vector of response values of length n. For binary classification, y should be a factor with 2 levels.

- `standardize`  
  whether to standardize the x variables prior to fitting the PENSE estimates. Can also be set to "cv_only", in which case the input data is not standardized, but the training data in the CV folds is scaled to match the scaling of the input data. Coefficients are always returned on the original scale. This can fail for variables with a large proportion of a single value (e.g., zero-inflated data). In this case, either compute with `standardize = FALSE` or standardize the data manually.

- `lambda`  
  optional user-supplied sequence of penalization levels. If given and not NULL, `nlambda` and `lambda_min_ratio` are ignored.

- `cv_k`  
  number of folds per cross-validation.

- `cv_repl`  
  number of cross-validation replications.
cv_metric

either a string specifying the performance metric to use, or a function to evaluate prediction errors in a single CV replication. If a function, the number of arguments define the data the function receives. If the function takes a single argument, it is called with a single numeric vector of prediction errors. If the function takes two or more arguments, it is called with the predicted values as first argument and the true values as second argument. The function must always return a single numeric value quantifying the prediction performance. The order of the given values corresponds to the order in the input data.

fit_all

If TRUE, fit the model for all penalization levels. Otherwise, only at penalization level with smallest average CV performance.

cl

a parallel cluster. Can only be used if ncores = 1, because multi-threading cannot be used in parallel R sessions on the same host.

Arguments passed on to regmest

scale fixed scale of the residuals.
nlambda number of penalization levels.
lambda_min_ratio Smallest value of the penalization level as a fraction of the largest level (i.e., the smallest value for which all coefficients are zero). The default depends on the sample size relative to the number of variables and alpha. If more observations than variables are available, the default is 1e-3 * alpha, otherwise 1e-2 * alpha.

penalty_loadings a vector of positive penalty loadings (a.k.a. weights) for different penalization of each coefficient. Only allowed for alpha > 0.

starting_points a list of starting points, created by starting_point(). The starting points are shared among all penalization levels.

intercept include an intercept in the model.

add_zero_based also consider the 0-based regularization path in addition to the given starting points.

cc cutoff constant for Tukey’s bisquare \( \rho \) function.

eps numerical tolerance.

explore_solutions number of solutions to compute up to the desired precision eps.

explore_tol numerical tolerance for exploring possible solutions. Should be (much) looser than eps to be useful.

max_solutions only retain up to max_solutions unique solutions per penalization level.

comparison_tol numeric tolerance to determine if two solutions are equal. The comparison is first done on the absolute difference in the value of the objective function at the solution. If this is less than comparison_tol, two solutions are deemed equal if the squared difference of the intercepts is less than comparison_tol and the squared \( L_2 \) norm of the difference vector is less than comparison_tol.

sparse use sparse coefficient vectors.

ncores number of CPU cores to use in parallel. By default, only one CPU core is used. May not be supported on your platform, in which case a warning is given.

algorithm_opts options for the MM algorithm to compute estimates. See mm_algorithm_options() for details.

mscale_bdp options for the M-scale estimate used to standardize the predictors (if standardize = TRUE).
Function \texttt{regmest_cv} takes the following parameters:

- \texttt{mscale_opts} objects for the M-scale estimate used to standardize the predictors (if \texttt{standardize = TRUE}).
- \texttt{alpha} elastic net penalty mixing parameter with $0 \leq \alpha \leq 1$. \texttt{alpha = 1} is the LASSO penalty, and \texttt{alpha = 0} the Ridge penalty.
- \texttt{alpha_preliminary} alpha parameter for the preliminary estimate.
- \texttt{exponent} the exponent for computing the penalty loadings based on the preliminary estimate.

### Details
The built-in CV metrics are:

- "tau_size" $\tau$-size of the prediction error, computed by \texttt{tau_size()} (default).
- "mape" Median absolute prediction error.
- "rmspe" Root mean squared prediction error.
- "auroc" Area under the receiver operator characteristic curve (actually $1 - \text{AUROC}$). Only sensible for binary responses.

Function \texttt{adamest_cv()} is a convenience wrapper which performs 3 steps:

1. compute preliminary estimates via \texttt{regmest_cv(...,alpha = alpha_preliminary)}.
2. computes the penalty loadings from the estimate $beta$ with best prediction performance by \texttt{adamest_loadings = 1 / abs(beta)^exponent}, and
3. compute the adaptive PENSE estimates via \texttt{regmest_cv(...,penalty_loadings = adamest_loadings)}.

### Value
A list with components:

- \texttt{lambda} the sequence of penalization levels.
- \texttt{scale} the used scale of the residuals.
- \texttt{cvres} data frame of average cross-validated performance.
- \texttt{cv_replications} matrix of cross-validated performance metrics, one column per replication. Rows are in the same order as in \texttt{cvres}.
- \texttt{call} the original call.
- \texttt{estimates} the estimates fitted on the full data. Same format as returned by \texttt{regmest()}. The object returned by \texttt{adamest_cv()} has additional components

- \texttt{preliminary} the CV results for the preliminary estimate.
- \texttt{penalty_loadings} the penalty loadings used for the adaptive elastic net M-estimate.

### See Also
- \texttt{regmest()} for computing regularized S-estimates without cross-validation.
- \texttt{coef.pense_cvfit()} for extracting coefficient estimates.
- \texttt{plot.pense_cvfit()} for plotting the CV performance or the regularization path.

Other functions to compute robust estimates with CV: \texttt{pense_cv()}, \texttt{pensem_cv()}
Examples

```r
Compute the adaptive PENSE regularization path for Freeny's revenue data (see ?freeny)
data(freeny)
x <- as.matrix(freeny[, 2:5])

Either use the convenience function directly ...
ada_convenience <- adapense_cv(x, freeny$y, alpha = 0.5, cv_repl = 2, cv_k = 4)

... or compute the steps manually:
Step 1: Compute preliminary estimates with CV
preliminary_estimate <- pense_cv(x, freeny$y, alpha = 0, cv_repl = 2, cv_k = 4)
plot(preliminary_estimate, se_mult = 1)

Step 2: Use the coefficients with best prediction performance to define the penalty loadings:
prelim_coefs <- coef(preliminary_estimate, lambda = 'min')
pen_loadings <- 1 / abs(prelim_coefs[-1])

Step 3: Compute the adaptive PENSE estimates and estimate their prediction performance.
ada_manual <- pense_cv(x, freeny$y, alpha = 0.5, cv_repl = 2, cv_k = 4, penalty_loadings = pen_loadings)

Visualize the prediction performance and coefficient path of the adaptive PENSE estimates (manual vs. automatic)
def.par <- par(no.readonly = TRUE)
layout(matrix(1:4, ncol = 2, byrow = TRUE))
plot(ada_convenience$preliminary)
plot(preliminary_estimate)
plot(ada_convenience)
plot(ada_manual)
par(def.par)
```

residuals.pense_cvfit  Extract Residuals

Description

Extract residuals from a PENSE (or LS-EN) regularization path with hyper-parameters chosen by cross-validation.

Usage

```r
S3 method for class 'pense_cvfit'
residuals(
 object,
 lambda = c("min", "se"),
 se_mult = 1,
 exact = deprecated(),
 correction = deprecated(),
)```

residuals.pense_cvfit

Arguments

object PENSE with cross-validated hyper-parameters to extract coefficients from.
lambda either a string specifying which penalty level to use or a single numeric value of the penalty parameter. See details.
se_mult If lambda = "se", the multiple of standard errors to tolerate.
exact deprecated. Always gives a warning if lambda is not part of the fitted sequence and coefficients are interpolated.
correction defunct.
... currently not used.

Details

If lambda = "se" and object contains fitted estimates for every penalization level in the sequence, extract the residuals of the most parsimonious model with prediction performance statistically indistinguishable from the best model. This is determined to be the model with prediction performance within se_mult * cv_se from the best model.

Value

a numeric vector of residuals for the given penalization level.

See Also

Other functions for extracting components: coef.pense_cvfit(), coef.pense_fit(), predict.pense_cvfit(), predict.pense_fit(), residuals.pense_fit()

Examples

Compute the LS-EN regularization path for Freeny's revenue data
(see ?freeny)
data(freeny)
x <- as.matrix(freeny[, 2:5])

regpath <- elnet(x, freeny$y, alpha = 0.75)

Predict the response using a specific penalization level
predict(regpath, newdata = freeny[1:5, 2:5],
 lambda = regpath$lambda[10])

Extract the residuals at a certain penalization level
residuals(regpath, lambda = regpath$lambda[5])

Select penalization level via cross-validation
cv_results <- elnet_cv(x, freeny$y, alpha = 0.5, cv_repl = 10, cv_k = 4)

Predict the response using the "best" penalization level
predict(cv_results, newdata = freeny[1:5, 2:5])

Extract the residuals at the "best" penalization level
Extract the residuals at a more parsimonious penalization level
residuals(cv_results, lambda = 'se')

S3 method for class 'pense_fit'
residuals(object, lambda, exact = deprecated(), correction = deprecated(), ...)

Arguments

- **object**: PENSE regularization path to extract residuals from.
- **lambda**: a single value of the penalty parameter.
- **exact**: defunct Always gives a warning if lambda is not part of the fitted sequence and coefficients need to be interpolated.
- **correction**: defunct.
- **...**: currently not used.

Value

a numeric vector of residuals for the given penalization level.

See Also

Other functions for extracting components: `coef.pense_cvfit()`, `coef.pense_fit()`, `predict.pense_cvfit()`, `predict.pense_fit()`, `residuals.pense_cvfit()`

Examples

Compute the LS-EN regularization path for Freeny's revenue data
(see ?freeny)
data(freeny)
x <- as.matrix(freeny[, 2:5])
regpath <- elnet(x, freeny$y, alpha = 0.75)

Predict the response using a specific penalization level
predict(regpath, newdata = freeny[1:5, 2:5],
lambda = regpath$lambda[10])

Extract the residuals at a certain penalization level
residuals(regpath, lambda = regpath$lambda[5])

Select penalization level via cross-validation
cv_results <- elnet_cv(x, freeny$y, alpha = 0.5, cv_repl = 10,
cv_k = 4)

Predict the response using the "best" penalization level
predict(cv_results, newdata = freeny[1:5, 2:5])

Extract the residuals at the "best" penalization level
residuals(cv_results)^2
Extract the residuals at a more parsimonious penalization level
residuals(cv_results, lambda = 'se')

rho_function
List Available Rho Functions

Description

List Available Rho Functions

Usage

rho_function(rho)

Arguments

rho
the name of the ρ function to check for existence.

Value

if rho is missing returns a vector of supported ρ function names, otherwise the internal integer representation of the ρ function.

See Also

Other miscellaneous functions: consistency_const()

starting_point
Create Starting Points for the PENSE Algorithm

Description

Create a starting point for starting the PENSE algorithm in pense(). Multiple starting points can be created by combining starting points via c(starting_point_1,start_point_2,\ldots).
Usage

starting_point(beta, intercept, lambda)

as_starting_point(object, specific = FALSE, ...)

S3 method for class 'enpy_starting_points'
as_starting_point(object, specific = FALSE, ...)

S3 method for class 'pense_fit'
as_starting_point(object, specific = FALSE, lambda, ...)

S3 method for class 'pense_cvfit'
as_starting_point(
 object,
 specific = FALSE,
 lambda = c("min", "se"),
 se_mult = 1,
 ...
)

Arguments

beta beta coefficients at the starting point. Can be a numeric vector, a sparse vector of class dsparseVector, or a sparse matrix of class dgCMatrix with a single column.

intercept intercept coefficient at the starting point.

lambda optionally either a string specifying which penalty level to use ("min" or "se") or a numeric vector of the penalty levels to extract from object. Penalization levels not present in object are ignored with a warning. If NULL, all estimates in object are extracted.

object an object with estimates to use as starting points.

specific whether the estimates should be used as starting points only at the penalization level they are computed for. Defaults to using the estimates as starting points for all penalization levels.

... further arguments passed to or from other methods.

se_mult If lambda = "se", the multiple of standard errors to tolerate.

Details

A starting points can either be shared, i.e., used for every penalization level PENSE estimates are computed for, or specific to one penalization level. To create a specific starting point, provide the penalization level as lambda. If lambda is missing, a shared starting point is created. Shared and specific starting points can all be combined into a single list of starting points, with pense() handling them correctly. Note that specific starting points will lead to the lambda value being added to the grid of penalization levels. See pense() for details.

Starting points computed via enpy_initial_estimates() are by default shared starting points but can be transformed to specific starting points via enpy_starting_point(..., specific = TRUE).

When creating starting points from cross-validated fits, it is possible to extract only the estimate with best CV performance (lambda = "min"), or the estimate with CV performance statistically indistinguishable from the best performance (lambda = "se"). This is determined to be the estimate with prediction performance within se_mult * cv_se from the best model.
summary.pense_cvfit

Value

an object of type starting_points to be used as starting point for `pense()`.

See Also

Other functions for initial estimates: `enpy_initial_estimates()`, `prinsens()`

summary.pense_cvfit Summarize Cross-Validated PENSE Fit

Description

If `lambda = "se"` and object contains fitted estimates for every penalization level in the sequence, extract the coefficients of the most parsimonious model with prediction performance statistically indistinguishable from the best model. This is determined to be the model with prediction performance within `se_mult * cv_se` from the best model.

Usage

```r
## S3 method for class 'pense_cvfit'
summary(object, lambda = c("min", "se"), se_mult = 1, ...)

## S3 method for class 'pense_cvfit'
print(x, lambda = c("min", "se"), se_mult = 1, ...)
```

Arguments

- `object, x` an (adaptive) PENSE fit with cross-validation information.
- `lambda` either a string specifying which penalty level to use ("min" or "se") or a a single numeric value of the penalty parameter. See details.
- `se_mult` If `lambda = "se"`, the multiple of standard errors to tolerate.
- `...` ignored.

See Also

`prediction_performance()` for information about the estimated prediction performance.

`coef.pense_cvfit()` for extracting only the estimated coefficients.

Other functions for plotting and printing: `plot.pense_cvfit()`, `plot.pense_fit()`, `prediction_performance()`
tau_size

tau_size Compute the Tau-Scale of Centered Values

Description

Compute the τ-scale without centering the values.

Usage

tau_size(x)

Arguments

x numeric values. Missing values are verboesly ignored.

Value

the τ estimate of scale of centered values.

See Also

Other functions to compute robust estimates of location and scale: mlocrescale(), mloc(), mscale()
Index

* EN algorithms
 en_admm_options, 15
 en_dal_options, 16
 en_lars_options, 17

* deprecated functions
 deprecated_en_options, 6
 eny, 12
 initest_options, 17
 mstep_options, 22
 pense_options, 34
 pensem, 26

* functions for computing non-robust estimates
 elnet, 7
 elnet_cv, 9

* functions for extracting components
 coef.pense_cvfit, 3
 coef.pense_fit, 4
 predict.pense_cvfit, 37
 predict.pense_fit, 38
 residuals.pense_cvfit, 47
 residuals.pense_fit, 49

* functions for initial estimates
 enpy_initial_estimates, 13
 prinsens, 40
 starting_point, 50

* functions for plotting and printing
 plot.pense_cvfit, 35
 plot.pense_fit, 36
 prediction_performance, 39
 summary.pense_cvfit, 52

* functions to compute robust estimates of location and scale
 mloc, 18
 mlocscale, 19
 mscale, 20
 tau_size, 53

* functions to compute robust estimates with CV
 pense_cv, 30
 pensem_cv, 27
 regmest_cv, 44

* functions to compute robust estimates
 pense, 23
 regmest, 41

* miscellaneous functions
 consistency_const, 5
 rho_function, 50

 adaelnet (elnet), 7
 adaan (elnet), 7
 adamest_cv (regmest_cv), 44
 adapense (pense), 23
 adapense_cv (pense_cv), 30
 as_starting_point (starting_point), 50
 as_starting_point(), 14

 coef.pense_cvfit, 3, 5, 37, 39, 48, 49
 coef.pense_cvfit(), 5, 11, 33, 46, 52
 coef.pense_fit, 4, 4, 37, 39, 48, 49
 coef.pense_fit(), 8–10, 26, 44
 consistency_const, 5, 50

 deprecated_en_options, 6, 12, 18, 22, 26, 35
 dgCMatrix, 51
 dsparseVector, 3, 5, 51

 elnet, 7, 10, 11
 elnet(), 4, 9, 11, 38, 49
 elnet_cv, 9, 9
 en_admm_options, 15, 17
 en_admm_options(), 16
 en_algorithm_options, 8, 10, 14, 16, 20, 41
 en_dal_options, 15, 16, 17
 en_dal_options(), 7, 16
 en_lars_options, 15, 17, 17
 en_lars_options(), 7, 16
 en_options_aug_lars
 (deprecated_en_options), 6
 en_options_dal (deprecated_en_options), 6
 enpy, 7, 12, 18, 22, 26, 35
 enpy_initial_estimates, 13, 41, 52
 enpy_initial_estimates(), 12, 24, 25, 29, 31, 32, 51
 enpy_options, 14
 enpy_options(), 13, 17, 25, 29, 32
initest_options, 7, 12, 17, 22, 26, 35
mad(), 18
mloc, 18, 19, 21, 53
mlocscale, 19, 19, 21, 53
mm_algorithm_options, 20
mm_algorithm_options(), 22, 24, 29, 32, 34, 43, 45
mscale, 19, 20, 53
mscale_algorithm_options, 21
mscale_algorithm_options(), 13, 18, 19, 21, 25, 29, 32
mstep_options, 7, 12, 18, 22, 26, 35
parallel, 10, 29, 31, 45
pense, 23, 31, 44
pense(), 4, 5, 9, 14, 30, 33, 34, 38, 49–52
pense_cv, 30, 30, 46
pense_cv(), 3, 11, 25–28, 30, 32
pense_options, 7, 12, 18, 22, 26, 34
pensem, 7, 12, 18, 22, 26, 35
pensem_cv, 27, 33, 46
pensem_cv(), 22, 26
plot.pense_cvfit, 35, 36, 40, 52
plot.pense_cvfit(), 11, 33, 46
plot.pense_fit, 33, 36, 40, 52
plot.pense_fit(), 9, 26, 44
predict.pense_cvfit, 4, 5, 37, 39, 48, 49
predict.pense_fit, 4, 5, 37, 38, 48, 49
prediction_performance, 35, 36, 39, 52
prediction_performance(), 52
prinsens, 14, 40, 52
print.pense_cvfit
(summary.pense_cvfit), 52
print.pense_pred_perf
(prediction_performance), 39
regmest, 26, 41, 45
regmest(), 44, 46
regmest_cv, 30, 33, 44
regmest_cv(), 27, 30, 44
residuals.pense_cvfit, 4, 5, 37, 39, 47, 49
residuals.pense_fit, 4, 5, 37, 39, 48, 49
rho_function, 6, 50
rho_function(), 18, 19
starting_point, 14, 41, 50
starting_point(), 24, 31, 42, 45
summary.pense_cvfit, 35, 36, 40, 52
summary.pense_cvfit(), 40

tau_size, 19, 21, 53
tau_size(), 11, 30, 32, 46