Package ‘MSRDT’

June 2, 2020

Type Package
Title Multi-State Reliability Demonstration Tests (MSRDT)
Version 0.1.0
Maintainer Suiyao Chen <csycsy12377@gmail.com>
Description This is a implementation of design methods for multi-state reliability demonstration tests (MSRDT) with failure count data, which is associated with the work from the published paper “Multi-state Reliability Demonstration Tests” by Suiyao Chen et al. (2017) <doi:10.1080/08982112.2017.1314493>. It implements two types of MSRDT, multiple periods (MP) and multiple failure modes (MFM). For MP, two different scenarios with criteria on cumulative periods (Cum) or separate periods (Sep) are implemented respectively. It also provides the implementation of conventional design method, namely binomial tests for failure count data.

Depends R (>= 3.3.0)
License GPL-3
Encoding UTF-8
LazyData true
RoxygenNote 7.1.0
Imports gtools, stats, reshape2, dplyr, utils
Suggests tidyverse, knitr, rmarkdown
URL https://github.com/ericchen12377/MSRDT
BugReports https://github.com/ericchen12377/MSRDT/issues
VignetteBuilder knitr
NeedsCompilation no
Author Suiyao Chen [aut, cre]
Repository CRAN
Date/Publication 2020-06-02 10:00:02 UTC
Description

Define the consumer’s risk function which gets the probability of passing the test when the lower level reliability requirement is not satisfied (for binomial RDT).

Usage

\[b\text{consumerrisk}(n, c, \pi, R) \]

Arguments

- \(n \): RDT sample size.
- \(c \): Maximum allowable failures.
- \(\pi \): Failure probability.
- \(R \): Lower level reliability requirement.

Value

Probability of consumer’s risk
bcore

See Also

- `bcore` for getting the core probability of passing the test; `boptimal_n` for getting the optimal test sample size; `bIndicator` for getting the binary indicator;
- Other Binomial RDT functions: `bIndicator()`, `bcore()`, `boptimal_n()`

Examples

```r
pi <- pi_MCSim_beta(M = 1000, seed = 10, a = 1, b = 1)
bconsumerrisk(n = 10, c = 2, pi = pi, R = 0.8);
```

Description

Define the summed core function inside of the integration which gets the probability of passing the test given specific failure probabilities (for binomial RDT).

Usage

```r
bcore(n, c, pi)
```

Arguments

- `n` RDT sample size.
- `c` Maximum allowable failures.
- `pi` Failure probability.

Value

Core probability of passing the test given specific failure probabilities.

See Also

- `boptimal_n` for getting the optimal test sample size; `bconsumerrisk` for getting the consumer's risk; `bIndicator` for getting the binary indicator;
- Other Binomial RDT functions: `bIndicator()`, `bconsumerrisk()`, `boptimal_n()`

Examples

```r
bcore(n = 10, c = 2, pi = 0.2)
```
bIndicator
Binary Indicator for Binomial RDT

Description

Define the binary indicator function to check whether the failure probability satisfies the lower level reliability requirement (for binomial RDT).

Usage

bIndicator(pi, R)

Arguments

- **pi**
 Failure probability.
- **R**
 Lower Level reliability requirement.

Value

0 – No; 1 – Yes.

See Also

bcore for getting the core probability of passing the test; boptimal_n for getting the optimal test sample size; bconsumerrisk for getting the consumer's risk;

Other Binomial RDT functions: bconsumerrisk(), bcore(), boptimal_n()

Examples

bIndicator(pi = 0.05, R = 0.9)
bIndicator(pi = 0.2, R = 0.9)

boptimal_n
Optimal Test Sample Size for Binomial RDT

Description

Define the optimal function to find the optimal test plan with minimum test sample size given an acceptable level of consumer's risk (for binomial RDT).

Usage

boptimal_n(c, pi, R, thres_CR)
MFM_consumerrisk

Arguments
- **c**: Maximum allowable failures
- **pi**: Failure probability
- **R**: Lower level reliability requirement
- **thres_CR**: Threshold (acceptable level) of consumer’s risk

Value
Minimum test sample size

See Also
- `bcore` for getting the core probability of passing the test; `bconsumerrisk` for getting the consumer’s risk; `bIndicator` for getting the binary indicator;
- Other Binomial RDT functions: `bIndicator()`, `bconsumerrisk()`, `bcore()`

Examples
```r
pi <- pi_MCSim_beta(M = 5000, seed = 10, a = 1, b = 1)
boptimal_n(c = 2, pi = pi, R = 0.8, thres_CR = 0.05)
```

Description
Define the consumer risk function which gets the probability of passing the test when the lower level reliability requirements are not satisfied under different failure modes (for Multi-state RDT, Multiple Failure Modes).

Usage
`MFM_consumerrisk(n, cvec, pivec, Rvec)`

Arguments
- **n**: RDT sample size
- **cvec**: Maximum allowable failures for each separate period
- **pivec**: Failure probability for each separate period
- **Rvec**: Lower level reliability requirements for each cumulative period from the beginning of the test.
Value

Probability for consumer’s risk

See Also

MFM_core for getting the core probability of passing the test; MFM_Indicator for getting the binary indicator; MFM_optimal_n for getting the optimal test sample size;

Other MSRDT for MFM functions: MFM_Indicator(), MFM_core(), MFM_optimal_n()

Examples

```r
pi1 <- pi_MCSim_beta(M = 1000, seed = 10, a = 1, b = 1)
pi2 <- pi_MCSim_beta(M = 1000, seed = 10, a = 2, b = 18)
MFM_consumerrisk(n = 10, cvec = c(1, 1), pivec = cbind(pi1, pi2), Rvec = c(0.8, 0.7))
```

MFM_core

Probability Core for Multi-state RDT with Multiple Failure Modes (MFM)

Description

Define the summed core function inside of the integration which gets the probability of passing the test given specific failure probabilities under different failure modes (for Multi-state RDT, Multiple Failure Modes).

Usage

MFM_core(n, cvec, pivec)

Arguments

- `n`: RDT sample size
- `cvec`: Maximum allowable failures for each separate period
- `pivec`: Failure probability for each separate period

Value

Core probability of passing the test given specific failure probabilities

See Also

MFM_consumerrisk for getting the consumer’s risk; MFM_Indicator for getting the binary indicator; MFM_optimal_n for getting the optimal test sample size;

Other MSRDT for MFM functions: MFM_Indicator(), MFM_consumerrisk(), MFM_optimal_n()
Examples

#' #Example for two failure modes
pi1 <- pi_MCSim_beta(M = 1000, seed = 10, a = 1, b = 1)
pi2 <- pi_MCSim_beta(M = 1000, seed = 10, a = 2, b = 18)
MFM_core(n = 10, cvec = c(1, 1), pivec = c(pi1[1], pi2[1]));
#The function also works for more than two failure modes.
#However, the computation cost may increase.
#Example for three failure modes
MFM_core(n = 10, cvec = c(1, 1, 1), pivec = c(0.8, 0.9, 0.8));
MFM_optimal_n

Optimal Test Sample Size for Multi-state RDT with Multiple Failure Modes (MFM)

Description

Define the optimal function to find the optimal test plan with minimum test sample size given an acceptable level of consumer’s risk (for Multi-state RDT, Multiple Failure Modes).

Usage

\[
\text{MFM_optimal_n}(cvec, pivec, Rvec, thres_CR)
\]

Arguments

- **cvec**
 - Maximum allowable failures for each separate period
- **pivec**
 - Failure probability for each separate period
- **Rvec**
 - Lower level reliability requirements for each cumulative period from the beginning of the test.
- **thres_CR**
 - Threshold (acceptable level) of consumer’s risk

Value

Minimum test sample size

See Also

- [MFM_core](#) for getting the core probability of passing the test;
- [MFM_consumerrisk](#) for getting the consumer's risk;
- [MFM_Indicator](#) for getting the binary indicator;

Examples

\[
\begin{align*}
\text{pi1} & \leftarrow \text{pi_MCSim_beta}(M = 5000, \text{seed} = 10, a = 1, b = 1) \\
\text{pi2} & \leftarrow \text{pi_MCSim_beta}(M = 5000, \text{seed} = 10, a = 2, b = 18) \\
\text{MFM_optimal_n}(\text{cvec = c}(1, 1), \text{pivec = cbind(pi1, pi2)}, \text{Rvec = c}(0.8, 0.7), \text{thres_CR = 0.05})
\end{align*}
\]
Description

Define the consumer risk function which gets the probability of passing the test when the lower level reliability requirements are not satisfied for any cumulative periods. The maximum allowable failures for each cumulative period need to be satisfied to pass the test (for Multi-state RDT, Multiple Periods, Scenario I).

Usage

\[\text{MPCum_consumerrisk}(n, \text{cvec}, \text{pivec}, \text{Rvec}) \]

Arguments

- \(n \): RDT sample size
- \(\text{cvec} \): Maximum allowable failures for each separate period
- \(\text{pivec} \): Failure probability for each separate period
- \(\text{Rvec} \): Lower level reliability requirements for each cumulative period from the beginning of the test.

Value

Probability for consumer's risk

Examples

\[\text{pi} \leftarrow \text{pi_MCSim_dirichlet}(M = 1000, \text{seed} = 10, \text{par} = c(1, 1, 1)) \]
\[\text{MPCum_consumerrisk}(n = 10, \text{cvec} = c(1, 1), \text{pivec} = \text{pi}, \text{Rvec} = c(0.8, 0.7)) \]

Description

Define the summed core function inside of the integration which gets the probability of passing the test given specific failure probabilities. The maximum allowable failures for each cumulative period need to be satisfied to pass the test (for Multi-state RDT, Multiple Periods, Scenario I).

Usage

\[\text{MPCum_core}(n, \text{cvec}, \text{pivec}) \]
Arguments

- **n**: RDT sample size
- **cvec**: Maximum allowable failures for each separate period
- **pivec**: Failure probability for each separate period

Value

Core probability of passing the test given specific failure probabilities

Examples

Example for two periods
```R
pi <- pi_MCSim_dirichlet(M = 1000, seed = 10, par = c(1, 1, 1))
MPCum_core(n = 10, cvec = c(1, 1), pivec = pi[1,]);
```

Example for three periods
```R
pi <- pi_MCSim_dirichlet(M = 1000, seed = 10, par = c(1, 1, 1, 1))
MPCum_core(n = 10, cvec = c(1, 1, 1), pivec = pi[1,]);
```

Description

Define the optimal function to find the optimal test plan with minimum test sample size given an acceptable level of consumer's risk. The maximum allowable failures for each cumulative period need to be satisfied to pass the test (for Multi-state RDT, Multiple Periods, Scenario I)

Usage

```R
MPCum_optimal_n(cvec, pivec, Rvec, thres_CR)
```

Arguments

- **cvec**: Maximum allowable failures for each separate period
- **pivec**: Failure probability for each separate period
- **Rvec**: Lower level reliability requirements for each cumulative period from the beginning of the test.
- **thres_CR**: Threshold (acceptable level) of consumer's risk

Value

Minimum test sample size
Examples

```r
pi <- pi_MCSim_dirichlet(M = 5000, seed = 10, par = c(1, 1, 1))
MPCum_optimal_n(cvec = c(1,1), pivec = pi, Rvec = c(0.8, 0.7), thres_CR = 0.05)
```

MPSep_consumerrisk
Consumer's Risk for Multi-state RDT with Multiple Periods and Criteria for Separate Periods

Description

Define the consumer risk function which gets the probability of passing the test when the lower level reliability requirements are not satisfied for any cumulative periods. The maximum allowable failures for each separate period need to be satisfied to pass the test (for Multi-state RDT, Multiple Periods, Scenario I)

Usage

```r
MPSep_consumerrisk(n, cvec, pivec, Rvec)
```

Arguments

- `n`: RDT sample size
- `cvec`: Maximum allowable failures for each separate period
- `pivec`: Failure probability for each separate period
- `Rvec`: Lower level reliability requirements for each cumulative period from the beginning of the test.

Value

Probability for consumer's risk

Examples

```r
pi <- pi_MCSim_dirichlet(M = 1000, seed = 10, par = c(1, 1, 1))
MPSep_consumerrisk(n = 10, cvec = c(1, 1), pi = pi, Rvec = c(0.8, 0.7))
```
MPSep_core

Probability Core for Multi-state RDT with Multiple Periods and Criteria for Separate Periods

Description

Define the summed core function inside of the integration which gets the probability of passing the test given specific failure probabilities. The maximum allowable failures for each separate period need to be satisfied to pass the test (for Multi-state RDT, Multiple Periods, Scenario II).

Usage

`MPSep_core(n, cvec, pivec)`

Arguments

- `n` : RDT sample size
- `cvec` : Maximum allowable failures for each separate period
- `pivec` : Failure probability for each separate period

Value

Core probability of passing the test given specific failure probabilities

Examples

```r
#Example for two periods
pi <- pi_MCSim_dirichlet(M = 1000, seed = 10, par = c(1, 1, 1))
MPSep_core(n = 10, cvec = c(1, 1), pivec = pi[1, ]); #The function also works for more than two periods, however, may increase the computation cost.
#Example for three periods
pi <- pi_MCSim_dirichlet(M = 1000, seed = 10, par = c(1, 1, 1, 1))
MPSep_core(n = 10, cvec = c(1, 1, 1), pivec = pi[1, ]); 
```

MPSep_optimal_n

Optimal Test Sample Size for Multi-state RDT with Multiple Periods and Criteria for Separate Periods

Description

Define the optimal function to find the optimal test plan with minimum test sample size given an acceptable level of consumer’s risk. The maximum allowable failures for each separate period need to be satisfied to pass the test (for Multi-state RDT, Multiple Periods, Scenario I)
MP_Indicator

Usage

\[\text{MPSep_optimal_n}(cvec, pivec, Rvec, \text{thres_CR}) \]

Arguments

- `cvec`: Maximum allowable failures for each separate period
- `pivec`: Failure probability for each separate period
- `Rvec`: Lower level reliability requirements for each cumulative period from the beginning of the test.
- `thres_CR`: Threshold (acceptable level) of consumer’s risk

Value

Minimum test sample size

Examples

```r
pi <- pi\_MCSim\_dirichlet(M = 5000, seed = 10, par = c(1, 1, 1))
\text{MPSep\_optimal\_n}(cvec = c(1, 1), pivec = pi, Rvec = c(0.8, 0.7), \text{thres\_CR} = 0.05)
```

MP_Indicator

Binary Indicator for Multi-state RDT with Multiple Periods

Description

Define the binary indicator function to check whether the failure probability satisfies the lower level reliability requirements for each cumulative period (for Multi-state RDT, Multiple Periods)

Usage

\[\text{MP_Indicator}(pivec, Rvec) \]

Arguments

- `pivec`: Failure probability for each separate period.
- `Rvec`: Lower level reliability requirements for each cumulative period from the beginning of the test.

Value

0 – No; 1 – Yes.

Examples

```r
\text{MP\_Indicator}(pivec = c(0.1, 0.2), Rvec = c(0.8, 0.6))
\text{MP\_Indicator}(pivec = c(0.1, 0.2, 0.1), Rvec = c(0.8, 0.6, 0.4))
\text{MP\_Indicator}(pivec = c(0.1, 0.3), Rvec = c(0.8, 0.7))
```
pi_MCSim_beta
Beta Prior Simulation for Binomial RDT

Description
Define the simulation function to generate failure probability with Beta prior distributions as conjugate prior to binomial distributions (for binomial RDT).

Usage
```r
pi_MCSim_beta(M, seed, a, b)
```

Arguments
- `M` Simulation sample size
- `seed` Random seed for random sample
- `a` Shape parameter 1 for beta distribution
- `b` Shape parameter 2 for beta distribution

Value
Vector of failure probability sample values

See Also
- `pi_MCSim_dirichlet`
Other Prior distribution generation functions: `pi_MCSim_dirichlet()`

Examples
```r
pi <- pi_MCSim_beta(M = 1000, seed = 10, a = 1, b = 1)
```

pi_MCSim_dirichlet
Dirichlet Prior Simulation for Multi-state RDT

Description
Define the simulation function to generate failure probability with Dirichlet prior distributions as conjugate prior to multinomial distributions (for multi-state RDT).

Usage
```r
pi_MCSim_dirichlet(M, seed, par)
```
Arguments

M Simulation sample size
seed Random seed for random sample
par Parameters for dirichlet distribution

Value

Vector of failure probability sample

See Also

pi_MCSim_beta

Other Prior distribution generation functions: pi_MCSim_beta()

Examples

pi <- pi_MCSim_dirichlet(M = 1000, seed = 10, par = c(1, 1, 1))
Index

bconsumerrisk, 2, 3–5
bcore, 3, 3, 4, 5
bIndicator, 3, 4, 5
boptimal_n, 3, 4, 4

MFM_consumerrisk, 5, 6–8
MFM_core, 6, 6, 7, 8
MFM_Indicator, 6, 7, 8
MFM_optimal_n, 6, 7, 8
MP_Indicator, 13
MPCum_consumerrisk, 9
MPCum_core, 9
MPCum_optimal_n, 10
MPSep_consumerrisk, 11
MPSep_core, 12
MPSep_optimal_n, 12

pi_MCSim_beta, 14, 15
pi_MCSim_dirichlet, 14, 14