Package ‘bmgarch’

September 17, 2020

Title Bayesiam Multivariate GARCH Models

Version 1.0.0

Description Fit Bayesian multivariate GARCH models using 'Stan' for full Bayesian inference. Generate (weighted) forecasts for means, variances (volatility) and correlations. Currently DCC(P,Q), CCC(P,Q), pdBEKK(P,Q), and BEKK(P,Q) parameterizations are implemented, based either on a multivariate gaussian normal or student-t distribution. DCC and CCC models are based on Engle (2002) <doi:10.1198/073500102288618487> and Bollerslev (1990) <doi:10.2307/2109358>. The BEKK parameterization follows Engle and Kroner (1995) <doi:10.1017/S0266466600009063> while the pdBEKK as well as the estimation approach for this package is described in Rast et al. (2020) <doi:10.31234/osf.io/j57pk>. The fitted models contain 'rstan' objects and can be examined with 'rstan' functions.

License GPL (>= 3)

Depends methods, R (>= 3.5.0), Rcpp (>= 1.0.1)

Imports rstan (>= 2.21.2), rstantools (>= 1.5.1), ggplot2, MASS, forecast, loo, Rdpack

LinkingTo BH (>= 1.69.0-1), Rcpp (>= 1.0.1), RcppEigen (>= 0.3.3.5.0), rstan (>= 2.18.2), StanHeaders (>= 2.18.1)

RdMacros Rdpack

Encoding UTF-8

LazyData true

NeedsCompilation yes

SystemRequirements GNU make

RoxygenNote 7.1.1

Suggests testthat (>= 2.1.0)

BugReports https://github.com/ph-rast/bmgarch/issues

Author Philippe Rast [aut, cre] (<https://orcid.org/0000-0003-3630-6629>), Stephen Martin [aut] (<https://orcid.org/0000-0001-8085-2390>)

Maintainer Philippe Rast <rast.ph@gmail.com>

Repository CRAN

Date/Publication 2020-09-17 13:00:03 UTC
The *bmgarch* package.

The *bmgarch* package fits Bayesian multivariate GARCH models specified via stan, a C++ package providing HMC methods for full Bayesian inference (cf. [http://mc-stan.org]). The currently implemented parameterizations are DCC(Q,P), CCC(Q,P), and BEKK(Q,P) with arbitrary lags defined in Q and P. The package provides summaries and plots for the estimates as well as forecasted series with corresponding plots. The fitted objects are rstan class objects that can be inspected and manipulated accordingly.

Author(s)

Philippe Rast

References

as.data.frame.fitted.bmgarch

as.data.frame method for fitted.bmgarch objects.

Description

as.data.frame method for fitted.bmgarch objects.

Usage

```r
## S3 method for class 'fitted.bmgarch'
as.data.frame(x, ...)
```

Arguments

- `x`: fitted.bmgarch object.
- `...`: Not used.

Value

Data frame.

Author(s)

Stephen R. Martin

as.data.frame.forecast.bmgarch

as.data.frame method for forecast.bmgarch objects.

Description

as.data.frame method for forecast.bmgarch objects.

Usage

```r
## S3 method for class 'forecast.bmgarch'
as.data.frame(x, ..., backcast = TRUE)
```

Arguments

- `x`: forecast.bmgarch object.
- `...`: Not used.
- `backcast`: Logical (Default: True). Whether to include "backcasted" values from `fitted.bmgarch` in data frame.
Value

Data frame.

Author(s)

Stephen R. Martin

bmgarch

Estimate Bayesian Multivariate GARCH

Description

Draw samples from a specified multivariate GARCH model using 'Stan', given multivariate time-series. Currently supports CCC, DCC, BEKK, and pdBEKK model parameterizations.

Usage

```r
bmgarch(
  data,
  xC = NULL,
  parameterization = "CCC",
  P = 1,
  Q = 1,
  iterations = 2000,
  chains = 4,
  standardize_data = FALSE,
  distribution = "Student_t",
  meanstructure = "constant",
  ...
)
```

Arguments

- **data** Time-series or matrix object. A time-series or matrix object containing observations at the same interval.
- **xC** Numeric vector or matrix. Covariates(s) for the constant variance terms in C, or c, used in a log-linear model on the constant variance terms (Rast et al. 2020). If vector, then it acts as a covariate for all constant variance terms. If matrix, must have columns equal to number of time series, and each column acts as a covariate for the respective time series (e.g., column 1 predicts constant variance for time series 1).
- **parameterization** Character (Default: "CCC"). The type of of parameterization. Must be one of "CCC", "DCC", "BEKK", or "pdBEKK".
- **P** Integer. Dimension of GARCH component in MGARCH(P,Q).
- **Q** Integer. Dimension of ARCH component in MGARCH(P,Q).
Details

Four types of parameterizations are implemented. The constant conditional correlation (CCC) and the dynamic conditional correlation (DCC; Engle2002, Engle2001a), as well as BEKK (Engle and Kroner 1995) and a BEKK model with positivity constraints on the diagonals of the ARCH and GARCH parameters "pdBEKK" (Rast et al. 2020).

The fitted models are 'rstan' objects and all posterior parameter estimates can be obtained and can be examined with either the 'rstan' toolbox, plotted and printed using generic functions or passed to 'bmgarch' functions to 'forecast' or compute 'model_weights' or compute fit statistics based on leave-future-out cross-validation.

Value

bmgarch object.

Author(s)

Philippe Rast, Stephen R. Martin

References

Examples

data(panas)
Fit BEKK(1,1) mgarch model with a ARMA(1,1) meanstructure,
and student-t residual distribution
fit <- bmgarch(panas, parameterization = "BEKK",
 P = 1, Q = 1,
 meanstructure = "arma",
 ...)
distribution = "Student_t")

Summarize the parameters
summary(fit)

Forecast 5 ahead
fit.fc <- forecast(fit, ahead = 5)
print(fit.fc)

Plot mean forecasts
plot(fit.fc, type = "mean")

Plot variance forecasts
plot(fit.fc, type = "var")

Plot correlation forecasts
plot(fit.fc, type = "cor")

Plot modeled data ("backcasted values").
plot(fit, type = "mean")

Save "backcasted" values
fit.bc <- fitted(fit)

Save estimated and forecasted data as a data.frame
df.fc <- as.data.frame(fit.fc)

Access rstan's model fit object
mf <- fit$model_fit

Return diagnostics and a plot of the first 10 parameters
rstan::check_hmc_diagnostics(mf)
rstan::plot(mf)

bmgarch_list

Collect bmgarch objects into list.

Description

Collect bmgarch objects into list.

Usage

bmgarch_list(...)

Arguments

... bmgarch objects.
Value
List of bmgarch objects. Class: bmgarch_list and bmgarch.

fitted.bmgarch
Fitted (backcasting) method for bmgarch objects.

Description
Extracts the model-predicted means, variances, and correlations for the fitted data.

Usage
```r
## S3 method for class 'bmgarch'
fitted(
  object,
  CrI = c(0.025, 0.975),
  digits = 2,
  weights = NULL,
  inc_samples = FALSE,
  ...
)
```

Arguments
- **object**: bmgarch object.
- **CrI**: Numeric vector (Default: c(0.025, 0.975)). Lower and upper bound of predictive credible interval.
- **digits**: Integer (Default: 2, optional). Number of digits to round to when printing.
- **weights**: Takes weights from model_weight function. Defaults to 1 – this parameter is not typically set by user.
- **inc_samples**: Logical (Default: FALSE). Whether to return the MCMC samples for the fitted values.
- **...**: Not used.

Details
Whereas `forecast.bmgarch` computes the forecasted values for future time periods, `fitted.bmgarch` computes the backcasted (model-predicted) values for the observed time periods.

Value
fitted.bmgarch object. List containing metadata and the backcast. Backcast is a list containing three elements:

- **mean**: [N,7,TS] array of mean backcasts, where N is the timeseries length, and TS is the number of time series. E.g., bc$backcast$mean[3,"tsA"] is the mean backcast for the third observation in time series "tsA".
forecast.bmgarch

Forecast method for bmgarch objects.

Description

Estimates (weighted) forecasted means, variances, and correlations from a fitted bmgarch model.

Usage

```r
## S3 method for class 'bmgarch'
forecast(
  object,
  ahead = 1,
  xC = NULL,
  newdata = NULL,
  CrI = c(0.025, 0.975),
  seed = NA,
  digits = 2,
)```

**Examples**

```r
data(panas)
Fit CCC(1,1) and constant meanstructure.
fit <- bmgarch(panas, parameterization = "CCC", meanstructure = "constant")

Obtain fitted values
fit.bc <- fitted(fit)

Print fitted values
print(fit.bc)

Plot fitted values (plot.bmgarch calls fitted internally)
plot(fit, type = "var")

Save fitted values as data frame
fit.bc.df <- as.data.frame(fit.bc)
```
weights = NULL,
L = NA,
method = "stacking",
inc_samples = FALSE,
...)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>object</td>
<td>bmgarch object.</td>
</tr>
<tr>
<td>ahead</td>
<td>Integer (Default: 1). Periods to be forecasted ahead.</td>
</tr>
<tr>
<td>xC</td>
<td>Numeric vector or matrix. Covariates(s) for the constant variance terms in C, or c. Used in a log-linear model on the constant variance terms. If vector, then it acts as a covariate for all constant variance terms. If matrix, must have columns equal to number of time series, and each column acts as a covariate for the respective time series (e.g., column 1 predicts constant variance for time series 1).</td>
</tr>
<tr>
<td>newdata</td>
<td>Future datapoints for LFO-CV computation</td>
</tr>
<tr>
<td>CrI</td>
<td>Numeric vector (Default: c(.025, .975)). Lower and upper bound of predictive credible interval.</td>
</tr>
<tr>
<td>seed</td>
<td>Integer (Optional). Specify seed for sampling.</td>
</tr>
<tr>
<td>digits</td>
<td>Integer (Default: 2, optional). Number of digits to round to when printing.</td>
</tr>
<tr>
<td>weights</td>
<td>Takes weights from model_weight function. Defaults to 1 – this parameter is not typically set by user.</td>
</tr>
<tr>
<td>L</td>
<td>Minimal length of time series before engaging in lfocv</td>
</tr>
<tr>
<td>method</td>
<td>Ensemble methods, 'stacking' (default) or 'pseudobma'</td>
</tr>
<tr>
<td>inc_samples</td>
<td>Logical (Default: FALSE). Whether to return the MCMC samples for the fitted values.</td>
</tr>
<tr>
<td>...</td>
<td>Not used</td>
</tr>
</tbody>
</table>

Value

forecast.bmgarch object. List containing forecast, backcast, and metadata. See fitted.bmgarch for information on backcast. forecast is a list of four components:

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>mean</td>
<td>[N, 7, TS] array of mean forecasts, where N is the timeseries length, and TS is the number of time series. E.g., fc$forecast$mean[3,,&quot;tsA&quot;] is the 3-ahead mean forecast for time series &quot;tsA&quot;.</td>
</tr>
<tr>
<td>var</td>
<td>[N, 7, TS] array of variance forecasts, where N is the timeseries length, and TS is the number of time series. E.g., fc$forecast$var[3,,&quot;tsA&quot;] is the 3-ahead variance forecast for time series &quot;tsA&quot;.</td>
</tr>
<tr>
<td>cor</td>
<td>[N, 7, TS(TS -1)/2] array of correlation forecasts, where N is the timeseries length, and TS(TS -1)/2 is the number of correlations. E.g., fc$forecast$cor[3,,&quot;tsB_tsA&quot;] is the 3-ahead forecast for the correlation between &quot;tsB&quot; and &quot;tsA&quot;. Lower triangular correlations are saved.</td>
</tr>
<tr>
<td>meta</td>
<td>Meta-data specific to the forecast. i.e., TS_length (number ahead) and xC.</td>
</tr>
<tr>
<td>samples</td>
<td>List. If inc_samples is TRUE, then a list of arrays of MCMC samples for means, vars, and cors. Each array is [Iteration, Period, ..., ...].</td>
</tr>
</tbody>
</table>
Examples

data(panas)
# Fit DCC(2,2) with constant mean structure.
fit <- bmgarch(panas, parameterization = "DCC", P = 2, Q = 2, meanstructure = "constant")

# Forecast 8 ahead
fit.fc <- forecast(fit, ahead = 8)

# Print forecasts
fit.fc
print(fit.fc)

# Plot variance forecasts
plot(fit.fc, type = "var")

# Plot correlation forecasts
plot(fit.fc, type = "cor")

# Save backcasted and forecasted values as data frame.
fit.fc.df <- as.data.frame(fit.fc)

# Save only forecasted values as data frame.
fit.fc.df <- as.data.frame(fit.fc, backcast = FALSE)

# Add another model, compute model weights and perform a model weighted forecast

# Fit a DCC(1,1) model
fit1 <- bmgarch(panas, parameterization = "DCC", P = 1, Q = 1, meanstructure = "constant")

# Compute model stacking weights based on the last 19 time points (with L = 80)
blist <- bmgarch_list( fit1, fit )
mw <- model_weights(blist, L = 80)

# Weighted forecasts:
w.fc <- forecast(object = blist, ahead = 8, weights = mw)

---

**loo.bmgarch**  
*Leave-Future-Out Cross Validation (LFO-CV)*

**Description**

`loo` returns the LFO-CV ELPD by either computing the exact ELDP or by approximating it via forward or backward approximation strategies based on Pareto smoothed importance sampling described in (Bürkner et al. 2020).

**Usage**

```r
S3 method for class 'bmgarch'
loo(x, ..., type = "lfo", L = NULL, mode = "backward")
```
### Arguments

- **x**: Fitted bmgarch model. lfo cv inherits all attributes from the bmgarch object
- **...**: Not used
- **type**: Takes lfo (default) or loo. LFO-CV is recommended for time-series but LOO-CV may be obtained to assess the structural part of the model.
- **L**: Minimal length of times series before computing LFO
- **mode**: backward elpd_lfo approximation, or exact elpd-lfo; Takes 'backward', and 'exact'. 'exact' fits N-L models and may take a very long time to complete. forward works too but is not complete yet.

### Value

Approximate LFO-CV value and log-likelihood values across (L+1):N timepoints

### References


### Examples

```r
data(stocks)
Fit a DCC model
fit <- bmgarch(data = stocks[1:100, c("toyota", "nissan")],
 parameterization = "DCC", standardize_data = TRUE,
 iterations = 500)

Compute expected log-predictive density (elpd) using the backward mode
L is the upper boundary of the time-series before we engage in LFO-CV
lfob <- loo(fit, mode = 'backward', L = 50)
print(lfob)
```

### Description

Compute model weights for a list of candidate models based on leave-future-out cross validation (lfo cv) expected log-predictive density (elpd). elpd can be approximated via the 'backward' mode described in Bürkner et al. (2020) or via exact cross-validation. The obtained weights can be passed to the forecast function to obtain weighted forecasts. bmgarch_objects takes a bmgarch_object lists.
Usage

\[
\text{model_weights}( \\
  \text{bmgarch_objects} = \text{NULL}, \\
  \text{L} = \text{NULL}, \\
  \text{method} = \text{"stacking"}, \\
  \text{mode} = \text{"backward"} \\
) 
\]

Arguments

- **bmgarch_objects**: list of bmgarch model objects in bmgarch_object
- **L**: Minimal length of time series before engaging in lfo cv
- **method**: Ensemble methods, 'stacking' (default) or 'pseudobma'
- **mode**: Either 'backward' (default) or 'exact'

Details

'model_weights()' is a wrapper around the leave-future-out 'lfo' type in 'loo.bmgarch()'. The weights can be either obtained from an approximate or exact leave-future-out cross-validation to compute expected log predictive density (ELPD).

We can either obtain stacking weights or pseudo-BMA+ weights as described in (Yao et al. 2018).

Value

Model weights

References


Examples

data(stocks)
# Fit at least two models on a subset of the stocks data
# to compute model weights
fit <- bmgarch(data = stocks[1:100, c("toyota", "nissan")],
  parameterization = "DCC", standardize_data = TRUE,
  iterations = 500)

fit2 <- bmgarch(data = stocks[1:100, c("toyota", "nissan")],
  P = 2, Q = 2,
  parameterization = "DCC", standardize_data = TRUE,
iterations = 500)
# create a bmgarch_list object
blist <- bmgarch_list(fit, fit2 )

# Compute model weights with the default stacking method
# L is the upper boundary of the time-series before we engage in LFO-CV
mw <- model_weights( blist, L = 50, method = 'stacking', order = 'backwards' )

# Print model weights in the order of the bmgarch_list()
print(mw)

---

**panas**

Positive and Negative Affect Scores.

**Description**

A dataset containing simulated values for Positive and Negative Affect scores across 200 measurement occasions for a single individual.

**Usage**

panas

**Format**

Data frame with 200 rows and 2 variables:

- **Pos**: Positive Affect score
- **Neg**: Negative Affect score

---

**plot.bmgarch**

Plot method for bmgarch objects.

**Description**

Plot method for bmgarch objects.

**Usage**

```r
S3 method for class 'bmgarch'
plot(x, type = "mean", askNewPage = TRUE, CrI = c(0.025, 0.975), ...)
```
**Arguments**

- **x**: bmgarch object.
- **type**: String (Default: "mean"). Whether to plot conditional means ("mean"), variance ("var"), or correlations ("cor").
- **askNewPage**: Logical (Default: True). Whether to ask for new plotting page.
- **CrI**: CrI Numeric vector (Default: c(.025,.975)). Lower and upper bound of predictive credible interval.
- **...**: Not used

**Value**

List of ggplot objects (one per time series).

**Author(s)**

Stephen R. Martin

---

**plot.forecast.bmgarch**  
*Plot method for forecast.bmgarch objects.*

**Description**

Plot method for forecast.bmgarch objects.

**Usage**

```r
S3 method for class 'forecast.bmgarch'
plot(x, type = "mean", askNewPage = TRUE, last_t = 100, ...)
```

**Arguments**

- **x**: forecast.bmgarch object. See `forecast.bmgarch`.
- **type**: String (Default: "mean"). Whether to plot conditional means ("mean"), variance ("var"), or correlations ("cor").
- **askNewPage**: Logical (Default: True). Whether to ask for new plotting page.
- **last_t**: Integer (Default: 100). Only show last_t observations in plot.
- **...**: Not used

**Value**

List of ggplot objects (one per time series).

**Author(s)**

Stephen R. Martin
**print.fitted.bmgarch**  
*Print method for fitted.bmgarch objects.*

**Description**  
Print method for fitted.bmgarch objects.

**Usage**  

```r  
S3 method for class 'fitted.bmgarch'
print(x, ...)
```

**Arguments**

- `x`  
  fitted.bmgarch object.

- `...`  
  Not used.

**Value**

object (invisible).

**Author(s)**

Stephen R. Martin

---

**print.forecast.bmgarch**  
*Print method for forecast.bmgarch objects.*

**Description**  
Print method for forecast.bmgarch objects.

**Usage**  

```r  
S3 method for class 'forecast.bmgarch'
print(x, ...)
```

**Arguments**

- `x`  
  forecast.bmgarch object. See `forecast.bmgarch`

- `...`  
  Not used.

**Value**

x (invisible).
print.model_weights

Author(s)
Stephen R. Martin

print.loo.bmgarch  

Description
print method for Ifocv

Usage
## S3 method for class 'loo.bmgarch'
print(x, ...)

Arguments
x  Ifocv object
...

Value
Invisible Ifocv object

Author(s)
philippe

print.model_weights

Description
Print method for model_weights

Usage
## S3 method for class 'model_weights'
print(x, ...)

Arguments
x  Model weights object
...

Not used.
Value

model_weights objects with weights, list of log-likelihoods, and r_eff_list

Author(s)

philippe

---

print.summary.bmgarch  Print method for bmgarch.summary objects.

Description

Print method for bmgarch.summary objects.

Usage

```r
S3 method for class 'summary.bmgarch'
print(x, ...)
```

Arguments

- `x`  summary.bmgarch object.
- `...` Not used.

Value

x (invisible).

Author(s)

Stephen R. Martin

---

stocks  Daily data on returns of Toyota, Nissan, and Honda stocks.

Description

A dataset used by Stata to illustrate MGARCH models containing daily data on returns of Toyota, Nissan, and Honda stocks.

Usage

stocks
Format

Data frame with 2015 rows and 5 variables:

- **date** Date
- **t** Sequential time index
- **toyota** Daily returns for Toyota stock
- **nissan** Daily returns for Nissan stock
- **honda** Daily returns for Honda stock

**summary.bmgarch**

*Summary method for bmgarch objects.*

Description

Computes posterior summaries for all parameters of interest for bmgarch objects.

Usage

```r
S3 method for class 'bmgarch'
summary(object, CrI = c(0.025, 0.975), digits = 2, ...)
```

Arguments

- **object** bmgarch object.
- **CrI** Numeric vector (Default: c(0.025, 0.975)). Lower and upper bound of predictive credible interval.
- **digits** Integer (Default: 2, optional). Number of digits to round to when printing.
- **...** Not used.

Value

summary.bmgarch object. A named list containing "meta" and "model_summary". `model_summary` contains summary table for all model parameters.

Author(s)

Stephen R. Martin, Philippe Rast
Index

* datasets
  panas, 13
  stocks, 17

as.data.frame.fitted.bmgarch, 3
as.data.frame.forecast.bmgarch, 3

bmgarch, 4
bmgarch-package, 2
bmgarch_list, 6

fitted.bmgarch, 3, 7, 9
forecast(forecast.bmgarch), 8
forecast.bmgarch, 7, 8, 14, 15

loo(loo.bmgarch), 10
loo.bmgarch, 10

model_weights, 11

panas, 13
plot.bmgarch, 13
plot.forecast.bmgarch, 14
print.fitted.bmgarch, 15
print.forecast.bmgarch, 15
print.loo.bmgarch, 16
print.model_weights, 16
print.summary.bmgarch, 17

sampling, 9
stan, 5
stocks, 17
summary.bmgarch, 18