Package ‘EDOIF’

March 28, 2021

Title Empirical Distribution Ordering Inference Framework (EDOIF)

Version 0.1.3

Maintainer Chainarong Amornbunchornvej <grandca@gmail.com>

Description A non-parametric framework based on estimation statistics principle. Its main purpose is to infer orders of empirical distributions from different categories based on a probability of finding a value in one distribution that is greater than an expectation of another distribution. Given a set of ordered-pair of real-category values the framework is capable of 1) inferring orders of domination of categories and representing orders in the form of a graph; 2) estimating magnitude of difference between a pair of categories in forms of mean-difference confidence intervals; and 3) visualizing domination orders and magnitudes of difference of categories. The publication of this package is at Chainarong Amornbunchornvej, Navapornt Surasvadi, Anon Plangprasopchok, and Suttipong Thajchayapong (2020) <doi:10.1016/j.heliyon.2020.e05435>.

License BSD_3_clause + file LICENSE

URL https://github.com/DarkEyes/EDOIF

BugReports https://github.com/DarkEyes/EDOIF/issues

Language en-US

Encoding UTF-8

LazyData false

Depends R (>= 3.5.0), boot

Imports distr, igraph, ellipsis, simpleboot, ggplot2 (>= 3.0)

Suggests knitr, rmarkdown, markdown

VignetteBuilder knitr

RoxygenNote 7.1.1

NeedsCompilation no

Author Chainarong Amornbunchornvej [aut, cre]

Repository CRAN

Date/Publication 2021-03-28 06:20:05 UTC
bootDiffmeanFunc

R topics documented:

bootDiffmeanFunc ... 2
checkSim3Res .. 3
EDOIF ... 4
getADJNetDen .. 6
getConInv ... 7
getDominantRADJ ... 7
getiGraphNetDen ... 8
getiGraphOBJ .. 9
getMegDiffConInv ... 10
getOrder ... 11
gettestDominantRADJ ... 11
getWilcoxDominantRADJ 12
meanBoot ... 13
plot.EDOIF .. 13
plotGraph .. 14
plotMeanCIs ... 15
plotMeanDiffCIs ... 16
print.EDOIF ... 17
SimMixDist ... 17
SimNonNormalDist .. 18

Index 20

Description

bootDiffmeanFunc is a support function for bootstrapping method. Its main task is to infer mean-difference confidence intervals of distributions for all categories except the first category in idx (idx[2], idx[3],...) minus a target category (idx[1]).

Usage

bootDiffmeanFunc(Group, Values, idx, reps, ci, methodType)

Arguments

Group is a vector of categories of each real number in Values
Values is a vector of real-number values
idx is an order list of categories; idx[1] is a target category while others (idx[2], idx[3],...) are compared against idx[1] in order to compute mean-difference confidence intervals.
reps is a number of time of sampling with replacement in a bootstrapping method.
ci is a level of confidence interval inferred.
Value

This function returns a list of mean-difference confidence intervals of categories $\text{id}_2, \text{id}_3, \ldots$ minus category id_1.

result

A list of objects that contains mean-difference confidence intervals of pairs of distributions. It contains mean-difference confidence intervals of categories $\text{id}_2, \text{id}_3, \ldots$ minus category id_1.

Description

checkSim3Res is a support function for checking whether an adjacency matrix of inferred a dominant-distribution network adjMat is corrected w.r.t. generator SimNonNormalDist().

Usage

checkSim3Res(adjMat, flag = 0)

Arguments

- **adjMat**
 - is an adjacency matrix of inferred a dominant-distribution network.
- **flag**
 - is a flag of matrix. It should be set only to shift the low of matrix for comparison.

Value

This function returns precision, recall, and F1-score of inferred adjacency matrix.

Examples

```r
# Generate simulation data with 100 samples per categories
simData<-SimNonNormalDist(nInv=100)

# Performing ordering inference from simData
resultObj<-EDOIF(simData$Values,simData$Group)

# Compare the inferred adjacency matrix with the ground truth
checkSim3Res(adjMat=resultObj$adjMat)
```
Description

EDOIF is a non-parametric framework based on Estimation Statistics principle. Its main purpose is to infer orders of empirical distributions from different categories based on a probability of finding a value in one distribution that is greater than the expectation of another distribution.

Given a set of ordered-pair of real-category values the framework is capable of 1) inferring orders of domination of categories and representing orders in the form of a graph; 2) estimating magnitude of difference between a pair of categories in forms of confidence intervals; and 3) visualizing domination orders and magnitudes of difference of categories.

Usage

EDOIF(Values, Group, bootT, alpha, methodType)

Arguments

Values is a vector of real-number values
Group is a vector of categories of each real number in Values
bootT is a number of times of sample with replacement for bootstrapping. The default is 1000. It must be above zero
alpha is a significance level using in both confidence intervals and ordering inference, it has the range [0,1]. The default is 0.05.
methodType is an option for bootstrapping methods: either "perc" or "bca". The "perc" is the default option.

Value

This class constructor returns an object of EDOIF class.

obj an object of EDOIF class that contains the results of ordering inference that can be print in text mode (print(obj)) or graphic mode (plot(obj)).

The obj consists of the following variables

Values, Group The main inputs of the framework. They are the double and character vectors respectively.

bootT, alpha, methodType The number of bootstrapping, significance level, and bootstrapping method parameters.

sortedGroupList A list of names of categories ascendingly ordered by their means.

sortedmeanList A list of means of categories that are ascendingly ordered.
MegDiffList[[i]]
 Mean difference confidence intervals and related information of all categories that have higher means than sortedGroupList[i] category.

confInvsList[i,]
 A mean confidence interval of sortedGroupList[i] category. confInvsList[i,1] is a lower bound and confInvsList[i,2] is an upper bound.

adjMat[i,j]

pValMat[i,j]
 A p-value of Mann-Whitney test for adjMat[i,j].

adjDiffMat[i,j]
 A lower bound of confidence interval of mean difference for sortedGroupList[j] minus sortedGroupList[i] using methodType bootstrap.

adjBootMat[i,j]
 One if adjDiffMat[i,j] is positive, otherwise, zero.

netDen
 A network density of dominant-distribution network derived from adjMat.

gObj
 An object of igraph of a dominant-distribution network.

Author(s)
 Chainarong Amornbunchornvej. <chai@ieee.org>

See Also
 Run vignette("EDOIF_demo", package = "EDOIF") in a terminal to learn more details about how to use our package.

Examples

Generate simulation data
nInv<-100
initMean=10
stepMean=20
std=8
simData1<-c()
simData1$Values<-rnorm(nInv,mean=initMean,sd=std)
simData1$Group<-rep(c("C1"),times=nInv)
simData1$Values<-c(simData1$Values,rnorm(nInv,mean=initMean,sd=std))
simData1$Group<-c(simData1$Group,rep(c("C2"),times=nInv))
simData1$Values<-c(simData1$Values,rnorm(nInv,mean=initMean+2*stepMean,sd=std))
simData1$Group<-c(simData1$Group,rep(c("C3"),times=nInv))
simData1$Values<-c(simData1$Values,rnorm(nInv,mean=initMean+3*stepMean,sd=std))
simData1$Group<-c(simData1$Group,rep(c("C4"),times=nInv))
simData1$Values<-c(simData1$Values,rnorm(nInv,mean=initMean+4*stepMean,sd=std))
simData1$Group<-c(simData1$Group,rep(c("C5"),times=nInv))

Performing ordering infernce from simData1
resultObj<-EDOIF(simData1$Values,simData1$Group)
getADJNetDen

Print results in text mode
print(resultObj)

Plot results in graphic mode
plot(resultObj)

getADJNetDen

getADJNetDen function

Description

getADJNetDen is a support function for calculating a network density of a dominant-distribution network.

Usage

getADJNetDen(adjMat)

Arguments

adjMat is an adjacency matrix of a dominant-distribution network.

Value

This function returns a value of network density of a dominant-distribution network for a given adjMat.

Examples

Generate simulation data with 100 samples per categories
simData<-SimNonNormalDist(nInv=100)

Performing ordering inference from simData
resultObj<-EDOIF(simData$Values,simData$Group)

Get a network density of an adjacency matrix
getADJNetDen(adjMat=resultObj$adjMat)
getConfInv

Description

getConfInv is a support function for bootstrapping method. Its main purpose is to compute a mean confidence intervals of all distributions.

Usage

getConfInv(Values, Group, GroupList, bootT, alpha, methodType)

Arguments

- **Values** is a vector of real-number values
- **Group** is a vector of categories of each real number in Values
- **GroupList** is a list of names of categories ascendingly ordered by their means.
- **bootT** is a number of times of sample with replacement for bootstrapping. The default is 1000. It must be above zero
- **alpha** is a significance level using in both confidence intervals and ordering inference it has the range [0,1]. The default is 0.05.
- **methodType** is an option for bootstrapping methods: either "perc" or "bca". The "perc" is the default option.

Value

This function returns a list of mean confidence intervals.

confInvsList[i,]

The mean confidence interval of sortedGroupList[i] category. confInvsList[i,1] is a lower bound and confInvsList[i,2] is an upper bound.

getDominantRADJ

Description

getDominantRADJ is a support function for inferring a dominant-distribution network using mean-difference confidence intervals.

Usage

getDominantRADJ(MegDiffList, methodType)
Arguments

MegDiffList is a list of objects that contains mean-difference confidence intervals inferred by getMegDiffConfInv function.

methodType is an option for bootstrapping methods: either "perc" or "bca".

Value

This function returns an adjacency matrix of a dominant-distribution network adjMat and the corresponding lower-bound of mean difference CIs adjDiffMat.

adjDiffMat[i,j] A lower bound of confidence interval of mean difference for j minus i using methodType bootstrap.

adjMat[i,j] An element of adjacency matrix: One if adjDiffMat[i,j] is positive, otherwise, zero.

getiGraphNetDen

getiGraphNetDen function

Description

gettiGraphNetDen is a support function for calculating a network density of a dominant-distribution network.

Usage

gettiGraphNetDen(g)

Arguments

g is an object of iGraph class of a dominant-distribution network.

Value

This function returns a value of network density of of a dominant-distribution network for a given object g.

Examples

Generate simulation data with 100 samples per categories
simData<-SimNonNormalDist(nInv=100)

Performing ordering inference from simData
resultObj<-EDOIF(simData$Values,simData$Group)

Get a network density of an iGraph object
getiGraphOBJ

getiGraphOBJ function

Description

getiGraphOBJ is a support function for converting a dominant-distribution network adjacency matrix to an iGraph object.

Usage

getiGraphOBJ(adjMat, sortedGroupList)

Arguments

adjMat is an adjacency matrix of a dominant-distribution network.

sortedGroupList is a list of names of categories ascendingly ordered by their means.

Value

This function returns an iGraph object of a dominant-distribution network for a given adjMat.

Examples

Generate simulation data with 100 samples per categories
simData<-SimNonNormalDist(nInv=100)

Performing ordering inference from simData
resultObj<-EDOIF(simData$Values,simData$Group)

Get an iGraph object from an adjacency matrix
igraphObj<-getiGraphOBJ(adjMat=resultObj$adjMat,sortedGroupList=resultObj$sortedGroupList)
getMegDiffConfInv

getMegDiffConfInv function

Description

getMegDiffConfInv is a support function for bootstrapping method. Its main purpose is to compute a mean-difference confidence intervals between all pair of distributions.

Usage

getMegDiffConfInv(Values, Group, GroupList, bootT, alpha, methodType)

Arguments

Values is a vector of real-number values
Group is a vector of categories of each real number in Values
GroupList is a list of names of categories ascendingly ordered by their means.
bootT is a number of times of sample with replacement for bootstrapping. The default is 1000. It must be above zero
alpha is a significance level using in both confidence intervals and ordering inference. It has the range [0,1]. The default is 0.05.
methodType is an option for bootstrapping methods: either "perc" or "bca". The "perc" is the default option.

Value

This function returns a list of mean-difference confidence intervals.

MegDiffList a list of objects that contains mean-difference confidence intervals of all possible pairs of distributions. It contains MegDiffList[1],...,MegDiffList[length(GroupList)].

The MegDiffList consists of the following variables

MegDiffList[[i]]

Mean-difference confidence intervals and related information of all categories that have higher means than sortedGroupList[i] category.
getOrder

getOrder function

Description

getOrder is a support function for inferring a linear order of categories ascendingly sorted by their means.

Usage

getOrder(Values, Group)

Arguments

Values
is a vector of real-number values

Group
is a vector of categories of each real number in Values

Value

This function returns two lists: an order list of categories **sortedGroupList** and its corresponding list of means **sortedmeanList**.

sortedGroupList
The list of names of categories ascendingly ordered by their means.

sortedmeanList
The list of means of categories that are ascendingly ordered.

Examples

Generate simulation data

simData<-SimNonNormalDist(nInv=100,noisePer=0.1)

Call the function to get the sorted lists

getOrder(Values=simData$Values,Group=simData$Group)

getttestDominantRADJ

getttestDominantRADJ function

Description

getttestDominantRADJ is a support function for inferring a dominant-distribution network using Student’s t-test.

Usage

getttestDominantRADJ(Values, Group, GroupList, alpha)
getWilcoxDominantRADJ

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Values</td>
<td>is a vector of real-number values</td>
</tr>
<tr>
<td>Group</td>
<td>is a vector of categories of each real number in Values</td>
</tr>
<tr>
<td>GroupList</td>
<td>is a list of names of categories ascendingly ordered by their means.</td>
</tr>
<tr>
<td>alpha</td>
<td>is a significance level using in both confidence intervals and ordering inference it has the range [0,1].</td>
</tr>
</tbody>
</table>

Value

This function returns an adjacency matrix of a dominant-distribution network adjMat and the corresponding p-values of all category pairs.

- pValMat[i,j]: A p-value of Student’s t-test for adjMat[i,j].

Description

getWilcoxDominantRADJ is a support function for inferring a dominant-distribution network using Mann-Whitney (Wilcoxon) Test.

Usage

```
getWilcoxDominantRADJ(Values, Group, GroupList, alpha)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Values</td>
<td>is a vector of real-number values</td>
</tr>
<tr>
<td>Group</td>
<td>is a vector of categories of each real number in Values</td>
</tr>
<tr>
<td>GroupList</td>
<td>is a list of names of categories ascendingly ordered by their means.</td>
</tr>
<tr>
<td>alpha</td>
<td>is a significance level using in both confidence intervals and ordering inference it has the range [0,1].</td>
</tr>
</tbody>
</table>

Value

This function returns an adjacency matrix of a dominant-distribution network adjMat. and the corresponding p-values of all category pairs.

- pValMat[i,j]: A p-value of Mann-Whitney test for adjMat[i,j].
meanBoot

meanBoot function

Description

meanBoot is a support function for bootstrapping method. Its main purpose is to compute a mean of a given samples from data selected by indices.

Usage

meanBoot(data, indices)

Arguments

data is a vector of real-number values

indices is a vector of TRUE/FALSE indices. It allows boot to select samples.

Value

This function returns a mean of values in data that have values TRUE within indices.

plot.EDOIF

plot.EDOIF function

Description

plot.EDOIF is a support function for printing all plots of EDOIF framework: dominant-distribution network plot, mean CI plot, and mean-difference CI plot.

Usage

S3 method for class 'EDOIF'
plot(x, ..., NList, options, fontSize)

Arguments

x is an object of EDOIF class that contains the results of ordering inference.

... Signature for S3 generic function.

NList is a list of based categories users want to have in mean-difference CI plot.

options is an option of reporting EDOIF plot(s): 0 for reporting all plots, 1 for mean-difference CI plot, 2 for mean CI plot, and 3 for dominant-distribution network plot.

fontSize is a font size of text for all plots.
Examples
Generate simulation data with 100 samples per categories
simData<-SimNonNormalDist(nInv=100)
Performing ordering inference from simData
resultObj<-EDOIF(simData$Values,simData$Group)
Plot results in graphic mode
plot(resultObj)

plotGraph

plotGraph function

Description
plotGraph is a support function for plotting a dominant-distribution network from an adjacency matrix.

Usage
plotGraph(obj, rankFlag = TRUE)

Arguments
obj is an object of EDOIF class that contains the results of ordering inference.
rankFlag is an option for including ranks of categories with in the plot: default is TRUE for including ranks.

Value
This function returns a list of an object of iGraph for a dominant-distribution network and its plot variable.

graphVar An object of iGraph for a dominant-distribution network

Examples
Generate simulation data with 100 samples per categories
simData<-SimNonNormalDist(nInv=100)
Performing ordering inference from simData
resultObj<-EDOIF(simData$Values,simData$Group)
plotMeanCIs

Plot a dominant-distribution network and return a list of an iGraph object
iGraphList<-plotGraph(obj=resultObj)

plotMeanCIs

plotMeanCIs function

Description

plotMeanCIs is a support function for plotting mean confidence intervals.

Usage

plotMeanCIs(obj, fontSize = 15, rankFlag = TRUE)

Arguments

- **obj** is an object of EDOIF class that contains the results of ordering inference.
- **fontSize** is a font size of text for all plots.
- **rankFlag** is an option for including ranks of categories with in the plot: default is TRUE for including ranks.

Value

This function returns a list of an object of ggplot class.

- **pMeanCI** An object of ggplot class containing the plot of mean confidence intervals

Examples

Generate simulation data with 100 samples per categories
simData<-SimNonNormalDist(nInv=100)

Performing ordering inference from simData
resultObj<-EDOIF(simData$Values,simData$Group)

Get a list of ggplot object of mean confidence intervals
ggplotList<-plotMeanCIs(obj=resultObj)

Plot mean confidence intervals
plot(ggplotList$pMeanCI)
Description

plotMeanDiffCIs is a support function for plotting difference-mean confidence intervals.

Usage

plotMeanDiffCIs(obj, NList, fontSize = 15, rankFlag = TRUE)

Arguments

- **obj**: is an object of EDOIF class that contains the results of ordering inference.
- **NList**: is a list of based categories users want to have in mean-difference CI plot.
- **fontSize**: is a font size of text for all plots.
- **rankFlag**: is an option for including ranks of categories with in the plot: default is TRUE for including ranks.

Value

This function returns a list of an object of ggplot class.

- **pDiffCI**: An object of ggplot class containing the plot of mean-difference confidence intervals

Examples

```r
# Generate simulation data with 100 samples per categories
simData<-SimNonNormalDist(nInv=100)
# Performing ordering inference from simData
resultObj<-EDOIF(simData$Values,simData$Group)
# Get a list of ggplot object of mean-difference confidence intervals
ggplotList<-plotMeanDiffCIs(obj=resultObj)
# Plot mean-difference confidence intervals
plot(ggplotList$pDiffCI)
```
print.EDOIF

print.EDOIF function

Description

print.EDOIF is a support function for printing results of ordering inference in text.

Usage

```r
## S3 method for class 'EDOIF'
print(x, ...)
```

Arguments

- `x` is an object of EDOIF class that contains the results of ordering inference.
- `...` Signature for S3 generic function.

Examples

```r
# Generate simulation data with 100 samples per categories
simData<-SimNonNormalDist(nInv=100)

# Performing ordering infernece from simData
resultObj<-EDOIF(simData$Values,simData$Group)

# Print results in text mode
print(resultObj)
```

SimMixDist

SimMixDist function

Description

SimMixDist is a support function for generating samples from mixture distribution. The main purpose of this function is to generate samples from non-normal distribution.

Usage

```
SimMixDist(nInv, mean, std, p1, p2)
```
SimNonNormalDist

Arguments

- \texttt{nInv} is a number of samples the function will generate.
- \texttt{mean} is a mean of a normal distribution part of mixture distribution.
- \texttt{std} is a standard deviation of a normal distribution part of mixture distribution.
- \texttt{p1} is a ratio of a normal distribution within a mixture distribution.
- \texttt{p2} is a ratio of a Cauchy distribution within a mixture distribution.

Value

This function returns a list of samples \(V \) generated by a mixture distribution.

Examples

```r
# Generate simulation data with 100 samples with a mixture distribution
# The distribution consist of the following distributions:
# 1) 10\% of uniform distribution range [-400,400];
# 2) 50\% of normal distribution with mean = 40 and std = 8; and
# 3) 40\% of Cauchy distribution with location= 45 and scale = 2.

V<-SimMixDist(nInv=100,mean=40,std=8,p1=0.1,p2=0.5)
```

SimNonNormalDist SimNonNormalDist function

Description

SimNonNormalDist is a support function for generating samples from mixture distribution. There are five categories. Each categories has \texttt{nInv} samples. Categories C1,C2,C3, and C4 are dominated by C5 but none of them dominate each other.

Usage

\texttt{SimNonNormalDist(nInv, noisePer)}

Arguments

- \texttt{nInv} is a number of samples the function will generate for each category.
- \texttt{noisePer} is ratio of uniform distribution within a mixture distribution. It is considered as a uniform noise that make an approach to hardly distinguish whether one distribution dominates another.

Details

The main purpose of this function is to generate samples that contains domination relation among categories.
SimNonNormalDist

Value

This function returns a list of samples Values and their category Group generated by a mixture distribution.

Values A vector of samples generated by a mixture distribution.
Group A list of categories associated with Values.
V1,...,V5 Lists of sample vectors separated by categories.

Examples

Generate simulation data with 100 samples per categories with 10% of uniform noise

```r
simData<-SimNonNormalDist(nInv=100,noisePer=0.1)
```
Index

bootDiffmeanFunc, 2
checkSim3Res, 3
EDOIF, 4
getADJNetDen, 6
getConfInv, 7
getDominantRADJ, 7
getiGraphNetDen, 8
getiGraphOBJ, 9
getiMegDiffConfInv, 10
getOrder, 11
get testifyDominantRADJ, 11
getWilcoxDominantRADJ, 12

meanBoot, 13
plot.EDOIF, 13
plotGraph, 14
plotMeanCIs, 15
plotMeanDiffCIs, 16
print.EDOIF, 17

SimMixDist, 17
SimNonNormalDist, 18