Package ‘ENMTools’

May 7, 2021

Type Package
Title Analysis of Niche Evolution using Niche and Distribution Models
Version 1.0.4
Date 2021-05-07
Encoding UTF-8
Maintainer Dan Warren <dan.l.warren@gmail.com>

License GPL-2
LazyData TRUE
RoxygenNote 7.1.1

Imports rgeos, knitr, ggplot2, gridExtra, lhs, magrittr, ENMeval, sp, spatstat.geom, spatstat.core, spatstat (>= 2.0-0), ggrepur, rgdal, forcats
Depends raster, dismo
Suggests testthat, hypervolume, leaflet, mgcv, ecospat, randomForest, ranger, caret, CalibratR, ape, ResourceSelection, fields, reshape2, vip, pdp, fastshap, viridis, progress

NeedsCompilation no

Author Dan Warren [aut, cre] (<https://orcid.org/0000-0002-8747-2451>),
Nick Matzke [ctb],
Marcel Cardillo [ctb],
John Baumgartner [ctb],
Linda Beaumont [ctb],
Nicholas Huron [ctb],
Marianna Simoes [ctb],
R topics documented:

- add.env
- background.buffer
- background.points.buffer
- background.raster.buffer
- background.shape.buffer
- background.test
- calc.B1
- calc.B2
- check.bg
- check.clade
- check.env
- check.species
- clamp.env
- combine.species
- drop.species
- enmtools.aoc
- enmtools.bc
- enmtools.calibrate
- enmtools.clade
- enmtools.dm
- enmtools.ecospat.bg
- enmtools.ecospat.id
- enmtools.gam
- enmtools.glm
- enmtools.hypervolume
- enmtools.maxent
- enmtools.rf
- enmtools.rf.ranger
- enmtools.species
- enmtools.vip
- env.breadth
- env.evaluate
- env.overlap
- euro.worldclim
- geog.range.overlap
- hypervolume.overlap
- iberolacerta.clade
- identity.test
- install.extras
- interactive.plot
add.env

Takes an enmtools.species object and a set of environment layers, and adds the environmental predictor values to the occurrence data. Typically not called by the user directly. Code modified from Elith and Hijmans SDM with R tutorial.

Description

Takes an enmtools.species object and a set of environment layers, and adds the environmental predictor values to the occurrence data. Typically not called by the user directly. Code modified from Elith and Hijmans SDM with R tutorial.

Usage

add.env(species, env, verbose = TRUE)

Arguments

species An enmtools.species or enmtools.clade object
env A raster stack of environmental variables
verbose Controls printing of progress messages
Value

An enmtools.species object with environmental data attached to it.

background.buffer

Takes a set of points, a buffer radius, a buffer type, and a mask and returns either a raster, a polygon, or background points representing the species background. Code modified from Elith and Hijmans SDM with R tutorial

Description

Takes a set of points, a buffer radius, a buffer type, and a mask and returns either a raster, a polygon, or background points representing the species background. Code modified from Elith and Hijmans SDM with R tutorial

Usage

background.buffer(
 points,
 buffer.width,
 buffer.type = "circles",
 mask = NA,
 return.type = "raster",
 n = 1000
)

Arguments

points A two column data frame with X and Y coordinates
buffer.width Radius for circular buffers to draw around points, for buffer.type = circular. If buffer.type = "convhull", denotes the amount to which the initial polygon should be buffered. It's worth noting that this argument may in some cases be treated as map units (e.g., lat and long), but in other cases may be treated as meters. If you're getting weird behavior, you might try changing the units you're using to specify buffer.width.
buffer.type Which method to use for buffering species occurrence points. Currently accepts "circles" and "convhull".
mask A raster to use as a mask for trimming the buffer if the return type is "raster" or "points"
return.type What type of object to return. Can be "raster", "polygon", or "points".
n Sample size for number of background points to return, for return.type = "points".

Value

Either a raster, a polygon, or a data frame of points representing the species background.
background.points.buffer

Takes a set of points, a buffer radius, a sample size, and a mask and returns randomly sampled points from within that buffer radius. Code modified from Elith and Hijmans SDM with R tutorial

Description

NOTE: This function has been replaced by background.buffer.

Usage

background.points.buffer(points, radius, n, mask)

Arguments

points A two column data frame with X and Y coordinates
radius Radius for circular buffers to draw around points, in meters.
n Sample size for number of background points to return
mask A raster to use as a mask for drawing points

Value

A data frame of points drawn at random from circular buffers around the occurrence points.

background.raster.buffer

Takes a set of points, a buffer radius, and a mask and returns a raster based on that buffer radius. Code modified from Elith and Hijmans SDM with R tutorial

Description

NOTE: This function has been replaced by background.buffer.

Usage

background.raster.buffer(points, radius, mask)

Arguments

points A two column data frame with X and Y coordinates
radius Radius for circular buffers to draw around points, in meters.
mask A raster to use as a mask
Value

A raster object with values of 1 in every grid cell falling within the buffer.

Examples

data(iberolacerta.clade)
data(euro.worldclim)
background.raster.buffer(iberolacerta.clade$species$cyreni$presence.points, 100000, euro.worldclim)

background.shape.buffer

Takes a set of points and a buffer radius, and returns a polygon. Code modified from Elith and Hijmans SDM with R tutorial

Description

NOTE: This function has been replaced by background.buffer.

Usage

background.shape.buffer(points, radius)

Arguments

points A two column data frame with X and Y coordinates
radius Radius for circular buffers to draw around points, in meters.

Value

A polygon shapefile.

background.test Conduct a background test (also called a similarity test), as described in Warren et al. 2008. This test can either be run as an asymmetric test (species.1 vs background of species.2) or as a symmetric test (background of species.1 vs background of species.2). For GLM, BioClim, and Domain models the replicates will be constructed from the background points supplied for each species. For Maxent, the replicates will be constructed from the range rasters stored in the enmtools.species objects.
background.test

Description

background.test Conduct a background test (also called a similarity test), as described in Warren et al. 2008. This test can either be run as an asymmetric test (species.1 vs background of species.2) or as a symmetric test (background of species.1 vs background of species.2). For GLM, Bioclim, and Domain models the replicates will be constructed from the background points supplied for each species. For Maxent, the replicates will be constructed from the range rasters stored in the enmtools.species objects.

Usage

```r
background.test(
  species.1,
  species.2,
  env,
  type,
  f = NULL,
  nreps = 99,
  test.type = "asymmetric",
  nback = 1000,
  bg.source = "default",
  low.memory = FALSE,
  rep.dir = NA,
  verbose = FALSE,
  clamp = TRUE,
  ...
)
```

Arguments

- **species.1** An enmtools.species object from which presence points (asymmetric) or background (symmetric) will be sampled.
- **species.2** An enmtools.species object from which background will be sampled.
- **env** A RasterLayer or RasterStack object containing environmental data
- **type** The type of model to construct, currently accepts "glm", "mx", "be", "gam", or "dm"
- **f** A function to use for model fitting. Only required for GLM models at the moment.
- **nreps** Number of replicates to perform
- **test.type** Controls whether the background test will be "symmetric" or "asymmetric"
- **nback** Number of background points for models
- **bg.source** Source for drawing background points. If "points", it just uses the background points that are already in the species object. If "range", it uses the range raster. If "env", it draws points at random from the entire study area outlined by the first environmental layer.
When set to TRUE, replicate models are written to disc instead of being stored in the output object. Replicate models stored in the output object contain paths to the replicate models on disk instead of the rasters themselves.

Directory for storing replicate models when low.memory is set to TRUE. If not specified, the working directory will be used.

Controls printing of various messages progress reports. Defaults to FALSE.

Controls whether empirical and replicate models should be clamped to the environment space used for training.

Additional arguments to be passed to model fitting functions.

Value

results A list containing replicates, models for the empirical data, and summary statistics and plots.

Examples

data(iberolacerta.clade)
data(euro.worldclim)
cyreni <- iberolacerta.clade$species$cyreni
monticola <- iberolacerta.clade$species$monticola
cyreni$range <- background.raster.buffer(cyreni$presence.points, 100000, euro.worldclim)
monticola$range <- background.raster.buffer(monticola$presence.points, 100000, euro.worldclim)
background.test(cyreni, monticola, env = euro.worldclim, type = "glm",
f = pres ~ bio1 + bio12, nreps = 10)

calc.B1, Calculates standardized version of Levins (1968) B1 measure of niche breadth given a vector of suitabilities

description
calc.B1, Calculates standardized version of Levins (1968) B1 measure of niche breadth given a vector of suitabilities

Usage
calc.B1(x)

Arguments

x A numeric vector

Value

B1 A calculation of Levins (1968) B1 metric
Examples

calc.B2(c(1, .001, .001))

calc.B2, Calculates standardized version of Levins (1968) B2 measure of niche breadth given a vector of suitabilities

Description

calc.B2, Calculates standardized version of Levins (1968) B2 measure of niche breadth given a vector of suitabilities

Usage

calc.B2(x)

Arguments

x A numeric vector

Value

B2 A calculation of Levins (1968) B2 metric

Examples

calc.B2(c(1, .001, .001))

calc.B2(c(1, .001, .001))

check.bg Takes an emtools.species object and adds background points if they’re missing. Looks for range raster first, then goes for environmental layers.

Description

Takes an emtools.species object and adds background points if they’re missing. Looks for range raster first, then goes for environmental layers.

Usage

check.bg(
 species,
 env = NA,
 nback = 1000,
 bg.source = "default",
 verbose = FALSE,
 bias = NA
)

}
Arguments

- **species**: An enmtools.species object
- **env**: A raster or raster stack of environmental data.
- **nback**: Number of background points to generate, if any
- **bg.source**: Source for drawing background points. If "points", it just uses the background points that are already in the species object. If "range", it uses the range raster. If "env", it draws points at random from the entire study area outlined by the first environmental layer.
- **verbose**: Controls printing of various messages progress reports. Defaults to FALSE.
- **bias**: A raster representing estimated relative sampling bias. Used when bg.source is either "range" or "env".

Value

An enmtools.species object with background points.

check.clade

Checking for complians of an enmtools.clade object

Description

Checking for complians of an enmtools.clade object

Usage

```r
check.clade(this.clade)
```

Arguments

- **this.clade**: An enmtools.clade object

Value

An enmtools.clade object with appropriate formatting.

Examples

```r
data(iberolacerta.clade)
check.clade(iberolacerta.clade)
```
check.env

Automating some basic tasks for using a raster stack for modeling. Checks rasters for same extent and resolution, and sets values in each layer to NA if there is an NA in any other layer.

Description
Automating some basic tasks for using a raster stack for modeling. Checks rasters for same extent and resolution, and sets values in each layer to NA if there is an NA in any other layer.

Usage
check.env(env, verbose = FALSE)

Arguments
env A stack of environmental rasters
verbose Controls printing of progress messages

Value
A raster stack.

Examples
data(euro.worldclim)
check.env(euro.worldclim)

cHECK.species

Checking compliance for an object of class enmtools.species.

Description
Checking compliance for an object of class enmtools.species.

Usage
check.species(this.species)

Arguments
this.species An enmtools.species object to be checked.

Value
An enmtools.species object with appropriate formatting.
clamp.env

Takes an emtools.model object and a set of environment layers and clamps the environment layers so that no variable falls outside of the range available in the training data.

Description

Takes an emtools.model object and a set of environment layers and clamps the environment layers so that no variable falls outside of the range available in the training data.

Usage

clamp.env(model, env)

Arguments

model : An emtools.model object. Alternatively the analysis.df component of an emtools.model object.
env : A raster or raster stack of environmental data.

Value

An emtools model object containing species name, model formula (if any), model object, suitability raster, marginal response plots, and any evaluation objects that were created.

Examples

data(euro.worldclim)
data(iberolacerta.clade)
monticola.gam <- enmtools.gam(iberolacerta.clade$species$monticola, euro.worldclim[c(1,5,9,13)])
euro.clamped <- clamp.env(monticola.gam, euro.worldclim)
clamped.prediction <- predict(monticola.gam, euro.clamped)
raster::plot(clamped.prediction$suitability - monticola.gam$suitability)
combine.species

Takes a list of enmtools.species objects and combines them into a single enmtools.species object

Description

Takes a list of enmtools.species objects and combines them into a single enmtools.species object

Usage

```
combine.species(species.list)
```

Arguments

- `species.list` List of enmtools.species objects that you want to combine together

Value

An enmtools.species object with the occurrence data, names, and range rasters for the species list combined into one.

Examples

```
data(iberolacerta.clade)
combine.species(iberolacerta.clade$species)
```

drop.species

Takes a an ENMTools clade object and a vector of species names. Drops the species from the tree and removes data from the clade object.

Description

Takes a an ENMTools clade object and a vector of species names. Drops the species from the tree and removes data from the clade object.

Usage

```
drop.species(clade, species)
```

Arguments

- `clade` An ENMTools clade object
- `species` A name or vector of names of species within the enmtools.clade object.
Value

An enmtools.clade object with the provided species dropped both from the tree and from the set of enmtools.species objects.

Examples

```r
## Not run:
data(iberolacerta.clade)
if(requireNamespace("ape", quietly = TRUE)) {
  new.clade <- drop.species(iberolacerta.clade, c("cyreni", "monticola"))
}
## End(Not run)
```

enmtools.aoc

Takes an overlap matrix and a tree and runs permutation tests to determine the statistical significance of the relationship between overlap and time.

Description

Takes an overlap matrix and a tree and runs permutation tests to determine the statistical significance of the relationship between overlap and time.

Usage

```r
enmtools.aoc(
  clade,         # An enmtools.clade object containing species data and a phylogeny
  env = NULL,    # Environmental layers for use when overlap is calculated using niche models.
  overlap.source, # The source of the overlaps to calculate. Choices are "bc", "dm", "gam", "glm", "mx", "range", and "point"
  nreps = 100,   # A number of reps to do
  f = NULL,      # The model to be used for GLM and GAM comparisons
  overlap.matrix = NULL, # A matrix of overlaps to use, for option overlap.source = "matrix"
  metric = "D"  # The overlap metric to use. For ENM sources, this can be any combination of "D", "I", "cor", "env.D", "env.I", and "env.cor". For range and point overlap this argument is ignored.
)
```

Arguments

- **clade**: An enmtools.clade object containing species data and a phylogeny.
- **env**: Environmental layers for use when overlap is calculated using niche models.
- **overlap.source**: The source of the overlaps to calculate. Choices are "bc", "dm", "gam", "glm", "mx", "range", and "point".
- **nreps**: A number of reps to do.
- **f**: The model to be used for GLM and GAM comparisons.
- **overlap.matrix**: A matrix of overlaps to use, for option overlap.source = "matrix".
- **metric**: The overlap metric to use. For ENM sources, this can be any combination of "D", "I", "cor", "env.D", "env.I", and "env.cor". For range and point overlap this argument is ignored.
Value

A list containing a data frame of coefficients from the empirical regression of overlap on time along with the coefficients from all Monte Carlo replicates, along with plots and p values for the accompanying statistical tests.

Description

Takes an `emtools.species` object with presence and background points, and builds a Bioclim model

Usage

```r
enmtools.bc(
  species,
  env = NA,
  test.prop = 0,
  report = NULL,
  overwrite = FALSE,
  nback = 1000,
  env.nback = 10000,
  rts.reps = 0,
  bg.source = "default",
  verbose = FALSE,
  clamp = TRUE,
  corner = NA,
  bias = NA,
  ...
)
```

Arguments

- **species**
 - An `enmtools.species` object
- **env**
 - A raster or raster stack of environmental data.
- **test.prop**
 - Proportion of data to withhold randomly for model evaluation, or "block" for spatially structured evaluation.
- **report**
 - Optional name of an html file for generating reports
- **overwrite**
 - TRUE/FALSE whether to overwrite a report file if it already exists
- **nback**
 - Number of background points for models. In the case of bioclim models these are only used for evaluation.
- **env.nback**
 - Number of points to draw from environment space for environment space discrimination metrics.
- **rts.reps**
 - The number of replicates to do for a Raes and ter Steege-style test of significance
enmtools.calibrate

Takes an enmtools.model object, and reformats it to run through the CalibratR package, calculates Continuous Boyce Index, and runs a Hosmer-Lemeshow goodness-of-fit test. Can either do a full CalibratR run or just return ECE/MCE statistics and plots.

Description

Takes an enmtools.model object, and reformats it to run through the CalibratR package, calculates Continuous Boyce Index, and runs a Hosmer-Lemeshow goodness-of-fit test. Can either do a full CalibratR run or just return ECE/MCE statistics and plots.
Usage

```r
enmtools.calibrate(
  model,
  recalibrate = FALSE,
  cuts = 11,
  env = NA,
  n.background = 10000,
  ...
)
```

Arguments

- `model`: An enmtools.model object
- `recalibrate`: When TRUE, does a full CalibratR "calibrate" run to recalibrate the model. When FALSE, just returns metrics and plots measuring calibration of the model as is.
- `cuts`: The number of bins to split suitability scores into for calculating calibration.
- `env`: A set of environment layers to be used for optional env space metrics
- `n.background`: Number of background points to be used for env space metrics
- `...`: Further arguments to be passed to CalibratR's "calibrate" function.

Value

An enmtools.calibrate object containing calibration and classification plots, metrics of model calibration, and (optionally) versions of the model that were recalibrated using various methods.

Examples

```r
install.extras(repos='http://cran.us.r-project.org')
data(euro.worldclim)
data(iberolacerta.clade)
monticola.glm <- enmtools.glm(iberolacerta.clade$species$monticola,
  env = euro.worldclim,
  f = pres ~ bio1 + bio9,
  test.prop = 0.3)
enmtools.calibrate(monticola.glm)
```

Description

Defining a class for enmtools.clade. Each clade gets:
Usage

```r
enmtools.clade(species = NA, tree = NA)
```

Arguments

- **species**: A list of enmtools.species objects
- **tree**: A tree showing the relationships between the species

Value

An enmtools.clade object, either empty or containing a formatted version of the data that was passed into the function.

enmtools.dm
Takes an emtools.species object with presence and background points, and builds a Domain model

Description

Takes an emtools.species object with presence and background points, and builds a Domain model

Usage

```r
enmtools.dm(
  species,
  env = NA,
  test.prop = 0,
  report = NULL,
  nback = 1000,
  env.nback = 10000,
  overwrite = FALSE,
  rts.reps = 0,
  bg.source = "default",
  verbose = FALSE,
  clamp = TRUE,
  corner = NA,
  bias = NA,
  ...
)
```

Arguments

- **species**: An enmtools.species object
- **env**: A raster or raster stack of environmental data.
- **test.prop**: Proportion of data to withhold randomly for model evaluation, or "block" for spatially structured evaluation.
Optional name of an html file for generating reports

Number of background points for models. In the case of Domain, these are only used for evaluation.

Number of points to draw from environment space for environment space discrimination metrics.

TRUE/FALSE whether to overwrite a report file if it already exists

The number of replicates to do for a Raes and ter Steege-style test of significance

Source for drawing background points. If "points", it just uses the background points that are already in the species object. If "range", it uses the range raster. If "env", it draws points at random from the entire study area outlined by the first environmental layer.

Controls printing of various messages progress reports. Defaults to FALSE.

When set to TRUE, clamps the environmental layers so that predictions made outside the min/max of the training data for each predictor are set to the value for the min/max for that predictor. Prevents the model from extrapolating beyond the min/max bounds of the predictor space the model was trained in, although there could still be projections outside the multivariate training space if predictors are strongly correlated.

An integer from 1 to 4. Selects which corner to use for "block" test data. By default the corner is selected randomly.

An optional raster estimating relative sampling effort per grid cell. Will be used for drawing background data.

Arguments to be passed to domain()

An enmtools model object containing species name, model formula (if any), model object, suitability raster, marginal response plots, and any evaluation objects that were created.

```
data(euro.worldclim)
data(iberolacerta.clade)
enmtools.dm(iberolacerta.clade$species$monticola, env = euro.worldclim)
```

enmtools.ecospat.bg, Runs an ecospat background/similarity test using enmtool.species objects.

enmtools.ecospat.bg. Runs an ecospat background/similarity test using enmtool.species objects.
Usage

enmtools.ecospat.bg(
 species.1,
 species.2,
 env,
 nreps = 99,
 layers = NULL,
 test.type = "asymmetric",
 th.sp = 0,
 th.env = 0,
 R = 100,
 nback = 1000,
 bg.source = "default",
 verbose = FALSE,
 ...
)

Arguments

species.1 An enmtools.species object
species.2 An enmtools.species object
env A set of environmental layers
nreps The number of pseudoreplicates to perform
layers A vector of length 2 containing the names of the layers to be used. If no layer names are provided and there are more than two layers in env, enmtools will perform a pca and use the top two layers from that.
test.type Symmetric or asymmetric test. An asymmetric test is equivalent to the "one.sided" option in the ecospat documentation, while a symmetric one would be two-sided.

th.sp Quantile of species densities used as a threshold to exclude low species density values. See documentation for ecospat.grid.clim.dyn.
th.env Quantile of environmental densities across study sites used as threshold to exclude low environmental density values. See documentation for ecospat.grid.clim.dyn.
R Resolution of the grid. See documentation for ecospat.grid.clim.dyn.
nback Number of background points to use for density calculations.
bg.source Source for drawing background points. If "points", it just uses the background points that are already in the species object. If "range", it uses the range raster. If "env", it draws points at random from the entire study area outlined by the first environmental layer.
verbose Controls printing of various messages progress reports. Defaults to FALSE.
...

Value

A list containing the ecospat output kernel density estimates for each species and their background, as well as the results of hypothesis tests and their accompanying plots.
enmtools.ecospat.id

Examples

install.extras(repos='http://cran.us.r-project.org')
data(iberolacerta.clade)
data(euro.worldclim)
monticola <- iberolacerta.clade$species$monticola
cyreni <- iberolacerta.clade$species$cyreni
enmtools.ecospat.bg(monticola, cyreni, euro.worldclim[[1:2]], nback = 500)

enmtools.ecospat.id enmtools.ecospat.id. Runs an ecospat identity test using enmtool.species objects.

Description

enmtools.ecospat.id, Runs an ecospat identity test using enmttool.species objects.

Usage

enmtools.ecospat.id(
 species.1,species.2,env,
nreps = 99,layers = NULL,
th.sp = 0,th.env = 0,
R = 100,nback = 1000,
bg.source = "default", verbose = FALSE
)

Arguments

species.1 An enmtools.species object
species.2 An enmtools.species object
env A set of environmental layers
nreps The number of pseudoreplicates to perform
layers A vector of length 2 containing the names of the layers to be used. If no layer
 names are provided and there are more than two layers in env, enmtools will
 perform a pca and use the top two layers from that.
th.sp Quantile of species densities used as a threshold to exclude low species density
 values. See documentation for ecospat.grid.clim.dyn.
th.env Quantile of environmental densities across study sites used as threshold to exclude low environmental density values. See documentation for ecospat.grid.clim.dyn.

R Resolution of the grid. See documentation for ecospat.grid.clim.dyn.

nback Number of background points to use for density calculations.

bg.source Source for drawing background points. If "points", it just uses the background points that are already in the species object. If "range", it uses the range raster. If "env", it draws points at random from the entire study area outlined by the first environmental layer.

verbose Controls printing of various messages progress reports. Defaults to FALSE.

Value

A list containing the ecospat output kernel density estimates for each species and their background, as well as the results of hypothesis tests and their accompanying plots.

Examples

install.extras(repos='http://cran.us.r-project.org')
data(iberolacerta.clade)
data(euro.worldclim)
monticola <- iberolacerta.clade$species$monticola
cyreni <- iberolacerta.clade$species$cyreni
enmtools.ecospat.id(monticola, cyreni, euro.worldclim[[1:2]], nback = 500)

enmtools.gam Takes an emtools.species object with presence and background points, and builds a gam

Description

Takes an emtools.species object with presence and background points, and builds a gam

Usage

enmtools.gam(
 species,
 env,
 f = NULL,
 test.prop = 0,
 k = 4,
 nback = 1000,
 env.nback = 10000,
 report = NULL,
 overwrite = FALSE,
 rts.reps = 0,
)
weights = "equal",
gam.method = "REML",
gam.select = TRUE,
bg.source = "default",
verbose = FALSE,
clamp = TRUE,
corner = NA,
bias = NA,
...
)

Arguments

species An enmtools.species object
env A raster or raster stack of environmental data.
f Standard gam formula
test.prop Proportion of data to withhold randomly for model evaluation, or "block" for spatially structured evaluation.
k Dimension of the basis used to represent the smooth term. See documentation for s() for details.
nback Number of background points to draw from range or env, if background points aren't provided
env.nback Number of points to draw from environment space for environment space discrimination metrics.
report Optional name of an html file for generating reports
overwrite TRUE/FALSE whether to overwrite a report file if it already exists
rts.reps The number of replicates to do for a Raes and ter Steege-style test of significance
weights If this is set to "equal", presences and background data will be assigned weights so that the sum of all presence points weights equals the sum of all background point weights. Otherwise, weights are not provided to the model.
gam.method Defaults to restricted maximum likelihood to facilitate predictor selection, but if you want to use another method you can pass anything here that gam's "method" argument understands.
gam.select Controls whether gam algorithm attempts to optimize smoothness and reduce model complexity. See help("gam.selection") for details.
bg.source Source for drawing background points. If "points", it just uses the background points that are already in the species object. If "range", it uses the range raster. If "env", it draws points at random from the entire study area outlined by the first environmental layer.
verbose Controls printing of various messages progress reports. Defaults to FALSE.
clamp When set to TRUE, clamps the environmental layers so that predictions made outside the min/max of the training data for each predictor are set to the value for the min/max for that predictor. Prevents the model from extrapolating beyond the min/max bounds of the predictor space the model was trained in, although there could still be projections outside the multivariate training space if predictors are strongly correlated.
corner An integer from 1 to 4. Selects which corner to use for "block" test data. By default the corner is selected randomly.

bias An optional raster estimating relative sampling effort per grid cell. Will be used for drawing background data.

Value

An enmtools model object containing species name, model formula (if any), model object, suitability raster, marginal response plots, and any evaluation objects that were created.

Examples

data(euro.worldclim)
data(iberolacerta.clade)
if(requireNamespace("mgcv", quietly = TRUE)) {
enmtools.gam(iberolacerta.clade$species$monticola, env = euro.worldclim, f = pres ~ bio1 + bio9)
}

enmtools.glm Takes an enmtools.species object with presence and background points, and builds a GLM

Description

Takes an enmtools.species object with presence and background points, and builds a GLM

Usage

enmtools.glm(
species,
env,
f = NULL,
test.prop = 0,
eval = TRUE,
nback = 1000,
env.nback = 10000,
report = NULL,
overwrite = FALSE,
rts.reps = 0,
weights = "equal",
bg.source = "default",
verbose = FALSE,
clamp = TRUE,
corner = NA,
bias = NA,
...)

Arguments

species An enmtools.species object
env A raster or raster stack of environmental data.
f Standard GLM formula
test.prop Proportion of data to withhold randomly for model evaluation, or "block" for spatially structured evaluation.
eval Determines whether model evaluation should be done. Turned on by default, but moses turns it off to speed things up.
nback Number of background points to draw from range or env, if background points aren't provided
env.nback Number of points to draw from environment space for environment space discrimination metrics.
report Optional name of an html file for generating reports
overwrite TRUE/FALSE whether to overwrite a report file if it already exists
rts.reps The number of replicates to do for a Raes and ter Steege-style test of significance
weights If this is set to "equal", presences and background data will be assigned weights so that the sum of all presence points weights equals the sum of all background point weights. Otherwise, weights are not provided to the model.
bg.source Source for drawing background points. If "points", it just uses the background points that are already in the species object. If "range", it uses the range raster. If "env", it draws points at random from the entire study area outlined by the first environmental layer.
verbose Controls printing of various messages progress reports. Defaults to FALSE.
clamp When set to TRUE, clamps the environmental layers so that predictions made outside the min/max of the training data for each predictor are set to the value for the min/max for that predictor. Prevents the model from extrapolating beyond the min/max bounds of the predictor space the model was trained in, although there could still be projections outside the multivariate training space if predictors are strongly correlated.
corner An integer from 1 to 4. Selects which corner to use for "block" test data. By default the corner is selected randomly.
bias An optional raster estimating relative sampling effort per grid cell. Will be used for drawing background data.
... Arguments to be passed to glm()

Value

An enmtools model object containing species name, model formula (if any), model object, suitability raster, marginal response plots, and any evaluation objects that were created.
enmtools.hypervolume

Examples

data(euro.worldclim)
data(iberolacerta.clade)
enmtools.glm(iberolacerta.clade$species$monticola, env = euro.worldclim, f = pres ~ bio1 + bio9)

enmtools.hypervolume Takes an enmtools.species object and environmental layers, and constructs a hypervolume using the R package hypervolume

Description

Takes an enmtools.species object and environmental layers, and constructs a hypervolume using the R package hypervolume

Usage

enmtools.hypervolume(
 species,
 env,
 samples.per.point = 10,
 reduction.factor = 0.1,
 method = "gaussian",
 verbose = FALSE,
 clamp = TRUE,
 ...
)

Arguments

species An enmtools.species object
env A stack of environmental rasters
samples.per.point To be passed to hypervolume_gaussian
reduction.factor To be passed to hypervolume_project
method Method for constructing hypervolumes, defaults to "gaussian"
verbose Controls printing of various messages progress reports. Defaults to FALSE.
clamp When set to TRUE, clamps the environmental layers so that predictions made outside the min/max of the training data for each predictor are set to the value for the min/max for that predictor. Prevents the model from extrapolating beyond the min/max bounds of the predictor space the model was trained in, although there could still be projections outside the multivariate training space if predictors are strongly correlated.
...
Extra parameters to be passed to hypervolume_gaussian
Value

An enmtools hypervolume object containing a hypervolume object, a raster of suitability scores, the species name, and the occurrence data frame.

Examples

```r
## Not run:
install.extras(repos='http://cran.us.r-project.org')
data(euro.worldclim)
data(iberolacerta.clade)
env <- euro.worldclim[[c(1,8,12,17)]]
if(requireNamespace("hypervolume", quietly = TRUE)) {
  monticola.hv <- enmtools.hypervolume(iberolacerta.clade$species$monticola, env = env)
}
## End(Not run)
```

enmtools.maxent

Takes an `emtools.species` object with presence and background points, and builds a maxent model

Description

Takes an `emtools.species` object with presence and background points, and builds a maxent model

Usage

```r
enmtools.maxent(
  species,
  env,
  test.prop = 0,
  nback = 1000,
  env.nback = 10000,
  report = NULL,
  overwrite = FALSE,
  rts.reps = 0,
  bg.source = "default",
  verbose = FALSE,
  clamp = TRUE,
  corner = NA,
  bias = NA,
  ...)
```
Arguments

- **species**: An enmtools.species object
- **env**: A raster or raster stack of environmental data.
- **test.prop**: Proportion of data to withhold randomly for model evaluation, or "block" for spatially structured evaluation.
- **nback**: Number of background points to draw from range or env, if background points aren’t provided.
- **env.nback**: Number of points to draw from environment space for environment space discrimination metrics.
- **report**: Optional name of an html file for generating reports
- **overwrite**: TRUE/FALSE whether to overwrite a report file if it already exists
- **rts.reps**: The number of replicates to do for a Raes and ter Steege-style test of significance
- **bg.source**: Source for drawing background points. If "points", it just uses the background points that are already in the species object. If "range", it uses the range raster. If "env", it draws points at random from the entire study area outlined by the first environmental layer.
- **verbose**: Controls printing of various messages progress reports. Defaults to FALSE.
- **clamp**: When set to TRUE, clamps the environmental layers so that predictions made outside the min/max of the training data for each predictor are set to the value for the min/max for that predictor. Prevents the model from extrapolating beyond the min/max bounds of the predictor space the model was trained in, although there could still be projections outside the multivariate training space if predictors are strongly correlated.
- **corner**: An integer from 1 to 4. Selects which corner to use for "block" test data. By default the corner is selected randomly.
- **bias**: An optional raster estimating relative sampling effort per grid cell. Will be used for drawing background data.
- **...**: Arguments to be passed to maxent()

Value

An enmtools model object containing species name, model formula (if any), model object, suitability raster, marginal response plots, and any evaluation objects that were created.

Examples

```R
## Not run:
install.extras(repos='http://cran.us.r-project.org')
data(euro.worldclim)
data(iberolacerta.clade)
if(requireNamespace("rJava", quietly = TRUE)) {
  enmtools.maxent(iberolacerta.clade$species$monticola, env = euro.worldclim)
}
```

End(Not run)
enmtools.rf

Takes an enmtools.species object with presence and background points, and builds a random forest model

Description

Takes an enmtools.species object with presence and background points, and builds a random forest model.

Usage

```r
enmtools.rf(
  species,
  env,
  f = NULL,
  test.prop = 0,
  eval = TRUE,
  nback = 1000,
  env.nback = 10000,
  report = NULL,
  overwrite = FALSE,
  rts.reps = 0,
  bg.source = "default",
  verbose = FALSE,
  clamp = TRUE,
  corner = NA,
  bias = NA,
  ...
)
```

Arguments

- **species**: An enmtools.species object
- **env**: A raster or raster stack of environmental data.
- **f**: A formula for fitting the model
- **test.prop**: Proportion of data to withhold randomly for model evaluation, or "block" for spatially structured evaluation.
- **eval**: Determines whether model evaluation should be done. Turned on by default, but moses turns it off to speed things up.
- **nback**: Number of background points to draw from range or env, if background points aren’t provided
- **env.nback**: Number of points to draw from environment space for environment space discrimination metrics.
- **report**: Optional name of an html file for generating reports
- **overwrite**: TRUE/FALSE whether to overwrite a report file if it already exists
enmtools.rf.ranger

Takes an emtools.species object with presence and background points, and builds a random forest model using the 'probability mode' in package 'ranger'

Description

Takes an emtools.species object with presence and background points, and builds a random forest model using the 'probability mode' in package 'ranger'

Value

An enmtools model object containing species name, model formula (if any), model object, suitability raster, marginal response plots, and any evaluation objects that were created.

Examples

data(euro.worldclim)
data(iberolacerta.clade)
enmtools.rf(iberolacerta.clade$species$monticola, env = euro.worldclim, nback = 500)
Usage

```r
enmtools.rf.ranger(
  species,
  env,
  f = NULL,
  test.prop = 0,
  eval = TRUE,
  nback = 1000,
  env.nback = 10000,
  report = NULL,
  overwrite = FALSE,
  rts.reps = 0,
  bg.source = "default",
  verbose = FALSE,
  clamp = TRUE,
  corner = NA,
  bias = NA,
  ...
)
```

Arguments

- **species**: An enmtools.species object
- **env**: A raster or raster stack of environmental data.
- **f**: A formula for fitting the model
- **test.prop**: Proportion of data to withhold randomly for model evaluation, or "block" for spatially structured evaluation.
- **eval**: Determines whether model evaluation should be done. Turned on by default, but moses turns it off to speed things up.
- **nback**: Number of background points to draw from range or env, if background points aren't provided
- **env.nback**: Number of points to draw from environment space for environment space discrimination metrics.
- **report**: Optional name of an html file for generating reports
- **overwrite**: TRUE/FALSE whether to overwrite a report file if it already exists
- **rts.reps**: The number of replicates to do for a Raes and ter Steege-style test of significance
- **bg.source**: Source for drawing background points. If "points", it just uses the background points that are already in the species object. If "range", it uses the range raster. If "env", it draws points at random from the entire study area outlined by the first environmental layer.
- **verbose**: Controls printing of various messages progress reports. Defaults to FALSE.
- **clamp**: When set to TRUE, clamps the environmental layers so that predictions made outside the min/max of the training data for each predictor are set to the value for the min/max for that predictor. Prevents the model from extrapolating beyond the min/max bounds of the predictor space the model was trained in, although
there could still be projections outside the multivariate training space if predictors are strongly correlated.

corner An integer from 1 to 4. Selects which corner to use for "block" test data. By default the corner is selected randomly.

bias An optional raster estimating relative sampling effort per grid cell. Will be used for drawing background data.

... Arguments to be passed to `ranger`

Value

An enmtools model object containing species name, model formula (if any), model object, suitability raster, marginal response plots, and any evaluation objects that were created.

Examples

data(euro.worldclim)
data(iberolacerta.clade)
enmtools.rf.ranger(iberolacerta.clade$species$monticola, env = euro.worldclim, nback = 500)

enmtools.species Defining a class for enmtools.species.

Description

Each species gets:

Usage

enmtools.species(
 range = NA,
 presence.points = NA,
 background.points = NA,
 species.name = NA,
 models = NA
)

Arguments

range A raster or SpatialPolygon with the actual range they occur in
presence.points A data frame with sampled localities
background.points A data frame with absence/pseudoabsence/background localities
species.name A character vector with the species name
models A list of models that are made for the species, which will be stuffed in there as we go along to pass the check. This is used by internal enmtools functions to make sure the necessary data is present before processing anything.
Value

Returns an enmtools.species object, either empty or populated with the parameter values that were passed into the function.

Description

Takes an enmtools.model object, and performs variable importance analyses on it using methods from the vip package.

Usage

enmtools.vip(model, metric = "auc", nsim = 10, method = "permute", ...)

Arguments

model An enmtools.model object
metric The metric to use for measuring how variables affect model predictions
nsim The number of simulations to be run for method "permute"
method A character string or vector containing any combination of "model", "permute", "shap", or "firm". For details on what these mean, see the vip package help.
... Further arguments to be passed to vip's "vi" functions.

Value

An enmtools.vip object

Examples

Not run:
install.extras(repos='http://cran.us.r-project.org')
data(euro.worldclim)
data(iberolacerta.clade)
monticola.glm <- enmtools.glm(iberolacerta.clade$species$monticola,
 env = euro.worldclim,
 test.prop = 0.3)
enmtools.vip(monticola.glm)

End(Not run)
env.breadth

Description

Calculates breadth of a model in environment space using latin hypercube sampling

Usage

```
env.breadth(model, env, tolerance = 1e-04, max.reps = 10, chunk.size = 1e05)
```

Arguments

- `model` An enmtools.model object or a model object that can be projected using the `predict()` function
- `env` A raster, raster stack of environmental data, or a list of minima and maxima for the environmental space to evaluate models over.
- `tolerance` How close do successive overlap metrics have to be before we decide we’re close enough to the final answer
- `max.reps` Maximum number of attempts that will be made to find suitable starting conditions
- `chunk.size` How many combinations of environmental variables to try at a time. If your niche breadth in environment space is small, increasing this value may help you get a result.

Value

A list containing the environmental space version of the B2 metric and a plot of B2 estimates as a function of sample size, used as a convergence diagnostic.

Examples

```
data(iberolacerta.clade)
data(euro.worldclim)
cyreni <- iberolacerta.clade$species$cyreni
cyreni.glm <- enmtools.glm(cyreni, euro.worldclim, test.prop = 0.2, f = pres ~ bio1 + bio12, nback = 500)
env.breadth(cyreni.glm, euro.worldclim)
```
env.evaluate

Calculates evaluation metrics (AUC, etc.) using latin hypercube sampling in environment space

Description

Calculates evaluation metrics (AUC, etc.) using latin hypercube sampling in environment space

Usage

env.evaluate(
 species,
 model,
 env,
 bg.source = "background",
 n.background = 10000,
 test.eval = FALSE,
 verbose = FALSE,
 ...
)

Arguments

species An enmtools.species object
model An enmtools.model object or a model that can be projected using the predict() function of dismo
env A raster or raster stack of environmental data.
bg.source Determines whether minima and maxima of the environment space should be picked using the environment layers or the background points.
n.background The number of background points to sample from the environment space.
test.eval When set to "true", env.evaluate evaluates the test data stored in the model object instead of the training data.
verbose Controls printing of various messages progress reports. Defaults to FALSE.
... Arguments to be passed to other functions

Value

A dismo evaluate object measuring the performance of model predictions in environment space.

Examples

data(iberolacerta.clade)
data(euro.worldclim)
cyreni <- iberolacerta.clade$species$cyreni
cyreni.glm <- enmtools.glm(cyreni, euro.worldclim, test.prop = 0.2,
env.overlap

Calculates overlap between models in environment space using latin hypercube sampling

Description

Calculates overlap between models in environment space using latin hypercube sampling

Usage

env.overlap(
 model.1,
 model.2,
 env,
 tolerance = 0.001,
 max.reps = 10,
 cor.method = "spearman",
 chunk.size = 1e+05,
 recal.model.1 = NA,
 recal.model.2 = NA,
 verbose = FALSE
)

Arguments

model.1 An enmtools.model object model object that can be projected using the predict() function
model.2 Another enmtools.model object or other model object that can be projected using the predict() function
env A raster, raster stack of environmental data, or a list of minima and maxima for the environmental space to evaluate models over
tolerance How close do successive overlap metrics have to be before we decide we’re close enough to the final answer
max.reps Maximum number of attempts that will be made to find suitable starting conditions
cor.method Which method to use for calculating correlations between models
chunk.size How many combinations of environmental variables to try at a time. If your niche breadth in environment space is small, increasing this value may help you get a result.
recal.model.1 Optional. The output of enmtools.recalibrate for model 1, which needs to have been run with "recalibrate = TRUE".
eu.oworldclim

Optional. The output of enmtools.recalibrate for model 2, which needs to have been run with "recalibrate = TRUE".

verbose Controls printing of various messages progress reports. Defaults to FALSE.

Value

A list of values measuring the overlap between models in environment space, as well as some plots depicting change of the estimates as a function of how many samples were used, which are included as a sort of convergence diagnostic.

Examples

```r
data(iberolacerta.clade)
data(euro.worldclim)
cyreni <- iberolacerta.clade$species$cyreni
monticola <- iberolacerta.clade$species$monticola
cyreni.glm <- enmtools.glm(cyreni, euro.worldclim, f = pres ~ bio1 + bio12, nback = 500)
monticola.glm <- enmtools.glm(monticola, euro.worldclim, f = pres ~ bio1 + bio12, nback = 500)
env.overlap(cyreni.glm, monticola.glm, euro.worldclim)
```

euro.worldclim

Worldclim data for Europe

Description

This is a fairly low-resolution set of Worldclim layers for Europe to be used in demonstrating ENMTools functions.

Usage

```r
data(euro.worldclim)
```

Format

A raster brick with 19 worldclim layers.
geog.range.overlap Takes two emtools.species objects with range rasters, calculates overlap between them as in Fitzpatrick and Turelli 2006

Description

Takes two emtools.species objects with range rasters, calculates overlap between them as in Fitzpatrick and Turelli 2006

Usage

geog.range.overlap(x, y)

Arguments

x An enmtools.species object containing a range raster
y An enmtools.species object containing a range raster

Value

A numeric value measuring range overlap.

Examples

data(iberolacerta.clade)
data(euro.worldclim)
cyreni <- iberolacerta.clade$species$cyreni
monticola <- iberolacerta.clade$species$monticola
cyreni$range <- background.raster.buffer(cyreni$presence.points, 100000, euro.worldclim)
monticola$range <- background.raster.buffer(monticola$presence.points, 100000, euro.worldclim)
geog.range.overlap(cyreni, monticola)

hypervolume.overlap Takes an emtools.species object and environmental layers, and constructs a hypervolume using the R package hypervolume

Description

Takes an emtools.species object and environmental layers, and constructs a hypervolume using the R package hypervolume
Usage

```
hypervolume.overlap(
  species.1,
  species.2,
  env = NA,
  reduction.factor = 0.1,
  ...
)
```

Arguments

- `species.1`: An `enmtools.species` or `enmtools.hypervolume` object
- `species.2`: An `enmtools.species` or `enmtools.hypervolume` object
- `env`: A stack of environmental rasters, required when `enmtools.species` objects are passed
- `reduction.factor`: Passed to `hypervolume` functions
- `...`: Extra parameters to be passed to `enmtools.hypervolume`

Value

A list containing a set of hypervolume objects and the overlap that was measured between them.

Examples

```
## Not run:
install.extras(repos='http://cran.us.r-project.org')
data(euro.worldclim)
data(iberolacerta.clade)
mont <- iberolacerta.clade$species$monticola
cyr <- iberolacerta.clade$species$cyreni
eu <- euro.worldclim[[c(1,8,12,17)]]
if(requireNamespace("hypervolume", quietly = TRUE)) {
  hypervolume.overlap(mont, cyr, env = env)
}
## End(Not run)
```

iberolacerta.clade

GBIF data for a clade of Iberolacerta lizards from spain

Description

This is some sample data downloaded from GBIF for the purposes of demonstrating ENMTools functionality.
identity.test

Usage

data(iberolacerta.clade)

Format

An enmtools.clade object with seven species and a phylogeny.

identity.test

identity.test Conduct a niche identity/equivalency test as described in Warren et al. 2008.

Description

identity.test Conduct a niche identity/equivalency test as described in Warren et al. 2008.

Usage

identity.test(
 species.1,
 species.2,
 env,
 type,
 f = NULL,
 nreps = 99,
 nback = 1000,
 bg.source = "default",
 low.memory = FALSE,
 rep.dir = NA,
 verbose = FALSE,
 clamp = TRUE,
 ...
)

Arguments

species.1 An enmtools.species object
species.2 An enmtools.species object
env A RasterLayer or RasterStack object containing environmental data
type The type of model to construct, currently accepts "glm", "mx", "bc", "gam", "rf", or "dm"
f A function to use for model fitting. Only required for GLM models at the moment.
nreps Number of replicates to perform
nback Number of background points for models
install.extras

\begin{verbatim}
install.extras

bg.source Source for drawing background points. If "points", it just uses the background
points that are already in the species object. If "range", it uses the range raster.
If "env", it draws points at random from the entire study area outlined by the
first environmental layer.

low.memory When set to TRUE, replicate models are written to disc instead of being stored
in the output object. Replicate models stored in the output object contain paths
to the replicate models on disk instead of the rasters themselves.

rep.dir Directory for storing replicate models when low.memory is set to TRUE. If not
specified, the working directory will be used.

verbose Controls printing of various messages progress reports. Defaults to FALSE.

clamp Controls whether empirical and replicate models should be clamped to the envi-
ronment space used for training.

... Additional arguments to be passed to model fitting functions.
\end{verbatim}

Value

results A list containing the replicates, models for the empirical data, and summary statistics and
plots.

Examples

data(iberolacerta.clade)
data(euro.worldclim)
cyreni <- iberolacerta.clade$species$cyreni
monticola <- iberolacerta.clade$species$monticola
cyreni$range <- background.raster.buffer(cyreni$presence.points, 100000, euro.worldclim)
monticola$range <- background.raster.buffer(monticola$presence.points, 100000, euro.worldclim)
identity.test(cyreni, monticola, env = euro.worldclim, type = "glm",
f = pres ~ bio1 + bio12, nreps = 10)

install.extras

Description

Convenience function that installs all extra packages used in ENMTools. ENMTools uses functions
from a lot of external packages, and due to CRAN best practices it doesn’t install those packages
by default. The function installextras() just calls install.packages() with a list of all the extra
packages. At present this list includes mgcv, ecospat, randomForest, hypervolume, ape, leaflet,
ranger, CalibratR, caret, and ResourceSelection.

Usage

install.extras(repos = "http://cran.us.r-project.org", ...)
interactive.plot

Arguments

- `repos` URL for the repository to use for installing R packages
- `...` Other parameters to be passed to `install.packages`

Value

No return value.

Examples

```r
install.extras()
```

interactive.plot
Generic function for making interactive plots of ENMTools models and species

Description

Function that takes an `enmtools.model` or `enmtools.species` object and calls the class-appropriate `interactive.plot.xx` function for it. These functions use `leaflet` for mapping and will only function properly if you have an active internet connection.

Usage

```r
interactive.plot(x, ...)
```

Arguments

- `x` `enmtools.model` or `species` object to plot
- `...` other arguments passed to `interactive.plot.enmtools.model` or `interactive.plot.enmtools.species`

Value

An interactive leaflet plot depicting the predictions and data from the `enmtools.model` object.
interactive.plot.enmtools.model

Plot an enmtools.model object on an interactive map

Description

Function that takes an enmtools.model object and plots an interactive map of the presence points, background points (if applicable), and species suitability map. This function uses leaflet for mapping and will only function properly if you have an active internet connection.

Usage

```r
## S3 method for class 'enmtools.model'
interactive.plot(
  x,
  map.provider = "Esri.WorldPhysical",
  cluster.points = FALSE,
  raster.opacity = 1,
  ...
)
```

Arguments

- **x**: entools.model object to plot
- **map.provider**: Name of a map provider for the underlying interactive base map. Default is "Esri.WorldPhysical", and attractive topographic map with no place labels. A preview of all map provider options can be viewed at http://leaflet-extras.github.io/leaflet-providers/preview/
- **cluster.points**: Should points be clustered? If TRUE, points close together will be grouped into clusters that can be interactively expanded by clicking on them.
- **raster.opacity**: Specifies the opacity level of the suitability raster.
- **...**: other arguments (not used currently)

Value

An interactive leaflet plot depicting the predictions and data from the enmtools.model object.
interactive.plot.enmtools.species

Plot an enmtools.species object on an interactive map

Description

Function that take an enmtools.species object and plots an interactive map of the presence points, background points (if applicable), and species range raster (if applicable). This function uses leaflet for mapping and will only function properly if you have an active internet connection.

Usage

```r
## S3 method for class 'enmtools.species'
interactive.plot(
  x,
  map.provider = "Esri.WorldPhysical",
  cluster.points = FALSE,
  ...
)
```

Arguments

- `x` enmtools.species object to plot
- `map.provider` Name of a map provider for the underlying interactive base map. Default is "Esri.WorldPhysical", and attractive topographic map with no place labels. A preview of all map provider options can be viewed at http://leaflet-extras.github.io/leaflet-providers/preview/
- `cluster.points` Should points be clustered? If TRUE, points close together will be grouped into clusters that can be interactively expanded by clicking on them.
- `...` other arguments (not used currently)

Value

An interactive leaflet plot visualizing the data present in the species object.

marginal.plots

marginal.plots Plots the marginal response of a model to an environmental variable with all other variables held at their mean in env

Description

marginal.plots Plots the marginal response of a model to an environmental variable with all other variables held at their mean in env
Usage

```
marginal.plots(model, env, layer, standardize = TRUE, verbose = FALSE)
```

Arguments

- `model`: An enmtools model object
- `env`: A RasterLayer or RasterStack object containing environmental data
- `layer`: The name of the layer to plot
- `standardize`: Whether to set the maximum of the response function to 1, or to instead use the raw values.
- `verbose`: Controls printing of messages

Value

- `results`: A plot of the marginal response of the model to the environmental variable.

Examples

```
data(iberolacerta.clade)
data(euro.worldclim)
cyreni.glm <- enmtools.glm(iberolacerta.clade$species$cyreni, f = pres ~ bio1 + bio12, euro.worldclim)
marginal.plots(cyreni.glm, euro.worldclim, "bio1")
```

moses.list

Takes a list of enmtools.species objects and uses model selection to ask whether they’re better treated jointly or separately

Description

Takes a list of enmtools.species objects and uses model selection to ask whether they’re better treated jointly or separately

Usage

```
moses.list(
    species.list, env, f = NULL, eval = FALSE, nback = 1000, bg.source = "default", verbose = FALSE,
    ...
)
```
multistack.pca

Arguments

- `species.list`: A list of `enmtools.species` objects, or an `enmtools.clade` object.
- `env`: A raster or raster stack of environmental data.
- `f`: A GLM-style function for model fitting.
- `eval`: Boolean indicating whether or not GLMs should be evaluated using AUC/TSS/etc.
- `nback`: Number of background points to generate, if any.
- `bg.source`: Source for drawing background points. If "points", it just uses the background points that are already in the species object. If "range", it uses the range raster. If "env", it draws points at random from the entire study area outlined by the first environmental layer.
- `verbose`: Controls printing of various messages progress reports. Defaults to FALSE.
- `...`: Further arguments to be passed to `enmtools.glm`.

Value

A list containing GLMs for the groups separately and together, as well as AIC values for those models.

Description

`multistack.pca`, simultaneous PCA on more than one stack of environmental rasters

Usage

`multistack.pca(..., n = 2)`

Arguments

- `...`: Any number of environmental raster stacks or bricks.
- `n`: The number of PCA layers to return.

Value

A list containing a stack or brick of rasters for each input set representing the top n pca axes of the initial environmental variables, as well as the pca object from the analysis that produced them and some useful plots showing the distribution of each PC in the different stacks.

Examples

```
test1 <- crop(euro.worldclim, extent(-10, -5, 40, 43))
test2 <- crop(euro.worldclim, extent(-5, 5, 40, 48))
test3 <- crop(euro.worldclim, extent(5, 15, 44, 48))
multistack.pca(test1, test2, test3)
```
node.overlap

Takes an overlap matrix and a tree and returns average overlap at nodes using Fitzpatrick & Turelli averaging method. Typically called via enmtools.aoc rather than used directly.

Description

Takes an overlap matrix and a tree and returns average overlap at nodes using Fitzpatrick & Turelli averaging method. Typically called via enmtools.aoc rather than used directly.

Usage

```r
node.overlap(overlap, tree)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>overlap</td>
<td>An overlap matrix</td>
</tr>
<tr>
<td>tree</td>
<td>A tree</td>
</tr>
</tbody>
</table>

Value

A data frame of node ages and overlaps

point.overlap

Takes two emtools.species objects with range rasters, calculates overlap between them as in Cardillo and Warren 2016

Description

Takes two emtools.species objects with range rasters, calculates overlap between them as in Cardillo and Warren 2016.

Usage

```r
point.overlap(x, y)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>An emtools.species object containing presence points</td>
</tr>
<tr>
<td>y</td>
<td>An emtools.species object containing presence points</td>
</tr>
</tbody>
</table>

Value

A numeric value measuring the overlap between point distributions.
Examples

data(iberolacerta.clade)
data(euro.worldclim)
cyreni <- iberolacerta.clade.species$cyreni
monticola <- iberolacerta.clade.species$monticola
if(requireNamespace("fields", quietly = TRUE)) {
 point.overlap(cyreni, monticola)
}

rangebreak.blob
rangebreak.blob Conduct a blob rangebreak test as described in Glor and Warren 2011.

Description

rangebreak.blob Conduct a blob rangebreak test as described in Glor and Warren 2011.

Usage

rangebreak.blob(
 species.1,
 species.2,
 env,
 type,
 f = NULL,
 nreps = 99,
 nback = 1000,
 bg.source = "default",
 low.memory = FALSE,
 rep.dir = NA,
 verbose = FALSE,
 clamp = TRUE,
...
)

Arguments

species.1 An emtools.species object
species.2 An enmtools.species object
env A RasterLayer or RasterStack object containing environmental data
type The type of model to construct, currently accepts "glm", "mx", "bc", "gam", or "dm"
f A function to use for model fitting. Only required for GLM models at the moment.
rangebreak.linear

nreps Number of replicates to perform
nback Number of background points for models
bg.source Source for drawing background points. If "points", it just uses the background points that are already in the species object. If "range", it uses the range raster. If "env", it draws points at random from the entire study area outlined by the first environmental layer.
low.memory When set to TRUE, replicate models are written to disk instead of being stored in the output object. Replicate models stored in the output object contain paths to the replicate models on disk instead of the rasters themselves.
rep.dir Directory for storing replicate models when low.memory is set to TRUE. If not specified, the working directory will be used.
verbose Controls printing of various messages progress reports. Defaults to FALSE.
clamp Controls whether empirical and replicate models should be clamped to the environment space used for training.
... Additional arguments to be passed to model fitting functions.

Value

results A list containing the replicates, models for the empirical data, and summary statistics and plots.

Examples

data(iberolacerta.clade)
data(euro.worldclim)
cyreni <- iberolacerta.clade$species$cyreni
aranica <- iberolacerta.clade$species$aranica
if(requireNamespace("fields", quietly = TRUE)) {
 rangebreak.blob(cyreni, aranica, env = euro.worldclim, type = "glm",
 f= pres ~ bio1 + bio12, nreps = 10)
}

rangebreak.linear

rangebreak.linear Conduct a linear rangebreak test as described in Glor and Warren 2011.

Description

rangebreak.linear Conduct a linear rangebreak test as described in Glor and Warren 2011.
Usage

rangebreak.linear(
 species.1,
 species.2,
 env,
 type,
 f = NULL,
 nreps = 99,
 nback = 1000,
 bg.source = "default",
 low.memory = FALSE,
 rep.dir = NA,
 verbose = FALSE,
 clamp = TRUE,
 ...
)

Arguments

species.1 An emtools.species object
species.2 An enmtools.species object
env A RasterLayer or RasterStack object containing environmental data
type The type of model to construct, currently accepts "glm", "mx", "bc", "gam", or "dm"
f A function to use for model fitting. Only required for GLM models at the moment.
nreps Number of replicates to perform
nback Number of background points for models
bg.source Source for drawing background points. If "points", it just uses the background points that are already in the species object. If "range", it uses the range raster. If "env", it draws points at random from the entire study area outlined by the first environmental layer.
low.memory When set to TRUE, replicate models are written to disc instead of being stored in the output object. Replicate models stored in the output object contain paths to the replicate models on disk instead of the rasters themselves.
rep.dir Directory for storing replicate models when low.memory is set to TRUE. If not specified, the working directory will be used.
verbose Controls printing of various messages progress reports. Defaults to FALSE.
clamp Controls whether empirical and replicate models should be clamped to the environment space used for training.
...

Value

results A list containing the replicates, models for the empirical data, and summary statistics and plots.
rangebreak.ribbon

Examples

data(iberolacerta.clade)
data(euro.worldclim)
cyreni <- iberolacerta.clade$species$cyreni
aranica <- iberolacerta.clade$species$aranica
rangebreak.linear(cyreni, aranica, env = euro.worldclim, type = "glm",
f = pres ~ bio1 + bio12, nreps = 10)

rangebreak.ribbon

rangebreak.ribbon Conduct a ribbon rangebreak test as described in Glor and Warren 2011.

Description

rangebreak.ribbon Conduct a ribbon rangebreak test as described in Glor and Warren 2011.

Usage

rangebreak.ribbon(
 species.1,
 species.2,
 ribbon,
 env,
 type,
 f = NULL,
 width = 1,
 nreps = 99,
 nback = 1000,
 bg.source = "default",
 low.memory = FALSE,
 rep.dir = NA,
 verbose = FALSE,
 clamp = TRUE,
 ...
)

Arguments

species.1 An enmtools.species object
species.2 An enmtools.species object
ribbon An enmtools.species object representing the region of marginal habitat in the overlap between the species’ ranges
env A RasterLayer or RasterStack object containing environmental data
type The type of model to construct, currently accepts "glm", "mx", "bc", or "dm"
rangebreak.ribbon

f A function to use for model fitting. Only required for GLM models at the moment.

width Width of the ribbon, in the same units as the occurrence points (e.g. decimal degrees)

nreps Number of replicates to perform

nback Number of background points for models

bg.source Source for drawing background points. If "points", it just uses the background points that are already in the species object. If "range", it uses the range raster. If "env", it draws points at random from the entire study area outlined by the first environmental layer.

low.memory When set to TRUE, replicate models are written to disc instead of being stored in the output object. Replicate models stored in the output object contain paths to the replicate models on disk instead of the rasters themselves.

rep.dir Directory for storing replicate models when low.memory is set to TRUE. If not specified, the working directory will be used.

verbose Controls printing of various messages progress reports. Defaults to FALSE.

clamp Controls whether empirical and replicate models should be clamped to the environment space used for training.

... Additional arguments to be passed to model fitting functions.

Value
results A list containing models for the replicates, models for the empirical data, and summary statistics and plots.

Examples

data(iberolacerta.clade)
data(euro.worldclim)
cyreni <- iberolacerta.clade$species$cyreni
aranica <- iberolacerta.clade$species$aranica
We're just going to fudge together occurrence data from a ribbon here # from random points between the two species' ranges
p <- data.frame(Longitude = runif(50, -4, -2), Latitude = runif(50, 40, 43))
bg <- background.points.buffer(p, 100000, 100, euro.worldclim[[1]])
ribbon <- enmtools.species(species.name = "ribbon", presence.points = p, background.points = bg)

rangebreak.ribbon(cyreni, aranica, ribbon = ribbon, env = euro.worldclim,
type = "glm", f = pres ~ bio1 + bio12, nreps = 10)
raster.breadth

raster.breadth, applies measures of niche breadth to an ENM

Description

This function measures the spatial heterogeneity of the distribution of suitability scores from an ENM. It returns Levins’ two metrics of niche breadth.

Usage

raster.breadth(x, verbose = FALSE)

Arguments

x An object of class raster or RasterLayer, or an ENMTools model object containing a suitability raster.

verbose Controls printing of diagnostic messages

Value

results A vector containing the two metrics B1 and B2 for niche breadth.

Examples

data(iberolacerta)
data(euro.worldclim)
aurelioi.glm <- enmtools.glm(iberolacerta$clade$species$aurelioi, euro.worldclim,
f = pres ~ bio1 + bio12)
raster.breadth(aurelioi.glm)

raster.cor

Calculates the correlation coefficient between two rasters.

Description

Calculates the correlation coefficient between two rasters.

Usage

raster.cor(x, y, method = “spearman”)

Arguments

x Either a raster or an ENMTools model object with a suitability raster.

y Either a raster or an ENMTools model object with a suitability raster.

method The method to be used for calculating correlations. Defaults to spearman, but can take “kendall” or “pearson” as well.
Value

A numeric correlation coefficient.

Examples

data(euro.worldclim)
raster.cor(euro.worldclim[[1]], euro.worldclim[[2]])

raster.cor.matrix

Takes a raster stack and returns a data frame containing Pearson correlation coefficients between the included rasters

Description

Takes a raster stack and returns a data frame containing Pearson correlation coefficients between the included rasters

Usage

raster.cor.matrix(env, method = "pearson")

Arguments

env A RasterStack object containing two or more rasters
method Type of correlation to measure. Can do "pearson", "kendall", or "spearman"

Value

A data frame of correlation coefficients for a set of rasters.

Examples

data(euro.worldclim)
raster.cor.matrix(euro.worldclim)
raster.cor.plot

Takes a raster stack and returns a data frame containing Pearson correlation coefficients between the included rasters

Description

Takes a raster stack and returns a data frame containing Pearson correlation coefficients between the included rasters

Usage

```r
raster.cor.plot(env, method = "pearson")
```

Arguments

- **env**
 - A RasterStack object containing two or more rasters
- **method**
 - Type of correlation to measure. Can do "pearson", "kendall", or "spearman"

Value

A list of two plots. The first maps the correlations between rasters into an MDS space, so that predictors that fall close together in that space are more correlated. The second plot is a heatmap depicting the correlations between pairs of layers.

Examples

```r
data(euro.worldclim)
raster.cor.plot(euro.worldclim)
```

raster.overlap

raster.overlap, measures overlap between two ENMs

Description

This function measures similarity in the geographic distribution of suitability scores from two ENMs. It returns two metrics, I and D. These metrics are described in Warren et al. 2008.

Usage

```r
raster.overlap(x, y, verbose = FALSE)
```
raster.pca

Arguments

x A raster or RasterLayer object, or ENMTools model object containing a suitability raster.
y Another raster or RasterLayer object, or ENMTools model object containing a suitability raster.
verbose Controls printing of diagnostic messages

Value

results A vector containing the three metrics (I, D, and Spearman rank correlation)

Examples

data(iberolacerta.clade)
data(euro.worldclim)
aurelioi.glm <- enmtools.glm(iberolacerta.clade$species$aurelioi, euro.worldclim, f = pres ~ bio1 + bio12)
aranica.glm <- enmtools.glm(iberolacerta.clade$species$aranica, euro.worldclim, f = pres ~ bio1 + bio12)
raster.overlap(aurelioi.glm, aranica.glm)

raster.pca PCA on a set of environmental rasters

Description

raster.pca, PCA on a set of environmental rasters

Usage

raster.pca(env, n)

Arguments

env A set of environmental layers
n The number of PCA layers to return

Value

A list containing a stack of rasters representing the top n pca axes of the initial environmental variables, as well as the pca object from the analysis that produced them.

Examples

env.pca <- raster.pca(euro.worldclim, 2)
raster.resid

Measure standardized residuals from a linear regression between two rasters.

Description

This function builds a linear model for the relationship between two rasters, and returns the linear model and a spatial raster of the residuals from that model.

Usage

raster.resid(x, y)

Arguments

x A raster or RasterLayer object, or ENMTools model object containing a suitability raster.
y Another raster or RasterLayer object, or ENMTools model object containing a suitability raster.

Value

results A list containing a raster of residuals from a linear regression between the two supplied rasters and the linear model itself.

Examples

data(euro.worldclim)
raster.resid(euro.worldclim[[1]], euro.worldclim[[2]])

raster.standardize

standardizes all values in a raster file

Description

This function is used by a lot of the metrics calculated by ENMTools, in order to standardize suitability scores so they sum to 1 over a geographic space.

Usage

raster.standardize(x, verbose = FALSE)

Arguments

x A raster or RasterLayer object, or an ENMTools model object containing a suitability raster.
verbose Controls printing of diagnostic messages
A new raster object, standardized so that values sum to 1

Examples

data(euro.worldclim)
raster.standardize(euro.worldclim[[1]])

sim.points

Simulate a point process from an enmtools.model object

Description

Function that takes an enmtools.model object and simulates points from it using a point process.

Usage

sim.points(
 object,
 n.points = 1000,
 seed = NA,
 sample.type = "ppp",
 replace = FALSE,
 threshold = NA,
 ...
)

Arguments

object entools.model object to simulate from
n.points approximate number of points to simulate. You may get small number fewer or greater. If you need an exact number of points, generate too many, then drop the extra ones.
seed optional seed for the random number generator
sample.type method for sampling occurrence points. Default is "ppp", which is a poisson point process. Also accepts "binomial" for treating suitabilities as binomial trials, "thresh.pa" for sampling with equal probability every grid cell above a certain threshold value, and "thresh.con" for sampling in proportion to suitability above a certain threshold value.
replace whether to sample with replacement.
threshold a threshold suitability below which probability of sampling drops to zero. Used for "thresh.pa" and "thresh.con" sampling.
...
additional parameters, not currently used but included for S3 compatibility

Value

A data frame of simulated points from the enmtools.model object
species.from.file

Takes a csv file and uses it to construct one or more enmtools.species objects. It constructs one object per unique value in the "species.col" column.

Description

Takes a csv file and uses it to construct one or more enmtools.species objects. It constructs one object per unique value in the "species.col" column.

Usage

species.from.file(filename, species.col = "species")

Arguments

filename Name of a .csv file
species.col Name of the column from the csv file to use for species names. Default is "species".

Value

A list containing species objects, one for each unique value in species.col.

threespace.plot

threespace.plot, A plot that compares the environmental distribution of presence points, background points, and the set of supplied environmental layers.

Description

threespace.plot, A plot that compares the environmental distribution of presence points, background points, and the set of supplied environmental layers.

Usage

threespace.plot(model, env, maxpts = NA)

Arguments

model An enmtools.model object
env A set of environment layers
maxpts Maximum number of points to plot from env layers
Value

A ggplot2 object that plots the distribution of environments in the climate layers to the distribution of environments at background and presence localities.

Examples

my.model<- enmtools.gam(iberolacerta.clade$species$monticola, euro.worldclim)
three.space.plot(my.model, euro.worldclim)

trimdupes.by.raster

Takes a set of points and a raster mask and returns a data frame trimmed so that only one point is returned per grid cell in the mask raster.

Description

Takes a set of points and a raster mask and returns a data frame trimmed so that only one point is returned per grid cell in the mask raster.

Usage

trimdupes.by.raster(points, mask)

Arguments

points A two column data frame with X and Y coordinates
mask A raster to use as a mask for drawing points

Value

A new data frame with one point per grid cell.

Examples

data(iberolacerta.clade)
data(euro.worldclim)
pts <- iberolacerta.clade$species$monticola$presence.points
trimdupes.by.raster(pts, euro.worldclim)
visualize.enm

visualize.enm, Makes a heatmap of suitability of habitat in environment space according to a given model

Description

visualize.enm, Makes a heatmap of suitability of habitat in environment space according to a given model

Usage

```r
visualize.enm(
    model,  
    env,    
    nbins = 100,  
    layers = names(env)[1:2],  
    plot.test.data = FALSE,  
    plot.points = TRUE,  
    minmax = NA
)
```

Arguments

- `model` An enmtools.model object
- `env` A set of environmental layers
- `nbins` The number of bins per layer to use for drawing environment space
- `layers` A vector of layer names to use for drawing environment space
- `plot.test.data` Logical determining whether test data should be plotted, if present. If test data is plotted, it will appear as translucent green triangles.
- `plot.points` Logical determining whether presence points should be plotted on suitability plot
- `minmax` A named list of minima and maxima for each axis, in case the user wants to constrain or expand the space over which models are plotted.

Value

- `suit.plot` A list containing two dimensional plot of an ENM in environment space and a plot of the available environments.

Examples

```r
data(iberolacerta.clade)
data(euro.worldclim)
aurelioi.glm <- enmtools.glm(iberolacerta.clade$species$aurelioi, euro.worldclim,  
f = pres ~ poly(bio1, 4) + poly(bio12, 4))  
visualize.enm(aurelioi.glm, euro.worldclim, layers = c("bio1", "bio12"))
```
visualize.overlap, Makes a contour map of suitability of habitat in environment space for two models

Description

visualize.overlap, Makes a contour map of suitability of habitat in environment space for two models

Usage

visualize.overlap(
 model.1,
 model.2,
 env,
 nbins = 100,
 layers,
 plot.points = TRUE
)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>model.1</td>
<td>An enmtools.model object</td>
</tr>
<tr>
<td>model.2</td>
<td>An enmtools.model object</td>
</tr>
<tr>
<td>env</td>
<td>A set of environmental layers</td>
</tr>
<tr>
<td>nbins</td>
<td>The number of bins per layer to use for drawing environment space</td>
</tr>
<tr>
<td>layers</td>
<td>A vector of layer names to use for drawing environment space</td>
</tr>
<tr>
<td>plot.points</td>
<td>Logical determining whether presence points should be plotted on suitability plot</td>
</tr>
</tbody>
</table>

Value

overlap.plot A two dimensional plot of an ENM

Examples

data(iberolacerta.clade)
ar <- iberolacerta.clade$species$aranica
au <- iberolacerta.clade$species$aurelioi
data(euro.worldclim)
aranica.dm <- enmtools.dm(ar, euro.worldclim)
aurelioi.dm <- enmtools.dm(au, euro.worldclim)
visualize.overlap(aranica.dm, aurelioi.dm, euro.worldclim, layers = c("bio1", "bio9"))
Index

* background
 background.test, 6
 threespace.plot, 59
* barrier
 rangebreak.blob, 48
 rangebreak.linear, 49
 rangebreak.ribbon, 51
* biogeography
 rangebreak.blob, 48
 rangebreak.linear, 49
 rangebreak.ribbon, 51
* breadth
 calc.B1, 8
 calc.B2, 9
* comparison
 threespace.plot, 59
* correlation
 raster.resid, 57
* datasets
 euro.worldclim, 37
 iberolacerta.clade, 39
* enmtools
 background.test, 6
 identity.test, 40
 rangebreak.blob, 48
 rangebreak.linear, 49
 rangebreak.ribbon, 51
* enm
 calc.B1, 8
 calc.B2, 9
 enmtools.ecospat.bg, 19
 enmtools.ecospat.id, 21
 marginal.plots, 44
 visualize.enm, 61
 visualize.overlap, 62
* environment
 multistack.pca, 46
 raster.pca, 56
 threespace.plot, 59
* equivalency
 background.test, 6
 identity.test, 40
* extrapolation
 threespace.plot, 59
* hypothesis-testing
 identity.test, 40
 rangebreak.blob, 48
 rangebreak.linear, 49
 rangebreak.ribbon, 51
* hypothesis
 background.test, 6
* identity
 identity.test, 40
* keywords
 raster.breadth, 53
 raster.overlap, 55
 raster.standardize, 57
* niche
 calc.B1, 8
 calc.B2, 9
 enmtools.ecospat.bg, 19
 enmtools.ecospat.id, 21
 visualize.enm, 61
 visualize.overlap, 62
* overlap
 visualize.overlap, 62
* pca
 multistack.pca, 46
 raster.pca, 56
 threespace.plot, 59
* plot
 enmtools.ecospat.bg, 19
 enmtools.ecospat.id, 21
 marginal.plots, 44
 visualize.enm, 61
 visualize.overlap, 62
* presence
 threespace.plot, 59
* rangebreak
 rangebreak.blob, 48
 rangebreak.linear, 49
 rangebreak.ribbon, 51
* raster
 multistack.pca, 46
 raster.pca, 56
 raster.resid, 57
* residuals
 raster.resid, 57
* response
 marginal.plots, 44
* sdm
 calc.B1, 8
 calc.B2, 9
 enmtools.ecospat.bg, 19
 enmtools.ecospat.id, 21
 marginal.plots, 44
 visualize.enm, 61
 visualize.overlap, 62
* testing
 background.test, 6
add.env, 3
background.buffer, 4
background.points.buffer, 5
background.raster.buffer, 5
background.shape.buffer, 6
background.test, 6
calc.B1, 8
calc.B2, 9
check.bg, 9
check.clade, 10
check.env, 11
check.species, 11
clamp.env, 12
combine.species, 13
drop.species, 13
enmtools.aoc, 14
enmtools.bc, 15
enmtools.calibrate, 16
enmtools.clade, 17
enmtools.dm, 18
enmtools.ecospat.bg, 19
enmtools.ecospat.id, 21
enmtools.gam, 22
enmtools.glm, 24
enmtools.hypervolume, 26
enmtools.maxent, 27
enmtools.rf, 29
enmtools.rf.ranger, 30
enmtools.species, 32, 44
enmtools.vip, 33
env.breadth, 34
env.evaluate, 35
env.overlap, 36
env.standardize, 37
geo.range.overlap, 38
hypervolume.overlap, 38
iberolacerta.clade, 39
identity.test, 40
install.extras, 41
interactive.plot, 42
interactive.plot.enmtools.model, 43
interactive.plot.enmtools.species, 44
leaflet, 42–44
marginal.plots, 44
moses.list, 45
multistack.pca, 46
node.overlap, 47
point.overlap, 47
rangebreak.blob, 48
rangebreak.linear, 49
rangebreak.ribbon, 51
ranger, 32
raster.breadth, 53
raster.cor, 53
raster.cor.matrix, 54
raster.cor.plot, 55
raster.overlap, 55
raster.pca, 56
raster.resid, 57
raster.standardize, 57
sim.points, 58
species.from.file, 59
threespace.plot, 59
INDEX

trimdupes.by.raster, 60
visualize.enm, 61
visualize.overlap, 62