Package ‘bmscstan’

November 8, 2020

Type Package

Title Bayesian Multilevel Single Case Models using ‘Stan’

Version 1.1.0

Description Analyse single case analyses against a control group.
Its purpose is to provide a flexible, with good power and
low first type error
approach that can manage at the same time controls’ and patient’s data.
The use of Bayesian statistics allows to test both the alternative and
null hypothesis.

License GPL (>= 2)

Encoding UTF-8

LazyData true

Depends R (>= 3.5.0), rstan, logspline, bayesplot, LaplacesDemon, ggplot2

Imports coda

VignetteBuilder knitr

Suggests reshape2, gridExtra, loo, mcmcse, bridgesampling, testthat, knitr, rmarkdown

RoxygenNote 7.1.1

NeedsCompilation no

Author Michele Scandola [aut, cre] (<https://orcid.org/0000-0003-0853-8975>)

Maintainer Michele Scandola <michele.scandola@univr.it>

Repository CRAN

Date/Publication 2020-11-08 06:10:03 UTC

R topics documented:

BMSC ... 2
bmscstan .. 4
BMSC

Fit Bayesian Multilevel Single Case models

Description

BMSC fits the Bayesian Multilevel Single Case models.

Usage

BMSC(
 formula,
data_ctrl,
data_sc,
cores = 1,
chains = 4,
warmup = 2000,
iter = 4000,
seed = NA,
typeprior = "normal",
s,
...
)

Arguments

formula An object of class formula: a symbolic description of the model to be fitted.
data_ctrl An object of class data.frame (or one that can be coerced to that class) containing data of all variables used in the model for the control group.
data_sc An object of class data.frame (or one that can be coerced to that class) containing data of all variables used in the model for the Single Casecores The number of cores to use when executing the Markov chains in parallel. The default is 1.chains Number of Markov chains (defaults to 4).
warmup A positive integer specifying number of warmup (aka burnin) iterations. This also specifies the number of iterations used for stepsize adaptation, so warmup samples should not be used for inference. The number of warmup should not be larger than iter and the default is 2000.

iter Number of total iterations per chain (including warmup; defaults to 4000).

seed The seed for random number generation to make results reproducible. If NA (the default), Stan will set the seed randomly.

typeprior Set the desired prior distribution for the fixed effects.

 normal a normal distribution with $\mu = 0$ and $\sigma = 10$
 cauchy a cauchy distribution with $\mu = 0$ and scale $\sqrt{2}/2$
 student a Student’s T distribution, with $\mu = 0$, $\nu = 3$ and $\sigma = 10$

The normal distribution is the default.

The σ or scale parameters of the prior distributions can be modified by setting the dispersion parameter s.

s is the dispersion parameter (standard deviation or scale) for the prior distribution.

If NULL (the default) and typeprior = "normal" or typeprior = "student" $s = 10$, otherwise, if typeprior = "cauchy" $s = \sqrt{2}/2$.

... further arguments to be passed to stan function.

Value

a BMSC object

Examples

simulation of healthy controls data
Sigma.ctrl <- matrix(cbind(1, .7, .7, 1) ,nrow=2)
U <- t(chol(Sigma.ctrl))
numobs <- 100
set.seed(123)
random.normal <- matrix(rnorm(n = ncol(U) * numobs, mean = 3, sd = 1),
nrow = ncol(U), ncol = numobs)
X = U %*% random.normal
dat.ctrl <- as.data.frame(t(X))
names(dat.ctrl) <- c("y","x")
cor(dat.ctrl)
simulation of patient data

```r
Sigma.pt <- matrix(cbind(1, 0, 0, 1), nrow=2)
U <- t(chol(Sigma.pt))
numobs <- 20
set.seed(0)
random.normal <- matrix(rnorm(n = ncol(U) * numobs, mean = 3, sd = 1),
                        nrow = ncol(U), ncol = numobs)
X = U %*% random.normal
dat.pt <- as.data.frame(t(X))
names(dat.pt) <- c("y", "x")
cor(dat.pt)

# fit the single case model
mdl.reg <- BMSC(y ~ x, data_ctrl = dat.ctrl, data_sc = dat.pt, seed = 10)

# posterior-predictive check of the model
pp_check(mdl.reg)

# summarize the results
summary(mdl.reg)

# plot the results
plot(mdl.reg)
```

Description

The `bmscstan` package provides an interface to fit Bayesian Multilevel Single Case models. These models compare the performance of a Single Case against a control group, combining the flexibility of multilevel models and the potentiality of Bayesian Statistics.
Details

The package is now limited to gaussian data only, but we will further expand it to cover binomial and ordinal (Likert scales) data.

By means of bmscstan the effects of the control group and the effects of the deviance between the Single Case and the group will be estimated.

The model to estimate the controls parameters is:
\[
y \sim N(\beta X + bZ, \sigma^2)
\]
where \(y \) is the controls’ dependent variable, \(X \) the contrast matrix for Population-level (or Fixed) Effects, and \(\beta \) are the unknown coefficients to be estimate. \(Z \) is the contrast matrix for the Varying (or Random, or Group-level) effects, and \(b \) are the unknown estimates for the varying effects. \(\sigma^2 \) is the variance.

In order to estimate the coefficients of the Single Case, the formula is the following:
\[
y_{pt} \sim N(\phi X_{pt}, \sigma_{pt}^2)
\]
where \(\phi = \beta + \delta \).

The validation of the approach can be found here: https://www.doi.org/10.31234/osf.io/sajdq

Details

The main function of bmscstan is BMS, which uses formula syntax to specify your model.

data.ctrl

Data from a control group of 16 participants

Description

A dataset containing the results from the Body Sidedness Task from a control group of 16 participants

Usage

data.ctrl

Format

A data frame with 4049 rows and 5 variables

- **RT** Reaction times, in milliseconds
- **Body.District** Body district, categorical factor of Body Sidedness Task: FOOT or HAND
- **Congruency** The trial was Congruent or Incongruent?
- **Side** The trial showed a left or right limb
- **ID** The participant ID
pairwise.BMSC

data.pt
Data from a Single Case with brachial plexious lesion

Description

A dataset containing the results from the Body Sidedness Task from a single Single Case.

Usage

```
data.pt
```

Format

A data frame with 467 rows and 4 variables:

- **RT**: Reaction times, in milliseconds
- **Body.District**: Body district, categorial factor of Body Sidedness Task: FOOT or HAND
- **Congruency**: The trail was Congruent or Incongruent?
- **Side**: The trial showed a left or right limb

pairwise.BMSC
Pairwise contrasts

Description

Calculate pairwise comparisons between marginal posterior distributions divided by group levels.

Usage

```
pairwise.BMSC(mdl, contrast, covariate = NULL, who = "delta")
```

Arguments

- **mdl**: An object of class BMSC.
- **contrast**: Character value giving the name of the coefficient whose levels need to be compared.
- **covariate**: at the moment is silent
- **who**: parameter to choose the estimates to contrast
 - **control**: only the controls
 - **singlecase**: only the single case ($\beta + \delta$)
 - **delta**: only the difference between the single case and controls
Examples

```r
# simulation of controls' group data
NCond1 <- 2
NCond2 <- 2
Ntrials <- 8
NSubjs <- 30
betas <- c(0, 0, 0, 0.2)
data.sim <- expand.grid(
    trial = 1:Ntrials,
    ID = factor(1:NSubjs),
    Cond1 = factor(1:NCond1),
    Cond2 = factor(1:NCond2)
)
contrasts(data.sim$Cond1) <- contr.sum(2)
contrasts(data.sim$Cond2) <- contr.sum(2)

### d.v. generation
y <- rep(times = nrow(data.sim), NA)
set.seed(1)
rsbj <- rnorm(NSubjs, sd = 0.1)
for(i in 1:length(levels(data.sim$ID))){
    sel <- which(data.sim$ID == as.character(i))
    mm <- model.matrix(~ Cond1 * Cond2, data = data.sim[ sel, ])
    set.seed(1 + i)
y[sel] <- mm %*% as.matrix(betas + rsbj[i]) +
    rnorm(n = Ntrials * NCond1 * NCond2)
}
data.sim$y <- y
# just checking the simulated data...
boxplot(y~Cond1*Cond2, data = data.sim)
```
simulation of patient data

betas.pt <- c(0, 0.8, 0, 0)
data.pt <- expand.grid(
 trial = 1:Ntrials,
 Cond1 = factor(1:NCond1),
 Cond2 = factor(1:NCond2)
)
contrasts(data.pt$Cond1) <- contr.sum(2)
contrasts(data.pt$Cond2) <- contr.sum(2)

d.v. generation
mm <- model.matrix(~ Cond1 * Cond2, data = data.pt)
set.seed(5)
data.pt$y <- (mm %*% as.matrix(betas.pt) +
 rnorm(n = Ntrials * NCond1 * NCond2))[,1]

just checking the simulated data...
boxplot(y ~ Cond1 * Cond2, data = data.pt)

mdl <- BMSC(y ~ Cond1 * Cond2 + (1 | ID),
 data_ctrl = data.sim, data_sc = data.pt, seed = 77,
 typeprior = "cauchy", s = 1)

summary(mdl)

pp_check(mdl)

pairwise.BMSC(mdl, contrast = "Cond11:Cond21")

plot.BMSC

Plot estimates from a BMSC object.

Description

Plot estimates from a BMSC object.

Usage

S3 method for class 'BMSC'
plot(x, who = "both", type = "interval", CI = 0.95, ...)

Arguments

x An object of class BMSC.
who parameter to choose the estimates to plot
 both plot in the same graph both controls and the Single Case
 control only the controls
 single only the Single Case ($\beta + \delta$)
 delta only the difference between the Single Case and controls
type a parameter to select the typology of graph
 interval the estimates will be represented by means of pointrange, with median
 and the boundaries of the credible interval
 area a density plot
 hist a density histogram
CI the dimension of the Credible Interval (or Equally Tailed Interval). Default 0.95.
... other arguments are ignored.

Value

a plot, a ggplot2 object, or a bayesplot object

Examples

simulation of healthy controls data
Sigma.ctrl <- matrix(cbind(1, .7, .7, 1), nrow=2)
U <- t(chol(Sigma.ctrl))
numobs <- 100
set.seed(123)
random.normal <- matrix(rnorm(n = ncol(U) * numobs, mean = 3, sd = 1),
nrow = ncol(U), ncol = numobs)
X = U %*% random.normal
dat.ctrl <- as.data.frame(t(X))
names(dat.ctrl) <- c("y", "x")
cor(dat.ctrl)

simulation of patient data
Sigma.pt <- matrix(cbind(1, 0, 0, 1), nrow=2)
U <- t(chol(Sigma.pt))
numobs <- 20
set.seed(0)

random.normal <- matrix(rnorm(n = ncol(U) * numobs, mean = 3, sd = 1),
 nrow = ncol(U), ncol = numobs)
X = U %*% random.normal

dat.pt <- as.data.frame(t(X))

names(dat.pt) <- c("y","x")
cor(dat.pt)

fit the single case model
mdl.reg <- BMSC(y ~ x, data_ctrl = dat.ctrl, data_sc = dat.pt, seed = 10)

summarize the data
summary(mdl.reg)

plot the results of both patient and control group
plot(mdl.reg)

plot the results of the patient
plot(mdl.reg, who = "single")

plot the results of the difference between the control group and the patient
plot(mdl.reg, who = "delta")

density plots
plot(mdl.reg, type = "area")

histograms
plot(mdl.reg, type = "hist")

plot.pairwise.BMSC

Plot estimates from a pairwise.BMSC object.
Description

Plot estimates from a `pairwise.BMSC` object.

Usage

```r
## S3 method for class 'pairwise.BMSC'
plot(x, type = "interval", CI = 0.95, ...)
```

Arguments

- `x`: An object of class `pairwise.BMSC`.
- `type`: A parameter to select the typology of graph
 - `interval`: The estimates will be represented by means of pointrange, with median and the boundaries of the credible interval.
 - `area`: A density plot.
 - `hist`: A density histogram.
- `CI`: The dimension of the Credible Interval (or Equally Tailed Interval). Default 0.95.
- `...`: Other arguments are ignored.

Value

A list of two ggplot2 objects.

Examples

```
#################################################################
# simulation of controls' group data
#################################################################

# Number of levels for each condition and trials
NCond1 <- 2
NCond2 <- 2
Ntrials <- 8
NSubjs <- 30
betas <- c(0, 0, 0, 0.2)

data.sim <- expand.grid(
  trial = 1:Ntrials,
  ID = factor(1:NSubjs),
  Cond1 = factor(1:NCond1),
  Cond2 = factor(1:NCond2)
)

contrasts(data.sim$Cond1) <- contr.sum(2)
contrasts(data.sim$Cond2) <- contr.sum(2)
```
d.v. generation

```r
y <- rep( times = nrow(data.sim) , NA )

# cheap simulation of individual random intercepts
set.seed(1)
rssubj <- rnorm(NSubjs , sd = 0.1)

for( i in 1:length( levels( data.sim$ID ) ) ){
  sel <- which( data.sim$ID == as.character(i) )
  mm <- model.matrix(~ Cond1 * Cond2 , data = data.sim[ sel , ] )
  set.seed(1 + i)
  y[sel] <- mm %*% as.matrix(betas + rsubj[i]) +
          rnorm( n = Ntrials * NCond1 * NCond2 )
}
data.sim$y <- y

# just checking the simulated data...
boxplot(y~Cond1*Cond2, data = data.sim)
```

simulation of patient data

```r
betas.pt <- c( 0 , 0.8 , 0 , 0)
data.pt <- expand.grid(
  trial = 1:Ntrials,
  Cond1 = factor(1:NCond1),
  Cond2 = factor(1:NCond2)
)
contrasts(data.pt$Cond1) <- contr.sum(2)
contrasts(data.pt$Cond2) <- contr.sum(2)

### d.v. generation

```r
mm <- model.matrix(~ Cond1 * Cond2 , data = data.pt)
set.seed(5)
data.pt$y <- (mm %*% as.matrix(betas.pt) +
 rnorm(n = Ntrials * NCond1 * NCond2))[,1]

just checking the simulated data...
boxplot(y~Cond1*Cond2, data = data.pt)
```

mdl <- BMSC(y ~ Cond1 * Cond2 + ( 1 | ID ),
              data_ctrl = data.sim, data_sc = data.pt, seed = 77,
              typeprior = "cauchy", s = 1)
summary(mdl)

pp_check(mdl)

# compute pairwise contrasts
ph <- pairwise.BMSC(mdl, contrast = "Cond11:Cond21")

ph

# plot pairwise comparisons
plot(ph)

plot(ph, type = "area")

# customization of pairwise comparisons plot
plot(ph)[[1]]+theme_bw(base_size = 18)

plot(ph, type = "area")[[1]]+theme_bw(base_size = 18)+
  theme(strip.text.y = element_text(angle = 0))

---

pp_check.BMSC  Posterior predictive check for BMSC objects

Description

pp_check() plots the posterior predictive check for BMSC objects.

Usage

## S3 method for class 'BMSC'
pp_check(object, type = "dens", limited = FALSE, ...)

Arguments

object a BMSC object
type a parameter to select the typology of graph
dens density overlay plot
hist histogram plot
mode the distribution of the mode statistic, over the simulated datasets, compared to the mode of the real data
limited logical. TRUE if the output should be limited within the 95% credible interval, FALSE it should not. Default FALSE.
... other arguments are ignored.
Value

a ggplot2 object

Examples

# simulation of healthy controls data
Sigma.ctrl <- matrix(cbind(1, .7, .7, 1) ,nrow=2)
U <- t(chol(Sigma.ctrl))
numobs <- 100
set.seed(123)
random.normal <- matrix( rnorm( n = ncol(U) * numobs, mean = 3, sd = 1),
                         nrow = ncol(U), ncol = numobs)
X = U %*% random.normal
dat.ctrl <- as.data.frame(t(X))
names(dat.ctrl) <- c("y","x")
cor(dat.ctrl)

# simulation of patient data
Sigma.pt <- matrix(cbind(1, 0, 0, 1) ,nrow=2)
U <- t(chol(Sigma.pt))
numobs <- 20
set.seed(0)
random.normal <- matrix( rnorm( n = ncol(U) * numobs, mean = 3, sd = 1),
                         nrow = ncol(U), ncol = numobs)
X = U %*% random.normal
dat.pt <- as.data.frame(t(X))
names(dat.pt) <- c("y","x")
cor(dat.pt)

# fit the single case model
mdl.reg <- BMSC(y ~ x, data_ctrl = dat.ctrl, data_sc = dat.pt, seed = 10)
# summarize the data
summary(mdl.reg)

# plot the posterior predictive checks
pp_check(mdl.reg, limited = FALSE)
pp_check(mdl.reg, limited = TRUE)
pp_check(mdl.reg, type = "mode", limited = FALSE)
pp_check(mdl.reg, type = "hist", limited = FALSE)

---

print.pairwise.BMSC  
Print summaries of Pairwise Bayesian Multilevel Single Case objects

Description
Print summaries of Pairwise Bayesian Multilevel Single Case objects

Usage
## S3 method for class 'pairwise.BMSC'
print(x, ...)

Arguments

x  
An object of class pairwise.BMSC, resulting from the pairwise.BMSC function.

...  
further arguments passed to or from other methods.

---

print.summary.BMSC  
Print summaries of Bayesian Multilevel Single Case objects

Description
Print summaries of Bayesian Multilevel Single Case objects

Usage
## S3 method for class 'summary.BMSC'
print(x, ...)

Arguments

x  
An object of class summary.BMSC, resulting from the summary.BMSC function.

...  
further arguments passed to or from other methods.
Random Effects specification on Bayesian Multilevel Single Case models using 'Stan'

Description

The BMSC function allows the flexibility of multilevel (generalised) linear models on single case analysis.

In particular, it is possible to specify the population-level (a.k.a. mixed effects) and the group-level (a.k.a. random effects) coefficients.

The specification of the population- and group-level effects can be done using the well-known lme4 notation with specific limitations:

- it is no possible to estimate uncorrelated group-level effects
- it is no possible to directly estimate nested effects. You need to use a trick that is specified in the Details section.

Details

<table>
<thead>
<tr>
<th>Lmer formulation</th>
<th>BMSC availability</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1</td>
<td>grouping_factor)</td>
</tr>
<tr>
<td>(1 + slope</td>
<td>grouping_factor)</td>
</tr>
<tr>
<td>(0 + slope</td>
<td>grouping_factor)</td>
</tr>
<tr>
<td>(1</td>
<td>grouping_factor1 : grouping_factor2)</td>
</tr>
<tr>
<td>(1</td>
<td>grouping_factor1 / grouping_factor2)</td>
</tr>
</tbody>
</table>

[^1]: The BMSC function dose not allow the use of the interaction symbol "::", but this problem is easily solved by creating a new variable within your dataframe given by the interaction of the two factors.

[^2]: The (1 | grouping_factor1 / grouping_factor2) syntax is the equivalent of the explicit version (1 \ grouping_factor1:grouping_factor2) + (1 | grouping_factor1).

Therefore, you need to create a new grouping factor representing the interaction between grouping_factor1 and grouping_factor2, and use this in the explicit version (1 | grouping_factor_interaction) + (1 | grouping_factor1).

Summary

summarizing Bayesian Multilevel Single Case objects

Description

summary method for class "BMSC".
## S3 method for class 'BMSC'

`summary(object, ...)`

### Arguments

- **object**: An object of class BMSC, resulting from the BMSC function.
- **...**: other arguments are ignored.

### Value

a summary.BMSC object
Index

* datasets
  data.ctrl, 5
  data.pt, 6
 BMSC, 2, 5, 9, 13, 17
 bmscstan, 4
 data.ctrl, 5
 data.pt, 6
 pairwise.BMSC, 6, 11, 15
 plot.BMSC, 8
 plot.pairwise.BMSC, 10
 pp_check.BMSC, 13
 print.pairwise.BMSC, 15
 print.summary.BMSC, 15
 randomeffect (randomeffects), 16
 randomeffects, 16
 summary.BMSC, 15, 16