Package ‘msSPChelpR’

November 4, 2020

Title Helper Functions for Second Primary Cancer Analyses
Version 0.8.6
Description A collection of helper functions for analyzing Second Primary Cancer data, including functions to reshape data, to calculate patient states and analyze cancer incidence.
License GPL-3
URL https://marianschmidt.github.io/msSPChelpR/
BugReports https://github.com/marianschmidt/msSPChelpR/issues
Depends R (>= 3.5)
Imports data.table (>= 1.12.9), dplyr (>= 1.0.0), lubridate, magrittr, progress, purrr, rlang (>= 0.1.2), sjlabelled, stringr, tidyselect, tidytable (>= 0.5.5), tidyrr (>= 1.0.0), utils
Suggests haven, tibble, rmarkdown, knitr, testthat (>= 2.1.0)
VignetteBuilder knitr
Encoding UTF-8
RoxygenNote 7.1.1
Language en-US
LazyData true
NeedsCompilation no
Author Marian Eberl [aut, cre] (<https://orcid.org/0000-0001-6584-3197>)
Maintainer Marian Eberl <marian.eberl@tum.de>
Repository CRAN
Date/Publication 2020-11-04 10:50:03 UTC

R topics documented:

asir ... 2
calc_futime ... 4
calc_futime_tt ... 6
ir_crosstab ... 8
asir

Calculate age-standardized incidence rates

Description

Calculate age-standardized incidence rates

Usage

```r
asir(
  df,
  dattype = "zfkd",
  std_pop = "ESP2013",
  truncate_std_pop = FALSE,
  futime_src = "refpop",
  summarize_groups = "none",
  count_var,
  stdpop_df = standard_population,
  refpop_df = population,
  region_var = NULL,
  age_var = NULL,
  sex_var = NULL,
  year_var = NULL,
  site_var = NULL,
  futime_var = NULL,
  pyar_var = NULL,
  alpha = 0.05
)
```
Arguments

df dataframe in wide format
datatype can be "zfkd" or "seer" or empty. Will set default variable names from dataset.
std_pop can be either "ESP2013, ESP1976, WHO1960
truncate_std_pop if TRUE standard population will be truncated for all age-groups that do not occur in df
futime_src can be either "refpop" or "cohort"
summarize_groups option to define summarizing stratified groups. Default is "none". If you want to define variables that should be summarized into one group, you can chose from region_var, sex_var, year_var. Define multiple summarize variables by summarize_groups = c("region", "sex", "year")
count_var variable to be counted as observed case. Should be 1 for case to be counted.
stdpop_df df where standard population is defined. It is assumed that stdpop_df has the columns "sex" for biological sex, "age" for age-groups, "standard_pop" for name of standard population (e.g. "European Standard Population 2013) and "population_n" for size of standard population age-group. stdpop_df must use the same category coding of age and sex as age_var and sex_var.
refpop_df df where reference population data is defined. Only required if option futime_src = "refpop" is chosen. It is assumed that refpop_df has the columns "region" for region, "sex" for biological sex, "age" for age-groups (can be single ages or 5-year brackets), "year" for time period (can be single year or 5-year brackets), "population_pyar" for person-years at risk in the respective age/sex/year cohort. refpop_df must use the same category coding of age, sex, region, year and site as age_var, sex_var, region_var, year_var and site_var.
region_var variable in df that contains information on region where case was incident. Default is set if datatype is given.
age_var variable in df that contains information on age-group. Default is set if datatype is given.
sex_var variable in df that contains information on biological sex. Default is set if datatype is given.
year_var variable in df that contains information on year or year-period when case was incident. Default is set if datatype is given.
site_var variable in df that contains information on ICD code of case diagnosis. Default is set if datatype is given.
futime_var variable in df that contains follow-up time per person (in years) in cohort (can only be used with futime_src = "cohort"). Default is set if datatype is given.
pyar_var variable in refpop_df that contains person-years-at-risk in reference population (can only be used with futime_src = "refpop") Default is set if datatype is given.
alpha significance level for confidence interval calculations. Default is alpha = 0.05 which will give 95 percent confidence intervals.
Value

df

Examples

load sample data
data("us_second_cancer")
data("standard_population")
data("population_us")

make wide data as this is the required format
usdata_wide <- us_second_cancer %>%
 # only use sample
dplyr::filter(as.numeric(fake_id) < 200000) %>%
 msSPChelpR::reshape_wide_tidyr(case_id_var = "fake_id",
 time_id_var = "SEQ_NUM", timevar_max = 2)

create count variable
usdata_wide <- usdata_wide %>%
dplyr::mutate(count_spc = dplyr::case_when(is.na(t_site_icd.2) ~ 1,
 TRUE ~ 0))

remove cases for which no reference population exists
usdata_wide <- usdata_wide %>%
 "2005 - 2009", "2010 - 2014"))

now we can run the function
msSPChelpR::asir(usdata_wide,
 dattype = "seer",
 std_pop = "ESP2013",
 truncate_std_pop = FALSE,
 futime_src = "refpop",
 summarize_groups = "none",
 count_var = "count_spc",
 refpop_df = population_us,
 region_var = "registry.1",
 age_var = "fc_agegroup.1",
 sex_var = "sex.1",
 year_var = "t_yeardiag.2",
 site_var = "t_site_icd.2",
 pyar_var = "population_pyar")

calc_futime

Calculate follow-up time per case until end of follow-up depending on
pat_status - tidyverse version
calc_futime

Description
Calculate follow-up time per case until end of follow-up depending on pat_status - tidyverse version

Usage
calc_futime(
 wide_df,
 futime_var_new = "p_futimeyrs",
 fu_end,
 dattype = "zfkd",
 check = TRUE,
 time_unit = "years",
 status_var = "p_status",
 lifedat_var = NULL,
 fcdat_var = NULL,
 spcdat_var = NULL
)

Arguments
wide_df dataframe in wide format
futime_var_new Name of the newly calculated variable for follow-up time. Default is p_futimeyrs.
fu_end end of follow-up in time format YYYY-MM-DD.
datatype Type of cancer registry data. Can be "seer" or "zfkd". Default is "zfkd".
check Check newly calculated variable p_status by printing frequency table. Default is TRUE.
time_unit Unit of follow-up time (can be "days", "weeks", "months", "years"). Default is "years".
status_var Name of the patient status variable that was previously created. Default is p_status.
lifedat_var Name of variable containing Date of Death. Will override datatype preset.
fcdat_var Name of variable containing Date of Primary Cancer diagnosis. Will override datatype preset.
spcdat_var Name of variable containing Date of SPC diagnosis Will override datatype preset.

Value
wide_df

Examples
#load sample data
data("us_second_cancer")

#prep step - make wide data as this is the required format
usdata_wide <- us_second_cancer %>%
calc_futime_tt

Calculate follow-up time per case until end of follow-up depending on pat_status - tidytable version

Description

Calculate follow-up time per case until end of follow-up depending on pat_status - tidytable version

Usage

calc_futime_tt(
 wide_df,
 futime_var_new = "p_futimeyrs",
 fu_end,
 dattype = "zfkd",
 check = TRUE,
 time_unit = "years",
 status_var = "p_status",
 lifedat_var = NULL,
 fcdat_var = NULL,
calc_futime_tt

 spcdat_var = NULL
 }

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>wide_df</td>
<td>dataframe or data.table in wide format</td>
</tr>
<tr>
<td>futime_var_new</td>
<td>Name of the newly calculated variable for follow-up time. Default is p_futimeyrs.</td>
</tr>
<tr>
<td>fu_end</td>
<td>end of follow-up in time format YYYY-MM-DD.</td>
</tr>
<tr>
<td>dattype</td>
<td>Type of cancer registry data. Can be "seer" or "zfkd". Default is "zfkd".</td>
</tr>
<tr>
<td>check</td>
<td>Check newly calculated variable p_status by printing frequency table. Default is TRUE.</td>
</tr>
<tr>
<td>time_unit</td>
<td>Unit of follow-up time (can be "days", "weeks", "months", "years"). Default is "years".</td>
</tr>
<tr>
<td>status_var</td>
<td>Name of the patient status variable that was previously created. Default is p_status.</td>
</tr>
<tr>
<td>lifedat_var</td>
<td>Name of variable containing Date of Death. Will override dattype preset.</td>
</tr>
<tr>
<td>fcdat_var</td>
<td>Name of variable containing Date of Primary Cancer diagnosis. Will override dattype preset.</td>
</tr>
<tr>
<td>spcdat_var</td>
<td>Name of variable containing Date of SPC diagnosis Will override dattype preset.</td>
</tr>
</tbody>
</table>

Value

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>wide_df</td>
<td></td>
</tr>
</tbody>
</table>

Examples

#load sample data
data("us_second_cancer")

#make wide data as this is the required format
usdata_wide <- us_second_cancer %>%
 msSPChelpR::reshape_wide_tidyr(case_id_var = "fake_id",
 time_id_var = "SEQ_NUM", timevar_max = 10)

#prep step - calculate p_spc variable
usdata_wide <- usdata_wide %>%
 dplyr::mutate(p_spc = dplyr::case_when(is.na(t_site_icd.2) ~ "No SPC",
 !is.na(t_site_icd.2) ~ "SPC developed",
 TRUE ~ NA_character_)) %>%
 dplyr::mutate(count_spc = dplyr::case_when(is.na(t_site_icd.2) ~ 1,
 TRUE ~ 0))

#prep step - create patient status variable
usdata_wide <- usdata_wide %>%
 msSPChelpR::pat_status(., fu_end = "2017-12-31", dattype = "seer",
 status_var = "p_status", life_var = "p_alive.1",
 birthdat_var = "datebirth.1", lifedat_var = "datedeath.1")
#now we can run the function
msSPChelpR::calc_futime_tt(usdata_wide,
 futime_var_new = "p_futimeyrs",
 fu_end = "2017-12-31",
 dattype = "seer",
 time_unit = "years",
 status_var = "p_status",
 lifedat_var = "datedeath.1",
 fcdat_var = "t_datediag.1",
 spcdat_var = "t_datediag.2")

ir_crosstab

Calculate crude incidence rates and crosstabulate results by break variables

Description

Calculate crude incidence rates and crosstabulate results by break variables

Usage

```r
ir_crosstab(
  df,
  dattype = "zfkd",
  count_var,
  xbreak_var = "none",
  ybreak_vars,
  collapse_ci = FALSE,
  add_total = "no",
  add_n_percentages = FALSE,
  futime_var = NULL,
  alpha = 0.05
)
```

Arguments

- **df**: dataframe in wide format
- **dattype**: can be "zfkd" or "seer" or empty. Will set default variable names from dataset.
- **count_var**: variable to be counted as observed case. Should be 1 for case to be counted.
- **xbreak_var**: variable from df by which rates should be stratified in columns of result df. Default is "none".
- **ybreak_vars**: variables from df by which rates should be stratified in rows of result df. Multiple variables will result in appended rows in result df. `y_break_vars` is required.
- **collapse_ci**: If TRUE upper and lower confidence interval will be collapsed into one column separated by "-". Default is FALSE.
add_total option to add a row of totals. Can be either "no" for not adding such a row or "top" or "bottom" for adding it at the first or last row. Default is "no".

add_n_percentages option to add a column of percentages for n_base in its respective yvar_group. Can only be used when xbreak_var = "none". Default is FALSE.

futime_var variable in df that contains follow-up time per person (in years). Default is set if dattype is given.

alpha significance level for confidence interval calculations. Default is alpha = 0.05 which will give 95 percent confidence intervals.

Value
df

Examples

#load sample data
data("us_second_cancer")

#prep step - make wide data as this is the required format
usdata_wide <- us_second_cancer %>%
 msSPChelpR::reshape_wide_tidyr(case_id_var = "fake_id",
 time_id_var = "SEQ_NUM", timevar_max = 10)

#prep step - calculate p_spc variable
usdata_wide <- usdata_wide %>%
 dplyr::mutate(p_spc = dplyr::case_when(is.na(t_site_icd.2) ~ "No SPC",
 !is.na(t_site_icd.2) ~ "SPC developed",
 TRUE ~ NA_character_)) %>%
 dplyr::mutate(count_spc = dplyr::case_when(is.na(t_site_icd.2) ~ 1,
 TRUE ~ 0))

#prep step - create patient status variable
usdata_wide <- usdata_wide %>%
 msSPChelpR::pat_status(.,
 status_var = "p_status", life_var = "p_alive.1",
 birthdat_var = "datebirth.1", lifedat_var = "datedeath.1")

#now we can run the function
usdata_wide <- usdata_wide %>%
 msSPChelpR::calc_futime(.,
 futime_var_new = "p_futimeyrs",
 fu_end = "2017-12-31",
 dattype = "seer",
 status_var = "p_status", lifedat_var = "datedeath.1",
 fcdat_var = "t_datediag.1", spcdat_var = "t_datediag.2")

#for example, you can calculate incidence and summarize by sex and registry
Calculate crude incidence rates and cross-tabulate results by break variables; cumulative FU-times as are used as xbreak_var

Description

Calculate crude incidence rates and cross-tabulate results by break variables; cumulative FU-times as are used as xbreak_var

Usage

```r
ir_crosstab_byfutime(
  df,
  dattype = "zfkd",
  count_var,
  futime_breaks = c(0, 0.5, 1, 5, 10, Inf),
  ybreak_vars,
  collapse_ci = FALSE,
  add_total = "no",
  futime_var = NULL,
  alpha = 0.05
)
```

Arguments

- `df` : dataframe in wide format
- `dattype` : can be "zfkd" or "seer" or empty. Will set default variable names from dataset.
- `count_var` : variable to be counted as observed case. Should be 1 for case to be counted.
- `futime_breaks` : vector that indicates split points for follow-up time groups (in years) that will be used as xbreak_var. Default is c(0, .5, 1, 5, 10, Inf) that will result in 5 groups (up to 6 months, 6-12 months, 1-5 years, 5-10 years, 10+ years).
- `ybreak_vars` : variables from df by which rates should be stratified in rows of result df. Multiple variables will result in appended rows in result df. y_break_vars is required.
Value

df

Examples

```r
#load sample data
data("us_second_cancer")

#prep step - make wide data as this is the required format
usdata_wide <- us_second_cancer %>%
    #only use sample
dplyr::filter(as.numeric(fake_id) < 200000) %>%
msSPChelpR::reshape_wide_tidyr(case_id_var = "fake_id",
time_id_var = "SEQ_NUM", timevar_max = 2)

#prep step - calculate p_spc variable
usdata_wide <- usdata_wide %>%
dplyr::mutate(p_spc = dplyr::case_when(is.na(t_site_icd.2) ~ "No SPC",
!is.na(t_site_icd.2) ~ "SPC developed",
TRUE ~ NA_character_)) %>%
dplyr::mutate(count_spc = dplyr::case_when(is.na(t_site_icd.2) ~ 1,
TRUE ~ 0))

#prep step - create patient status variable
usdata_wide <- usdata_wide %>%
msSPChelpR::pat_status(., fu_end = "2017-12-31", dattype = "seer",
status_var = "p_status", life_var = "p_alive.1",
birthdat_var = "datebirth.1", lifedat_var = "datedeath.1")

#now we can run the function
usdata_wide <- usdata_wide %>%
msSPChelpR::calc_futime(.,
    futime_var_new = "p_futimeyrs",
fu_end = "2017-12-31",
dattype = "seer",
time_unit = "years",
status_var = "p_status",
lifedat_var = "datedeath.1",
fcdat_var = "t_datediag.1",
spcdat_var = "t_datediag.2")
```
#for example, you can calculate incidence and summarize by sex and registry
msSPChelpR::ir_crosstab_byfutime(usdata_wide,
 dattype = "seer",
 count_var = "count_spc",
 futime_breaks = c(0, .5, 1, 5, 10, Inf),
 ybreak_vars = c("sex.1", "registry.1"),
 collapse_ci = FALSE,
 add_total = "no",
 futime_var = "p_futimeyrs",
 alpha = 0.05)

pat_status

Calculate patient status at specific end of follow-up - tidyverse version

Description
Calculate patient status at specific end of follow-up - tidyverse version

Usage

```r
pat_status(
  wide_df,
  fu_end = NULL,
  dattype = "zfkd",
  status_var = "p_status",
  life_var = NULL,
  spc_var = NULL,
  birthdat_var = NULL,
  lifedat_var = NULL,
  lifedatmin_var = NULL,
  fcdat_var = NULL,
  spcdat_var = NULL,
  life_stat_alive = NULL,
  life_stat_dead = NULL,
  spc_stat_yes = NULL,
  spc_stat_no = NULL,
  lifedat_fu_end = NULL,
  use_lifedatmin = FALSE,
  check = TRUE,
  as_labelled_factor = FALSE
)
```

Arguments
- **wide_df**: dataframe in wide format
- **fu_end**: end of follow-up in time format YYYY-MM-DD.
pat_status

- **dattype**: Type of cancer registry data. Can be "seer" or "zfkd". Default is "zfkd".
- **status_var**: Name of the newly calculated variable for patient status. Default is p_status.
- **life_var**: Name of variable containing life status. Will override dattype preset.
- **spc_var**: Name of variable containing SPC status. Will override dattype preset.
- **birthdat_var**: Name of variable containing Date of Birth. Will override dattype preset.
- **lifedat_var**: Name of variable containing Date of Death. Will override dattype preset.
- **lifedatmin_var**: Name of variable containing the minimum Date of Death when true DoD is missing. Will override dattype preset. Will only be used if use_lifedatmin = TRUE.
- **fcdat_var**: Name of variable containing Date of Primary Cancer diagnosis. Will override dattype preset.
- **spcdat_var**: Name of variable containing Date of SPC diagnosis. Will override dattype preset.
- **life_stat_alive**: Value for alive status in life_var. Will override dattype preset.
- **life_stat_dead**: Value for dead status in life_var. Will override dattype preset.
- **spc_stat_yes**: Value for SPC occurred in spc_var. Will override dattype preset.
- **spc_stat_no**: Value for no SPC in spc_var. Will override dattype preset.
- **lifedat_fu_end**: Date of last FU of alive status in registry data. Will override dattype preset (2017-03-31 for zfkd; 2018-12-31 for seer).
- **use_lifedatmin**: If TRUE, option to use Date of Death from lifedatmin_var when DOD is missing. Default is FALSE.
- **check**: Check newly calculated variable p_status. Default is TRUE.
- **as_labelled_factor**: If TRUE, output status_var as labelled factor variable. Default is FALSE.

Value

- **wide_df**

Examples

```r
#load sample data
data("us_second_cancer")

#prep step - make wide data as this is the required format
usdata_wide <- us_second_cancer %>%
  msSPChelpR::reshape_wide_tidyr(case_id_var = "fake_id",
  time_id_var = "SEQ_NUM", timevar_max = 10)

#prep step - calculate p_spc variable
usdata_wide <- usdata_wide %>%
dplyr::mutate(p_spc = dplyr::case_when(is.na(t_site_icd.2) ~ "No SPC",
  !is.na(t_site_icd.2) ~ "SPC developed",
  TRUE ~ NA_character_)) %>%
dplyr::mutate(count_spc = dplyr::case_when(is.na(t_site_icd.2) ~ 1,
```

```r
```
#now we can run the function
msSPChelpR::pat_status(usdata_wide,
 fu_end = "2017-12-31",
 dattype = "seer",
 status_var = "p_status",
 life_var = "p_alive.1",
 spc_var = NULL,
 birthdat_var = "datebirth.1",
 lifedat_var = "datedeath.1",
 use_lifedatmin = FALSE,
 check = TRUE,
 as_labelled_factor = FALSE)

pat_status_tt
Calculate patient status at specific end of follow-up - tidytable version

Description

Calculate patient status at specific end of follow-up - tidytable version

Usage

```r
pat_status_tt(
  wide_df,
  fu_end = NULL,
  dattype = "zfkd",
  status_var = "p_status",
  life_var = NULL,
  spc_var = NULL,
  birthdat_var = NULL,
  lifedat_var = NULL,
  lifedatmin_var = NULL,
  fcdat_var = NULL,
  spcdat_var = NULL,
  life_stat_alive = NULL,
  life_stat_dead = NULL,
  spc_stat_yes = NULL,
  spc_stat_no = NULL,
  lifedat_fu_end = NULL,
  use_lifedatmin = FALSE,
  check = TRUE,
  as_labelled_factor = FALSE
)
```
Arguments

- **wide_df**
 - Dataframe or data.table in wide format.
- **fu_end**
 - End of follow-up in time format YYYY-MM-DD.
- **dattype**
 - Type of cancer registry data. Can be "seer" or "zfkd". Default is "zfkd".
- **status_var**
 - Name of the newly calculated variable for patient status. Default is `p_status`.
- **life_var**
 - Name of variable containing life status. Will override dattype preset.
- **spc_var**
 - Name of variable containing SPC status. Will override dattype preset.
- **birthdat_var**
 - Name of variable containing Date of Birth. Will override dattype preset.
- **lifedat_var**
 - Name of variable containing Date of Death. Will override dattype preset.
- **lifedatmin_var**
 - Name of variable containing the minimum Date of Death when true DoD is missing. Will override dattype preset. Will only be used if `use_lifedatmin = TRUE`.
- **fcdat_var**
 - Name of variable containing Date of Primary Cancer diagnosis. Will override dattype preset.
- **spcdat_var**
 - Name of variable containing Date of SPC diagnosis. Will override dattype preset.
- **life_stat_alive**
 - Value for alive status in `life_var`. Will override dattype preset.
- **life_stat_dead**
 - Value for dead status in `life_var`. Will override dattype preset.
- **spc_stat_yes**
 - Value for SPC occurred in `spc_var`. Will override dattype preset.
- **spc_stat_no**
 - Value for no SPC in `spc_var`. Will override dattype preset.
- **lifedat_fu_end**
 - Date of last FU of alive status in registry data. Will override dattype preset (2017-03-31 for zfkd; 2018-12-31 for seer).
- **use_lifedatmin**
 - If TRUE, option to use Date of Death from `lifedatmin_var` when DOD is missing. Default is FALSE.
- **check**
 - Check newly calculated variable `p_status`. Default is TRUE.
- **as_labelled_factor**
 - If TRUE, output `status_var` as labelled factor variable. Default is FALSE.

Value

- **wide_df**

Examples

```r
#load sample data
data("us_second_cancer")

#prep step - make wide data as this is the required format
usdata_wide <- us_second_cancer %>%
  msSPChelpR::reshape_wide_tidyr(case_id_var = "fake_id",
  time_id_var = "SEQ_NUM", timevar_max = 10)

#prep step - calculate p_spc variable
usdata_wide <- usdata_wide %>%
```
#now we can run the function
msSPChelpR::pat_status_tt(usdata_wide,
 fu_end = "2017-12-31",
 dattype = "seer",
 status_var = "p_status",
 life_var = "p_alive.1",
 spc_var = NULL,
 birthdat_var = "datebirth.1",
 lifedat_var = "datedeath.1",
 use_lifedatmin = FALSE,
 check = TRUE,
 as_labelled_factor = FALSE)

population_us

US Populations

Description

Dataset that contains different standard populations needed to run some package functions

Usage

population_us

Format

A data frame with the following variables:

- region Region / Registry
- year Year group
- sex Sex
- age Age group
- race Race
- population_pyar Population Years used for rate calculation (PYAR)
- population_n_per_year Absolute Population in single years or periods (PYAR / 5 years)
renumber_time_id Reumber the time ID per case (i.e. Tumor sequence)

Description

Renumber the time ID per case (i.e. Tumor sequence)

Usage

renumber_time_id(
 df,
 new_time_id_var,
 dattype = "zfkd",
 case_id_var = NULL,
 time_id_var = NULL,
 diagdat_var = NULL,
 timevar_max = Inf
)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>df</td>
<td>dataframe</td>
</tr>
<tr>
<td>new_time_id_var</td>
<td>Name of the newly calculated variable for time_id. Required.</td>
</tr>
<tr>
<td>dattype</td>
<td>Type of cancer registry data. Can be "seer" or "zfkd". Default is "zfkd".</td>
</tr>
<tr>
<td>case_id_var</td>
<td>String with name of ID variable indicating same patient. E.g. case_id_var="PUBCSNUM" for SEER data.</td>
</tr>
<tr>
<td>time_id_var</td>
<td>String with name of variable that indicates diagnosis per patient. E.g. time_id_var="SEQ_NUM" for SEER data.</td>
</tr>
<tr>
<td>diagdat_var</td>
<td>String with name of variable that indicates date of diagnosis per event. E.g. diagdat_var="t_datediag" for SEER data.</td>
</tr>
<tr>
<td>timevar_max</td>
<td>Numeric; default Inf. Maximum number of cases per id. All tumors > timevar_max will be deleted.</td>
</tr>
</tbody>
</table>

Value

<table>
<thead>
<tr>
<th>Value</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>df</td>
<td>df</td>
</tr>
</tbody>
</table>

Examples

data(us_second_cancer)
us_second_cancer %>%
 #only select first 10000 rows so example runs faster
dplyr::slice(1:10000) %>%
 msSPChelpR::renumber_time_id(new_time_id_var = "t_tumid",
renumber_time_id_tt

datatype = "seer",
case_id_var = "fake_id")

renumber_time_id_tt Renumber the time ID per case (i.e. Tumor sequence) - tidytable version

Description
Renumber the time ID per case (i.e. Tumor sequence) - tidytable version

Usage
renumber_time_id_tt(
 df,
 new_time_id_var,
 dattype = "zfkd",
 case_id_var = NULL,
 time_id_var = NULL,
 diagdat_var = NULL,
 timevar_max = Inf
)

Arguments
- **df** dataframe
- **new_time_id_var** Name of the newly calculated variable for time_id. Required.
- **dattype** Type of cancer registry data. Can be "seer" or "zfkd". Default is "zfkd".
- **case_id_var** String with name of ID variable indicating same patient. E.g. case_id_var="PUBCSNUM" for SEER data.
- **time_id_var** String with name of variable that indicates diagnosis per patient. E.g. time_id_var="SEQ_NUM" for SEER data.
- **diagdat_var** String with name of variable that indicates date of diagnosis per event. E.g. diagdat_var="t_datediag" for SEER data.
- **timevar_max** Numeric; default Inf. Maximum number of cases per id. All tumors > timevar_max will be deleted.

Value
- **df**
Examples

data(us_second_cancer)
us_second_cancer %>%
#only select first 10000 rows so example runs faster
dplyr::slice(1:10000) %>%
msSPChelpR::renumber_time_id_tt(new_time_id_var = "t_tumid",
datatype = "seer",
case_id_var = "fake_id")

Description

Reshape dataset to long format - stats::reshape version

Usage

reshape_long(wide_df, case_id_var, time_id_var, datsize = Inf, chunks = 1)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>wide_df</td>
<td>dataframe in wide format</td>
</tr>
<tr>
<td>case_id_var</td>
<td>String with name of ID variable indicating same patient. E.g. idvar="PUBCSNUM" for SEER data.</td>
</tr>
<tr>
<td>time_id_var</td>
<td>String with name of variable that indicates diagnosis per patient. E.g. timevar="SEQ_NUM" for SEER data.</td>
</tr>
<tr>
<td>datsize</td>
<td>Number of rows to be taken from df. This parameter is mainly for testing. Default is Inf so that df is fully processed.</td>
</tr>
<tr>
<td>chunks</td>
<td>Numeric; default 1. Technical parameter how the data is split during reshaping.</td>
</tr>
</tbody>
</table>

Value

long df

Examples

data(us_second_cancer)

#prep step - reshape wide a sample of 10000 rows from us_second_cancer
usdata_wide_sample <- msSPChelpR::reshape_wide(us_second_cancer,
case_id_var = "fake_id",
time_id_var = "SEQ_NUM",
timevar_max = 2,
```r
#now we can reshape long again
msSPChelpR::reshape_long(usdata_wide_sample,
            case_id_var = "fake_id",
            time_id_var = "SEQ_NUM")
```

###reshape_long_tidyr

Reshape dataset to wide format - tidy version

####Description

Reshape dataset to wide format - tidy version

####Usage

`reshape_long_tidyr(wide_df, case_id_var, time_id_var, datsize = Inf)`

####Arguments

- `wide_df`: dataframe
- `case_id_var`: String with name of ID variable indicating same patient. E.g. `idvar="PUBCSNUM"` for SEER data.
- `time_id_var`: String with name of variable that indicates diagnosis per patient. E.g. `timevar="SEQ_NUM"` for SEER data.
- `datsize`: Number of rows to be taken from df. This parameter is mainly for testing. Default is Inf so that df is fully processed.

####Value

`long_df`

####Examples

```r
data(us_second_cancer)

#prep step - reshape wide a sample of 10000 rows from us_second_cancer
usdata_wide_sample <- msSPChelpR::reshape_wide(us_second_cancer,
            case_id_var = "fake_id",
            time_id_var = "SEQ_NUM",
            timevar_max = 2,
            datsize = 10000)

#now we can reshape long again
msSPChelpR::reshape_long_tidyr(usdata_wide_sample,
            case_id_var = "fake_id",
            time_id_var = "SEQ_NUM")
```
reshape_wide

Reshape dataset to wide format

Description

Reshape dataset to wide format

Usage

```r
reshape_wide(
  df,
  case_id_var,
  time_id_var,
  timevar_max = 6,
  datsize = Inf,
  chunks = 10
)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>df</td>
<td>dataframe</td>
</tr>
<tr>
<td>case_id_var</td>
<td>String with name of ID variable indicating same patient. E.g. <code>idvar="PUBCSNUM"</code> for SEER data.</td>
</tr>
<tr>
<td>time_id_var</td>
<td>String with name of variable that indicates diagnosis per patient. E.g. <code>timevar="SEQ_NUM"</code> for SEER data.</td>
</tr>
<tr>
<td>timevar_max</td>
<td>Numeric; default 6. Maximum number of cases per id. All tumors > timevar_max will be deleted before reshaping.</td>
</tr>
<tr>
<td>datsize</td>
<td>Number of rows to be taken from df. This parameter is mainly for testing. Default is Inf so that df is fully processed.</td>
</tr>
<tr>
<td>chunks</td>
<td>Numeric; default 10. Technical parameter how the data is split during reshaping.</td>
</tr>
</tbody>
</table>

Value

`df`
Examples

```r
data(us_second_cancer)

msSPChelpR::reshape_wide(us_second_cancer,
    case_id_var = "fake_id",
    time_id_var = "SEQ_NUM",
    timevar_max = 2,
    datsize = 10000)
```

reshape_wide_tidyr
Reshape dataset to wide format - tidyr version

Description
Reshape dataset to wide format - tidyr version

Usage

```r
reshape_wide_tidyr(
    df,
    case_id_var,
    time_id_var,
    timevar_max = 6,
    datsize = Inf
)
```

Arguments

- `df`
 dataframe

- `case_id_var`
 String with name of ID variable indicating same patient. E.g. `idvar="PUBCSNUM"` for SEER data.

- `time_id_var`
 String with name of variable that indicates diagnosis per patient. E.g. `timevar="SEQ_NUM"` for SEER data.

- `timevar_max`
 Numeric; default 6. Maximum number of cases per id. All tumors > `timevar_max` will be deleted before reshaping.

- `datsize`
 Number of rows to be taken from `df`. This parameter is mainly for testing. Default is Inf so that `df` is fully processed.

Value

- `df`
reshape_wide_tt

Examples

```
data(us_second_cancer)

msSPChelpR::reshape_wide_tidyr(us_second_cancer,  
case_id_var = "fake_id",  
  time_id_var = "SEQ_NUM",  
  timevar_max = 2,  
  datsize = 10000)
```

reshape_wide_tt
Reshape dataset to wide format - tidytable version

Description

Reshape dataset to wide format - tidytable version

Usage

```
reshape_wide_tt(df, case_id_var, time_id_var, timevar_max = 6, datsize = Inf)
```

Arguments

- **df**: dataframe
- **case_id_var**: String with name of ID variable indicating same patient. E.g. `idvar="PUBCSNUM"` for SEER data.
- **time_id_var**: String with name of variable that indicates diagnosis per patient. E.g. `timevar="SEQ_NUM"` for SEER data.
- **timevar_max**: Numeric; default 6. Maximum number of cases per id. All tumors > `timevar_max` will be deleted before reshaping.
- **datsize**: Number of rows to be taken from `df`. This parameter is mainly for testing. Default is Inf so that `df` is fully processed.

Value

`wide_df`

Examples

```
data(us_second_cancer)

msSPChelpR::reshape_wide_tt(us_second_cancer,  
case_id_var = "fake_id",  
  time_id_var = "SEQ_NUM",  
  timevar_max = 2,  
  datsize = 10000)
```
Calculate standardized incidence ratios with custom grouping variables stratified by follow-up time

Usage

```r
sir_byfutime(
    df,
    dattype = "zfkd",
    ybreak_vars = "none",
    xbreak_var = "none",
    futime_breaks = c(0, 0.5, 1, 5, 10, Inf),
    count_var,
    refrates_df = rates,
    calc_total_row = TRUE,
    calc_total_fu = TRUE,
    region_var = NULL,
    age_var = NULL,
    sex_var = NULL,
    year_var = NULL,
    race_var = NULL,
    site_var = NULL,
    futime_var = NULL,
    alpha = 0.05
)
```

Arguments

- **df**: dataframe in wide format
- **dattype**: can be "zfkd" or "seer" or empty. Will set default variable names from dataset.
- **ybreak_vars**: variables from df by which SIRs should be stratified in result df. Multiple variables will result in appended rows in result df. Careful: do not chose any variables that are dependent on occurrence of count_var (e.g. Histology of second cancer). If y_break_vars = "none", no stratification is performed. Default is "none".
- **xbreak_var**: One variable from df by which SIRs should be stratified as a second dimension in result df. This variable will be added as a second stratification dimension to ybreak_vars and all variables will be calculated for subpopulations of x and y combinations. Careful: do not chose any variables that are dependent on occurrence of count_var (e.g. Year of second cancer). If y_break_vars = "none", no stratification is performed. Default is "none".

Description

Calculate standardized incidence ratios with custom grouping variables stratified by follow-up time.
futime_breaks vector that indicates split points for follow-up time groups (in years) that will be used as xbreak_var. Default is c(0, .5, 1, 5, 10, Inf) that will result in 5 groups (up to 6 months, 6-12 months, 1-5 years, 5-10 years, 10+ years). If you don’t want to split by follow-up time, use futime_breaks = "none".

count_var variable to be counted as observed case. Cases are usually the second cancers. Should be 1 for case to be counted.

refrates_df df where reference rate from general population are defined. It is assumed that refrates_df has the columns "region" for region, "sex" for biological sex, "age" for age-groups (can be single ages or 5-year brackets), "year" for time period (can be single year or 5-year brackets), "incidence_crude_rate" for incidence rate in the respective age/sex/year cohort. refrates_df must use the same category coding of age, sex, region, year and t_site as age_var, sex_var, region_var, year_var and site_var.

calc_total_row option to calculate a row of totals. Can be either FALSE for not adding such a row or TRUE for adding it at the first row. Default is TRUE.

calc_total_fu option to calculate totals for follow-up time. Can be either FALSE for not adding such a column or TRUE for adding. Default is TRUE.

region_var variable in df that contains information on region where case was incident. Default is set if dattype is given.

age_var variable in df that contains information on age-group. Default is set if dattype is given.

sex_var variable in df that contains information on sex. Default is set if dattype is given.

year_var variable in df that contains information on year or year-period when case was incident. Default is set if dattype is given.

race_var optional argument for dattype="seer", if SIR should be calculated stratified by race. If you want to use this option, provide variable name of df that contains race information.

site_var variable in df that contains information on ICD code of case diagnosis. Cases are usually the second cancers. Default is set if dattype is given.

futime_var variable in df that contains follow-up time per person between date of first cancer and any of death, date of event (case), end of FU date (in years; whatever event comes first). Default is set if dattype is given.

alpha significance level for confidence interval calculations. Default is alpha = 0.05 which will give 95 percent confidence intervals.

Examples

#There are various preparation steps required, before you can run this function.
#Please refer to the Introduction vignette to see how to prepare your data
Not run:
usdata_wide %>%
sir_byfutime(
 dattype = "seer",
 ybreak_vars = c("race.1", "t_dco.1"),
 xbreak_var = "none",
 futime_breaks = c(0, 1/12, 2/12, 1, 5, 10, Inf),
 count_var = 1,
 refrates_df = refdata,
 calc_total_row = TRUE,
 calc_total_fu = TRUE,
 region_var = regdata$region,
 age_var = regdata$age,
 sex_var = regdata$sex,
 year_var = regdata$year,
 site_var = regdata$site,
 race_var = regdata$race,
 futime_var = regdata$futime)
count_var = "count_spc",
refrates_df = us_refrates_icd2,
calc_total_row = TRUE,
calc_total_fu = TRUE,
region_var = "registry.1",
age_var = "fc_agegroup.1",
sex_var = "sex.1",
year_var = "t_yeardiag.1",
site_var = "t_site_icd.1", # using grouping by second cancer incidence
futime_var = "p_futimeyrs",
alpha = 0.05)

End(Not run)

standard_population

Standard Populations

Description

Dataset that contains different standard populations needed to run some package functions

Usage

standard_population

Format

A data frame with the following variables:

- standard_pop Standard Population
- sex Sex
- age Age group
- population_n Absolute Population number in standard population age group
- group_proportion Proportion of age-group in gender-specific total population

summarize_sir_results

Summarize detailed SIR results

Description

Summarize detailed SIR results
Usage

```r
summarize_sir_results(
  sir_df,
  summarize_groups,
  summarize_site = FALSE,
  output = "long",
  output_information = "full",
  add_total_row = "no",
  add_total_fu = "no",
  collapse_ci = FALSE,
  shorten_total_cols = FALSE,
  fubreak_var_name = "fu_time",
  ybreak_var_name = "yvar_name",
  xbreak_var_name = "none",
  site_var_name = "t_site",
  alpha = 0.05
)
```

Arguments

- **sir_df**
 Dataframe with stratified sir results created using the sir or sir_byfutime functions.

- **summarize_groups**
 Option to define summarizing stratified groups. Default is "none". If you want to define variables that should be summarized into one group, you can choose from age, sex, region, year. Define multiple summarize variables e.g. by summarize_groups = c("region", "sex", "year")

- **summarize_site**
 If TRUE results will be summarized over all t_site categories. Default is FALSE.

- **output**
 Define the format of the output. Can be either "nested" for nested dataframe with fubreak_var and xbreak_var in separate sub_tables (purrr). Or "wide" for wide format where fubreak_var and xbreak_var are appended as columns. Or "long" for long format where sir_df is not reshaped, but just summarized (ybreak_var, xbreak_var and fubreak_var remain in rows). Default is "long".

- **output_information**
 Option to define information to be presented in final output table. Default is "full" information, i.e. all variables from from sir_df. "reduced" is observed, expected, sir, sir_ci / sir_lci+sir_uci, pyar, n_base. "minimal" is observed, expected, sir, sir_ci. Default is "full".

- **add_total_row**
 Option to add a row of totals. Can be either "no" for not adding such a row or "start" or "end" for adding it at the first or last row or "only" for only showing totals and no yvar. Default is "no".

- **add_total_fu**
 Option to add totals for follow-up time. Can be either "no" for not adding such a column or "start" or "end" for adding it at the first or last column or "only" for only showing follow-up time totals. Default is "no".

- **collapse_ci**
 If TRUE upper and lower confidence interval will be collapsed into one column separated by "-". Default is FALSE.
shorten_total_cols
 Shorten text in all results columns that start with "Total". Default == FALSE.

fubreak_var_name
 Name of variable with futime stratification. Default is "fu_time".

ybreak_var_name
 Name of variable with futime stratification. Default is "yvar_name".

xbreak_var_name
 Name of variable with futime stratification. Default is "xvar_name".

site_var_name
 Name of variable with site stratification. Default is "t_site".

alpha
 significance level for confidence interval calculations. Default is alpha = 0.05 which will give 95 percent confidence intervals.

Examples

#There are various preparation steps required, before you can run this function.
#Please refer to the Introduction vignette to see how to prepare your data
Not run:
summarize_sir_results(.
 summarize_groups = c("region", "age", "year", "race"),
 summarize_site = TRUE,
 output = "long", output_information = "minimal",
 add_total_row = "only", add_total_fu = "no",
 collapse_ci = FALSE, shorten_total_cols = TRUE,
 fubreak_var_name = "fu_time", ybreak_var_name = "yvar_name",
 xbreak_var_name = "none", site_var_name = "t_site",
 alpha = 0.05
)

End(Not run)

us_refrates_icd2 US Reference Rates for Cancer using ICD-O 2digit code for cancer
 site

Description

Synthetic dataset of reference incidence rates for the US population to demonstrate package functions

Usage

us_refrates_icd2
us_second_cancer

Format

A data frame with the following variables:

- `t_site` Tumor Site
- `region` Region / Region groups
- `year` Year / Periods
- `sex` Sex
- `age` Age / Age groups
- `race` Race
- `comment` Comment
- `incidence_cases` Incident Cases (raw count)
- `incidence_crude_rate` Incidence Rate (crude rate)
- `population_pyar` Population Years used for rate calculation (PYAR)
- `population_n_per_year` Absolute Population number used for rate calculation (PYAR / 5 years)

Description

Synthetic dataset of patients with cancer to demonstrate package functions

Usage

`us_second_cancer`

Format

A data frame with the following variables:

- `fake_id` ID of patient
- `SEQ_NUM` Original tumor sequence
- `registry` SEER registry
- `sex` Biological sex of patient
- `race` Race
- `datebirth` Date of birth
- `t_datediag` Date of diagnosis of tumor
- `t_site_icd` Primary site of tumor in ICD-O coding
- `t_dco` Tumor diagnosis is based on Death Certificate only
- `fc_age` Age at first primary cancer in years
- `datedeath` Date of death
vital_status Calculate vital status at end of follow-up depending on pat_status - tidyverse version

Description

Calculate vital status at end of follow-up depending on pat_status - tidyverse version

Usage

vital_status(
 wide_df,
 status_var = "p_status",
 life_var_new = "p_alive",
 check = TRUE,
 as_labelled_factor = FALSE
)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>wide_df</td>
<td>dataframe in wide format</td>
</tr>
<tr>
<td>status_var</td>
<td>Name of the patient status variable that was previously created. Default is p_status.</td>
</tr>
<tr>
<td>life_var_new</td>
<td>Name of the newly calculated variable for patient vital status. Default is p_alive.</td>
</tr>
<tr>
<td>check</td>
<td>Check newly calculated variable life_var_new by printing frequency table. Default is TRUE.</td>
</tr>
<tr>
<td>as_labelled_factor</td>
<td>If true, output life_var_new as labelled factor variable. Default is FALSE.</td>
</tr>
</tbody>
</table>

Value

wide_df

Examples

#load sample data
data("us_second_cancer")

#prep step - make wide data as this is the required format
usdata_wide <- us_second_cancer %>%
 msSPChelpR::reshape_wide_tidyr(case_id_var = "fake_id",
vital_status_tt

Calculate vital status at end of follow-up depending on pat_status - tidytable version

Description

Calculate vital status at end of follow-up depending on pat_status - tidytable version

Usage

vital_status_tt(
 wide_df,
 status_var = "p_status",
 life_var_new = "p_alive",
 check = TRUE,
 as_labelled_factor = FALSE
)

Arguments

 wide_df dataframe or data.table in wide format
 status_var Name of the patient status variable that was previously created. Default is p_status.
 life_var_new Name of the newly calculated variable for patient vital status. Default is p_alive.
Check newly calculated variable `life_var_new` by printing frequency table. Default is TRUE.

If true, output `life_var_new` as labelled factor variable. Default is FALSE.

Value

`wide_df`

Examples

```r
#load sample data
data("us_second_cancer")

#prep step - make wide data as this is the required format
usdata_wide <- us_second_cancer %>%
  msSPChelpR::reshape_wide_tidyr(case_id_var = "fake_id",
  time_id_var = "SEQ_NUM", timevar_max = 10)

#prep step - calculate p_spc variable
usdata_wide <- usdata_wide %>%
  dplyr::mutate(p_spc = dplyr::case_when(is.na(t_site_icd.2) ~ "No SPC",
  !is.na(t_site_icd.2) ~ "SPC developed",
  TRUE ~ NA_character_)) %>%
  dplyr::mutate(count_spc = dplyr::case_when(is.na(t_site_icd.2) ~ 1,
  TRUE ~ 0))

#prep step - create patient status variable
usdata_wide <- usdata_wide %>%
  msSPChelpR::pat_status(., fu_end = "2017-12-31", dattype = "seer",
  status_var = "p_status", life_var = "p_alive.1",
  birthdat_var = "datebirth.1", lifedat_var = "datedeath.1")

#now we can run the function
msSPChelpR::vital_status_tt(usdata_wide,
  status_var = "p_status",
  life_var_new = "p_alive_new",
  check = TRUE,
  as_labelled_factor = FALSE)
```
Index

* datasets
 population_us, 16
 standard_population, 26
 us_refrates_icd2, 28
 us_second_cancer, 29

asir, 2

calc_futime, 4
calc_futime_tt, 6

ir_crosstab, 8
ir_crosstab_byfutime, 10

pat_status, 12
pat_status_tt, 14
population_us, 16

renumber_time_id, 17
renumber_time_id_tt, 18
reshape_long, 19
reshape_long_tidyr, 20
reshape_wide, 21
reshape_wide_tidyr, 22
reshape_wide_tt, 23

sir_byfutime, 24
standard_population, 26
summarize_sir_results, 26

us_refrates_icd2, 28
us_second_cancer, 29

vital_status, 30
vital_status_tt, 31