Package ‘mlt’

February 5, 2021

Title Most Likely Transformations
Version 1.2-1
Date 2021-02-03
Description Likelihood-based estimation of conditional transformation
models via the most likely transformation approach described in
Depends basefun (≥ 1.0-5), variables (≥ 1.0-2)
Imports BB, alabama, stats, coneproj, graphics, methods, grDevices,
sandwich, numDeriv, survival, nloptr
Suggests MASS, nnet, TH.data, multcomp
URL http://ctm.R-forge.R-project.org
License GPL-2
Encoding UTF-8
NeedsCompilation no
Author Torsten Hothorn [aut, cre] (<https://orcid.org/0000-0001-8301-0471>)
Maintainer Torsten Hothorn <Torsten.Hothorn@R-project.org>
Repository CRAN
Date/Publication 2021-02-05 14:50:02 UTC

R topics documented:

 mlt-package .. 2
 confband .. 2
 ctm .. 3
 ctm-methods .. 4
 mlt .. 5
 mltoptim ... 6
 plot-predict-simulate 8
 R ... 9

Index 12
General Information on the mlt Package

Description

The mlt package implements maximum likelihood estimation in conditional transformation models as introduced by Hothorn et al. (2018).

An introduction to the package is available in the mlt package vignette from package mlt.docreg (Hothorn, 2018).

Author(s)

This package is authored by Torsten Hothorn <Torsten.Hothorn@R-project.org>.

References

Confidence Bands

Description

Confidence bands for transformation, distribution, survivor or cumulative hazard functions

Usage

confband(object, newdata, level = 0.95, ...)

S3 method for class 'mlt'
confband(object, newdata, level = 0.95,
 type = c("trafo", "distribution", "survivor", "cumhazard"),
 K = 20, cheat = K, ...)
Arguments

- **object**: an object of class `mlt`
- **newdata**: a data frame of observations
- **level**: the confidence level
- **type**: the function to compute the confidence band for
- **K**: number of grid points the function is evaluated at
- **cheat**: number of grid points the function is evaluated at when using the quantile obtained for K grid points
- **...**: additional arguments to `confint.glht`

Details

The function is evaluated at K grid points and simultaneous confidence intervals are then interpolated in order to construct the band.

A smoother band can be obtained by setting cheat to something larger than K: The quantile is obtained for K grid points but the number of evaluated grid points cheat can be much larger at no additional cost. Technically, the nominal level is not maintained in this case but the deviation will be small for reasonably large K.

Value

For each row in newdata the function and corresponding confidence band evaluated at the K (or cheat) grid points is returned.

ctm

Conditional Transformation Models

Description

Specification of conditional transformation models

Usage

c tm(response, interacting = NULL, shifting = NULL, data = NULL,
 todistr = c("Normal", "Logistic", "MinExtrVal", "MaxExtrVal", "Exponential"),
 sumconstr = inherits(interacting, c("formula", "formula_basis")), ...)

Arguments

- **response**: a basis function, ie, an object of class basis
- **interacting**: a basis function, ie, an object of class basis
- **shifting**: a basis function, ie, an object of class basis
- **data**: either a `data.frame` containing the model variables or a formal description of these variables in an object of class `vars`
ctm-methods

todistr a character vector describing the distribution to be transformed
sumconstr a logical indicating if sum constraints shall be applied
... arguments to as.basis when shifting is a formula

Details
This function only specifies the model which can then be fitted using mlt. The shift term is positive by default.
Possible choices of the distributions the model transforms to (the inverse link functions) include the standard normal ("Normal"), the standard logistic ("Logistic"), the standard minimum extreme value ("MinExtrVal", also known as Gompertz distribution), and the standard maximum extreme value ("MaxExtrVal", also known as Gumbel distribution) distributions. The exponential distribution ("Exponential") can be used to fit Aalen additive hazard models.

Value
An object of class ctm.

References

ttm-methods Methods for ctm Objects

Description
Methods for objects of class ctm

Usage
S3 method for class 'ctm'
variable.names(object,
which = c("all", "response", "interacting", "shifting"),
...)
S3 method for class 'ctm'
coef(object, ...)

Arguments
object an unfitted conditional transformation model as returned by ctm
which a character specifying which names shall be returned
... additional arguments

Details
coef can be used to get and set model parameters.
Description

Likelihood-based model estimation in conditional transformation models

Usage

```r
mlt(model, data, weights = NULL, offset = NULL, fixed = NULL, theta = NULL,
pstart = NULL, scale = FALSE, dofit = TRUE, optim = mltoptim(), ...)
```

Arguments

- `model`: a conditional transformation model as specified by `ctm`
- `data`: a `data.frame` containing all variables specified in model
- `weights`: an optional vector of weights
- `offset`: an optional vector of offset values
- `fixed`: a named vector of fixed regression coefficients; the names need to correspond to column names of the design matrix
- `theta`: optional starting values for the model parameters
- `pstart`: optional starting values for the distribution function evaluated at the data
- `scale`: a logical indicating if (internal) scaling shall be applied to the model coefficients
- `dofit`: a logical indicating if the model shall be fitted to the data (TRUE) or not
- `optim`: a list of functions implementing suitable optimisers
- `...`: additional arguments, currently ignored

Details

This function fits a conditional transformation model by searching for the most likely transformation as described in Hothorn et al. (2017).

Value

An object of class `mlt` with corresponding methods.

References

Examples

```r
### set-up conditional transformation model for conditional
dist <- numeric_var("dist", support = c(2.0, 100), bounds = c(0, Inf))
speed <- numeric_var("speed", support = c(5.0, 23), bounds = c(0, Inf))
ctmm <- ctm(response = Bernstein_basis(dist, order = 4, ui = "increasing"),
            interacting = Bernstein_basis(speed, order = 3))

### fit model
mltm <- mlt(ctmm, data = cars)

### plot data
plot(cars)

### predict quantiles and overlay data with model via a "quantile sheet"
q <- predict(mltm, newdata = data.frame(speed = 0:24), type = "quantile",
p = 2:8 / 10, K = 500)
tmp <- apply(q, 1, function(x) lines(0:24, x, type = "l"))
```

mlt-methods

Methods for mlt Objects

Description

Methods for objects of class mlt

Usage

```r
## S3 method for class 'mlt'
coef(object, fixed = TRUE, ...)
coef(object) <- value

## S3 method for class 'mlt'
weights(object, ...)

## S3 method for class 'mlt'
logLik(object, parm = coef(object, fixed = FALSE), w = NULL, newdata, ...)

## S3 method for class 'mlt'
vcov(object, parm = coef(object, fixed = FALSE), complete = FALSE, ...)

## S3 method for class 'mlt'
Hessian(object, ...)

## S3 method for class 'mlt'
Gradient(object, ...)

## S3 method for class 'mlt'
estfun(object, parm = coef(object, fixed = FALSE),
        w = NULL, newdata, ...)

## S3 method for class 'mlt'
```

Arguments

object a fitted conditional transformation model as returned by `mlt`
fixed a logical indicating if only estimated coefficients (fixed = FALSE) should be returned
value coefficients to be assigned to the model
parm model parameters
w model weights
weights model weights
newdata an optional data frame of new observations. Allows evaluation of the log-likelihood for a given model object on these new observations. The parameters parm and w are ignored in this situation.
n number of grid points
subset an optional integer vector indicating the subset of observations to be used for fitting.
offset an optional vector of offset values
theta optional starting values for the model parameters
complete currently ignored
... additional arguments

Details

c coef can be used to get and set model parameters, weights and logLik extract weights and evaluate the log-likelihood (also for parameters other than the maximum likelihood estimate). Hessian returns the Hessian and vcov the inverse thereof. Gradient gives the gradient (sum of the score contributions) and estfun the score contribution by each observation. mkgrid generates a grid of all variables (as returned by variable.names) in the model. update allows refitting the model with alternative weights and potentially different starting values. bounds gets bounds for bounded variables in the model.
Description

Define optimisers and their control parameters

Usage

```r
mltoptim(auglag = list(maxtry = 5, kkt2.check = FALSE),
        spg = list(maxit = 10000, quiet = TRUE, checkGrad = FALSE),
        nloptr = NULL, trace = FALSE)
```

Arguments

- `auglag` A list with control parameters for the `auglag` optimiser. `maxtry` is the number of times the algorithm is started on random starting values in case it failed with the precomputed ones.
- `spg` A list with control parameters for the `BBoptim` optimiser (calling `spg` internally).
- `nloptr` A list with control parameters for the `nloptr` optimiser. This is still experimental and thus switched off (defaulting to `NULL`).
- `trace` A logical switching trace reports by the optimisers off.

Details

This function sets-up functions to be called in `mlt` internally.

Value

A list of functions with arguments `theta` (starting values), `f` (log-likelihood), `g` (scores), `ui` and `ci` (linear inequality constraints). Adding further such functions is a way to add more optimisers to `mlt`. The first one in this list converging defines the resulting model.

Examples

```r
### set-up linear transformation model for conditional
### distribution of dist given speed
dist <- numeric_var("dist", support = c(2.0, 100), bounds = c(0, Inf))
ctmm <- ctm(response = Bernstein_basis(dist, order = 4, ui = "increasing"),
             shifting = ~ speed, data = cars)

### use auglag with kkt2.check = TRUE => the numerically determined
### hessian is returned as "optim_hessian" slot
op <- mltoptim(auglag = list(maxtry = 5, kkt2.check = TRUE))[1]
mltm <- mlt(ctmm, data = cars, scale = FALSE, optim = op)

### compare analytical and numerical hessian
```
all.equal(c(Hessian(mltm)), c(mltm$optim_hessian), tol = 1e-4)

plot-predict-simulate Plots, Predictions and Samples from mlt Objects

Description

Plot, predict and sample from objects of class mlt

Usage

S3 method for class 'ctm'
plot(x, newdata, type = c("distribution", "survivor", "density",
"logdensity", "hazard", "loghazard", "cumhazard", "logcumhazard", "odds",
"logodds", "quantile", "trafo"),
q = NULL, prob = 1:(K - 1) / K, K = 50, col = rgb(.1, .1, .1, .1), lty = 1,
add = FALSE, ...)

S3 method for class 'mlt'
plot(x, ...)

S3 method for class 'ctm'
predict(object, newdata, type = c("trafo", "distribution",
"survivor", "density", "logdensity", "hazard", "loghazard", "cumhazard",
"logcumhazard", "odds", "logodds", "quantile"),
terms = c("bresponse", "binteracting", "bshifting"),
q = NULL, prob = NULL, K = 50, interpolate = FALSE, ...)

S3 method for class 'mlt'
predict(object, newdata = object$data, ...)

S3 method for class 'ctm'
simulate(object, nsim = 1, seed = NULL, newdata, K = 50, q = NULL,
interpolate = FALSE, bysim = TRUE, ...)

S3 method for class 'mlt'
simulate(object, nsim = 1, seed = NULL, newdata = object$data, bysim = TRUE, ...)

Arguments

object a fitted conditional transformation model as returned by mlt or an unfitted conditional transformation model as returned by ctm
x a fitted conditional transformation model as returned by mlt
newdata an optional data frame of observations
type type of prediction or plot to generate
q quantiles at which to evaluate the model
prob probabilities for the evaluation of the quantile function (type = "quantile")
terms terms to evaluate for the predictions, corresponds to the argument response, interacting and shifting in ctm
K number of grid points to generate (in the absence of q)
col color for the lines to plot
lty line type for the lines to plot
add logical indicating if a new plot shall be generated (the default)
interpolate logical indicating if quantiles shall be interpolated linearly. This unnecessary option is no longer implemented (starting with 1.2-1).
nsim number of samples to generate
seed optional seed for the random number generator
bysim logical, if TRUE a list with nsim elements is returned, each element is of length nrow(newdata) and contains one sample from the conditional distribution for each row of newdata. If FALSE, a list of length nrow(newdata) is returned, its ith element of length nsim contains nsim samples from the conditional distribution given newdata[i,].

Details

plot evaluates the transformation function over a grid of q values for all observations in newdata and plots these functions (according to type). predict evaluates the transformation function over a grid of q values for all observations in newdata and returns the result as a matrix (where _columns_ correspond to _rows_ in newdata). Note that the predict method for ctm objects requires all model coefficients to be specified in this unfitted model. simulate draws samples from object by numerical inversion of the quantile function.

Note that offsets are ALWAYS IGNORED when computing predictions. If you want the methods to pay attention to offsets, specify them as a variable in the model with fixed regression coefficient using the fixed argument in mlt.

R

Response Variable

| Description | Represent a possibly censored or truncated response variable |

Usage

```r
R(object, ...)  
## S3 method for class 'numeric'
R(object = NA, cleft = NA, cright = NA,  
   tleft = NA, tright = NA, tol = sqrt(.Machine$double.eps), ...)
## S3 method for class 'ordered'
R(object, cleft = NA, cright = NA, ...)
## S3 method for class 'integer'
R(object, cleft = NA, cright = NA, bounds = c(min(object), Inf), ...)
```
S3 method for class 'factor'
R(object, ...)

S3 method for class 'Surv'
R(object, ...)

as.Surv(object)

S3 method for class 'response'
as.Surv(object)

Arguments

- **object**: A vector of (conceptually) exact measurements or an object of class `response` (for `as.Surv`) or a list.
- **cleft**: A vector of left borders of censored measurements
- **cright**: A vector of right borders of censored measurements
- **tleft**: A vector of left truncations
- **tright**: A vector of right truncations
- **tol**: Tolerance for checking if `cleft < cright`
- **bounds**: Range of possible values for integers
- **...**: other arguments, ignored except for `tleft` and `tright` to `R.ordered` and `R.integer`

Details

`R` is basically an extension of `Surv` for the representation of arbitrarily censored or truncated measurements at any scale.

`R` applied to a list calls `R` for each of the list elements and returns a joint object.

Examples

```r
### ordered factor
R(gl(3, 3, labels = LETTERS[1:3]))
```
Index

* list
 mloptim, 8
* package
 mlt-package, 2
as.mlt (mlt-methods), 6
as.Surv (R), 10
auglag, 8
BBoptim, 8
bounds.mlt (mlt-methods), 6
coef.ctm (ctm-methods), 4
coef.mlt (mlt-methods), 6
coef<-(mlt-methods), 6
coef<-.ctm (ctm-methods), 4
confband, 2
confint.glht, 3
ctm, 3, 4, 5, 9
ctm-methods, 4
estfun.mlt (mlt-methods), 6
Gradient (mlt-methods), 6
Hessian (mlt-methods), 6
logLik.mlt (mlt-methods), 6
mkgrid.mlt (mlt-methods), 6
mlt, 3, 4, 5, 7–10
mlt-methods, 6
mlt-package, 2
mloptim, 8
nloptr, 8
plot-predict-simulate, 9
plot.ctm (plot-predict-simulate), 9
plot.mlt (plot-predict-simulate), 9
predict.ctm (plot-predict-simulate), 9
predict.mlt (plot-predict-simulate), 9
R, 10
simulate.ctm (plot-predict-simulate), 9
simulate.mlt (plot-predict-simulate), 9
spg, 8
Surv, 11
update.mlt_fit (mlt-methods), 6
variable.names.ctm (ctm-methods), 4
variable.names.mlt (mlt-methods), 6
vcov.mlt (mlt-methods), 6
weights.mlt (mlt-methods), 6