Package ‘DIscBIO’

November 13, 2020

Date 2020-11-13

Title A User-Friendly Pipeline for Biomarker Discovery in Single-Cell Transcriptomics

Version 1.1.0

Description An open, multi-algorithmic pipeline for easy, fast and efficient analysis of cellular sub-populations and the molecular signatures that characterize them. The pipeline consists of four successive steps: data pre-processing, cellular clustering with pseudo-temporal ordering, defining differential expressed genes and biomarker identification. This package implements extensions of the work published by Ghannoum et. al. (2019) <doi:10.1101/700989>.

License MIT + file LICENSE

Encoding UTF-8

Imports methods, TSCAN, boot, htr, mclust, statmod, igraph, RWeka, philentropy, NetIndices, png, grDevices, readr, RColorBrewer, ggplot2, rpart, fpc, cluster, rpart.plot, tsne, AnnotationDbi, org.Hs.eg.db, graphics, stats, utils, impute

Depends R (>= 4.0), SingleCellExperiment

Suggests testthat, Seurat

LazyData true

RoxygenNote 7.1.1

URL https://github.com/ocbe-uio/DIscBIO

BugReports https://github.com/ocbe-uio/DIscBIO/issues

Collate

'DIscBIO-classes.R' 'DIscBIO-generic-ClassVectoringDT.R'
'DIscBIO-generic-ClustDiffGenes.R' 'DIscBIO-generic-Clustexp.R'
'DIscBIO-generic-DEGanalysis.R'
'DIscBIO-generic-DEGanalysis2clust.R'
'DIscBIO-generic-Exprmclust.R'
'DIscBIO-generic-FinalPreprocessing.R'
'DIscBIO-generic-FindOutliers.R'
'DIscBIO-generic-NoiseFiltering.R'
R topics documented:

as.DISCtBIO ... 3
check.format ... 4
ClassVectoringDT ... 4
ClustDiffGenes .. 5
Clustexp ... 7
clustheatmap ... 8
comptSNE ... 9
customConvertFeats .. 10
DEGanalysis .. 11
DEGanalysis2clust ... 12
DISCtBIO ... 14
DISCtBIO2SingleCellExperiment 15
Exprmclust ... 16
FinalPreprocessing .. 17
FindOutliers ... 18
foldchange.seq.twoclass.unpaired 19
HumanMouseGeneIds .. 20
J48DT ... 20
J48DTEval ... 21

NeedsCompilation no

Author Salim Ghannoum [aut, cph],
 Alvaro Köhn-Luque [aut, ths],
 Waldir Leoncio [cre, aut],
 Damiano Fantini [ctb]

Maintainer Waldir Leoncio <w.l.netto@medisin.uio.no>

Repository CRAN

Date/Publication 2020-11-13 10:20:08 UTC
as.DISCBIO

Convert Single Cell Data Objects to DISCBIO.

Description

Initialize a DISCBIO-class object starting from a SingleCellExperiment object or a Seurat object

Usage

as.DISCBIO(x, ...)

Arguments

x

an object of class Seurat or SingleCellExperiment

... additional parameters to pass to the function
Details

Additional parameters to pass to ‘list’ include, if x is a Seurat object, "assay", which is a string indicating the assay slot used to obtain data from (defaults to 'RNA')

Value

a DISCBIO-class object

check.format

Check format

Description

Check format

Usage

check.format(y, resp.type, censoring.status = NULL)

Arguments

y
y
resp.type
resp type
censoring.status
censoring status

ClassVectoringDT

Generating a class vector to be used for the decision tree analysis.

Description

This function generates a class vector for the input dataset so the decision tree analysis can be implemented afterwards.

Usage

ClassVectoringDT(
 object,
 Clustering = "K-means",
 K,
 First = "CL1",
 Second = "CL2",
 sigDEG,
 quiet = FALSE
)
ClustDiffGenes

S4 method for signature 'DISCBIO'

```r
classVectoringDT(
  object,
  Clustering = "K-means",
  K,
  First = "CL1",
  Second = "CL2",
  sigDEG,
  quiet = FALSE
)
```

Arguments

- **object**: DISCBIO class object.
- **Clustering**: Clustering has to be one of the following: ["K-means", "MB"]. Default is "K-means"
- **K**: A numeric value of the number of clusters.
- **First**: A string vector showing the first target cluster. Default is "CL1"
- **Second**: A string vector showing the second target cluster. Default is "CL2"
- **sigDEG**: A data frame of the differentially expressed genes (DEGs) generated by running "DEGanalysis()" or "DEGanalysisM()".
- **quiet**: If 'TRUE', suppresses intermediary output

Value

A data frame.

ClustDiffGenes

Description

Creates a table of cluster differences

Usage

```r
ClustDiffGenes(
  object,
  K,
  pValue = 0.05,
  fdr = 0.01,
  export = FALSE,
  quiet = FALSE,
  filename_up = "Up-DEG-cluster",
)```
filename_down = "Down-DEG-cluster",
filename_binom = "binomial-DEGsTable",
filename_sigdeg = "binomial-sigDEG"
)

## S4 method for signature 'DISCBIO'
ClustDiffGenes(
  object,
  K,
  pValue = 0.05,
  fdr = 0.01,
  export = FALSE,
  quiet = FALSE,
  filename_up = "Up-DEG-cluster",
  filename_down = "Down-DEG-cluster",
  filename_binom = "binomial-DEGsTable",
  filename_sigdeg = "binomial-sigDEG"
)

Arguments

  object  DISCBIO class object.
  K       A numeric value of the number of clusters.
  pValue  A numeric value of the p-value. Default is 0.05.
  fdr     A numeric value of the false discovery rate. Default is 0.01.
  export  A logical vector that allows writing the final gene list in excel file. Default is TRUE.
  quiet   if 'TRUE', suppresses intermediate text output
  filename_up  Name of the exported "up" file (if 'export=TRUE')
  filename_down  Name of the exported "down" file (if 'export=TRUE')
  filename_binom  Name of the exported binomial file
  filename_sigdeg  Name of the exported sigDEG file

Value

A list containing two tables.

Examples

sc <- DISCBIO(valuesG1msTest)
sc <- Clustexp(sc, cln=3, quiet=TRUE)
cdiff <- ClustDiffGenes(sc, K=3, fdr=.3, export=FALSE)
str(cdiff)
cdiff[[2]]
**Clustexp**

*Clustering of single-cell transcriptome data*

**Description**

This function performs the initial clustering of the RaceID algorithm.

**Usage**

```r
Clustexp(
 object,
 clustnr = 3,
 bootnr = 50,
 metric = "pearson",
 do.gap = TRUE,
 SE.method = "Tibs2001SEmax",
 SE.factor = 0.25,
 B.gap = 50,
 cln = 0,
 rseed = NULL,
 quiet = FALSE
)
```

## S4 method for signature 'DISCBIO'

```r
Clustexp(
 object,
 clustnr = 3,
 bootnr = 50,
 metric = "pearson",
 do.gap = TRUE,
 SE.method = "Tibs2001SEmax",
 SE.factor = 0.25,
 B.gap = 50,
 cln = 0,
 rseed = NULL,
 quiet = FALSE
)
```

**Arguments**

- **object**: DISCBIO class object.
- **clustnr**: Maximum number of clusters for the derivation of the cluster number by the saturation of mean within-cluster-dispersion. Default is 20.
- **bootnr**: A numeric value of bootstrapping runs for clusterboot. Default is 50.
- **metric**: Is the method to transform the input data to a distance object. Metric has to be one of the following: ["spearman", "pearson", "kendall", "euclidean", "maximum", "manhattan", "canberra", "binary", "minkowski"].
do.gap  A logical vector that allows generating the number of clusters based on the gap statistics. Default is TRUE.
SE.method  The SE.method determines the first local maximum of the gap statistics. The SE.method has to be one of the following: ["firstSEmax", "Tibs2001SEmax", "globalSEmax", "firstmax", "globalmax"]. Default is "Tibs2001SEmax"
SE.factor  A numeric value of the fraction of the standard deviation by which the local maximum is required to differ from the neighboring points it is compared to. Default is 0.25.
B.gap  Number of bootstrap runs for the calculation of the gap statistics. Default is 50
cln  Number of clusters to be used. Default is NULL and the cluster number is inferred by the saturation criterion.
rseed  Random integer to enforce reproducible clustering results.
quiet  if ‘TRUE’, intermediate output is suppressed

Value
The DISCBIO-class object input with the cpart slot filled.

Examples
sc <- DISCBIO(valuesG1msTest) # changes signature of data
sc <- Clustexp(sc, cln=2)

clustheatmap  Plotting clusters in a heatmap representation of the cell distances

Description
This function plots a heatmap of the distance matrix grouped by clusters. Individual clusters are highlighted with rainbow colors along the x and y-axes.

Usage
clustheatmap(
  object,
  clustering_method = "k-means",
  hmethod = "single",
  rseed = NULL,
  quiet = FALSE,
  plot = TRUE
)

## S4 method for signature 'DISCBIO'
clustheatmap(
  object,
  clustering_method = "k-means",

comptSNE

	hmethod = "single",

  rseed = NULL,
  quiet = FALSE,
  plot = TRUE
  
)

Arguments

  object DISCBIO class object.

  clustering_method
      either "k-means" or "model-based" ("k" and "mb" are also accepted)

  hmethod Agglomeration method used for determining the cluster order from hierarchical
          clustering of the cluster medoids. This should be one of "ward.D", "ward.D2",
          "single", "complete", "average". Default is "single".

  rseed Random integer to fix random results.

  quiet if ‘TRUE’, intermediary output is suppressed

  plot if ‘TRUE’, plots the heatmap; otherwise, just prints cc1mo

Value

  Unless otherwise specified, a heatmap and a vector of the underlying cluster order.

comptSNE Computing tSNE

Description

  This function is used to compute the t-Distributed Stochastic Neighbor Embedding (t-SNE).

Usage

  comptSNE(  
      object,
      rseed = NULL,
      max_iter = 5000,
      epoch = 500,
      quiet = FALSE,
      ...  
  )

## S4 method for signature 'DISCBIO'
comptSNE(  
      object,
      rseed = NULL,
      max_iter = 5000,
      epoch = 500,
quiet = FALSE,
...
)

Arguments

object DISCBIO class object.
rseed Random integer to to yield reproducible maps across different runs
max_iter maximum number of iterations to perform.
epoch The number of iterations in between update messages.
quiet if ‘TRUE’, suppresses intermediate output
...
other parameters to be passed to ‘tsne::tsne’

Value

The DISCBIO-class object input with the tsne slot filled.

Examples

sc <- DISCBIO(valuesG1msTest) # changes signature of data
sc <- Clustexp(sc, cln=2) # data must be clustered before plottin
sc <- comptSNE(sc, max_iter=30)
head(sc@tsne)

customConvertFeats(x, verbose = TRUE)

Arguments

x data.frame or matrix including raw counts (typically, UMIs), where rows are features (genes) and rownames are feature identifiers (SYMBOLs or ENTREZIDS).
verbose logical, shall messages be printed to inform about conversion advances.

Value

a data.frame where rownames are ENSEMBL IDs. The new feature IDs are automatically imputed based on existing feature IDs (SYMBOLs or ENTREZIDS).
DEGanalysis

Determining differentially expressed genes (DEGs) between all individual clusters.

Description

This function defines DEGs between all individual clusters generated by either K-means or model based clustering.

Usage

DEGanalysis(
  object,
  K,
  Clustering = "K-means",
  fdr = 0.05,
  name = "Name",
  export = FALSE,
  quiet = FALSE,
  plot = TRUE,
  filename_deg = "DEGsTable",
  filename_sigdeg = "sigDEG",
  ...
)

# S4 method for signature 'DISCBIO'
DEGanalysis(
  object,
  K,
  Clustering = "K-means",
  fdr = 0.05,
  name = "Name",
  export = FALSE,
  quiet = FALSE,
  plot = TRUE,
  filename_deg = "DEGsTable",
  filename_sigdeg = "sigDEG",
  ...
)

Arguments

- **object** (DISCBIO class object).
- **K** (A numeric value of the number of clusters).
- **Clustering** (Clustering has to be one of the following: "K-means","MB"). Default is "K-means"
DEGanalysis2clust

fdr  A numeric value of the false discovery rate. Default is 0.05.
name A string vector showing the name to be used to save the resulted tables.
export A logical vector that allows writing the final gene list in excel file. Default is TRUE.
quiet if ‘TRUE’, suppresses intermediate text output
plot if ‘TRUE’, plots are generated
filename_deg Name of the exported DEG table
filename_sigdeg Name of the exported sigDEG table
... additional parameters to be passed to samr()

Value
A list containing two tables.

DEGanalysis2clust  Determining differentially expressed genes (DEGs) between two particular clusters.

Description
This function defines DEGs between particular clusters generated by either K-means or model based clustering.

Usage
DEGanalysis2clust(
  object,
  K,
  Clustering = "K-means",
  fdr = 0.05,
  name = "Name",
  First = "CL1",
  Second = "CL2",
  export = FALSE,
  quiet = FALSE,
  plot = TRUE,
  filename_deg = "DEGsTable",
  filename_sigdeg = "sigDEG",
  ...
)

## S4 method for signature 'DISCBIO'
DEGanalysis2clust(
  object,
K,
Clustering = "K-means",
  fdr = 0.05,
  name = "Name",
  First = "CL1",
  Second = "CL2",
  export = FALSE,
  quiet = FALSE,
  plot = TRUE,
  filename_deg = "DEGsTable",
  filename_sigdeg = "sigDEG",
...
)

Arguments

object DISCBIO class object.
K A numeric value of the number of clusters.
Clustering Clustering has to be one of the following: ["K-means","MB"]. Default is "K-means"
fdr A numeric value of the false discovery rate. Default is 0.05.
name A string vector showing the name to be used to save the resulted tables.
First A string vector showing the first target cluster. Default is "CL1"
Second A string vector showing the second target cluster. Default is "CL2"
export A logical vector that allows writing the final gene list in excel file. Default is TRUE.
quiet if ‘TRUE’, suppresses intermediate text output
plot if ‘TRUE’, plots are generated
filename_deg Name of the exported DEG table
filename_sigdeg Name of the exported sigDEG table
... additional parameters to be passed to samr()

Value

A list containing two tables.
The DISCBIO Class

Description

The DISCBIO class is the central object storing all information generated throughout the pipeline.

Arguments

object A DISCBIO object.

Details

DISCBIO

Slots

SingleCellExperiment Representation of the single cell input data, including both cells from regular and ERCC spike-in samples. Data are stored in a SingleCellExperiment object.
expdata The raw expression data matrix with cells as columns and genes as rows in sparse matrix format. It does not contain ERCC spike-ins.
expdataAll The raw expression data matrix with cells as columns and genes as rows in sparse matrix format. It can contain ERCC spike-ins.
data Data with expression normalized to one for each cell.
ldata Filtered data with expression normalized to one for each cell.
distances A distance matrix.
tsne A data.frame with coordinates of two-dimensional tsne layout for the K-means clustering.
background A list storing the polynomial fit for the background model of gene expression variability. It is used for outlier identification.
out A list storing information on outlier cells used for the prediction of rare cell types.
cpart A vector containing the final clustering partition computed by K-means.
fc A vector containing the colour scheme for the clusters.
filterpar A list containing the parameters used for cell and gene filtering based on expression.
clusterpar A list containing the parameters used for the K-means clustering.
outlierpar A list containing the parameters used for outlier identification.
kmeans A list containing the results of running the Clustexp() function.
MBclusters A vector containing the final clustering partition computed by Model-based clustering.
kordering A vector containing the Pseudo-time ordering based on k-means clusters.
MBordering A vector containing the Pseudo-time ordering based on Model-based clusters.
MBtsne A data.frame with coordinates of two-dimensional tsne layout for the Model-based clustering.
noiseF A vector containing the gene list resulted from running the noise filtering.
FinalGeneList A vector containing the final gene list resulted from running the noise filtering or/and the expression filtering.
Examples

class(valuesG1msTest)
G1_reclassified <- DISCBIO(valuesG1msTest)
class(G1_reclassified)
str(G1_reclassified, max.level=2)
identical(G1_reclassified@expdataAll, valuesG1msTest)

DISCBIO2SingleCellExperiment

Convert a DISCBIO object to a SingleCellExperiment.

Description

Extract the SingleCellExperiment input data from the corresponding input slot in a DISCBIO-class object

Usage

DISCBIO2SingleCellExperiment(x)

Arguments

x an object of class DISCBIO

Value

a SingleCellExperiment-class object

Examples

g1_disc <- DISCBIO(valuesG1msTest)
class(g1_disc)
g1_sce <- DISCBIO2SingleCellExperiment(g1_disc)
class(g1_sce)
Exprmclust  Performing Model-based clustering on expression values

Description

This function first uses principal component analysis (PCA) to reduce dimensionality of original data. It then performs model-based clustering on the transformed expression values.

Usage

Exprmclust(
  object,
  K = 3,
  modelNames = "VVV",
  reduce = TRUE,
  cluster = NULL,
  quiet = FALSE
)

## S4 method for signature 'DISCBIO'
Exprmclust(
  object,
  K = 3,
  modelNames = "VVV",
  reduce = TRUE,
  cluster = NULL,
  quiet = FALSE
)

## S4 method for signature 'data.frame'
Exprmclust(
  object,
  K = 3,
  modelNames = "VVV",
  reduce = TRUE,
  cluster = NULL,
  quiet = FALSE
)

Arguments

- **object** DISCBIO class object.
- **K** An integer vector specifying all possible cluster numbers. Default is 3.
- **modelNames** model to be used in model-based clustering. By default "ellipsoidal, varying volume, shape, and orientation" is used.
**FinalPreprocessing**

This function generates the final filtered normalized dataset.

**Usage**

```r
FinalPreprocessing(
 object,
 GeneFlitering = "NoiseF",
 export = FALSE,
 quiet = FALSE,
 fileName = "filteredDataset"
)
```

## S4 method for signature 'DISCBIO'

```r
FinalPreprocessing(
 object,
 GeneFlitering = "NoiseF",
 export = FALSE,
 quiet = FALSE,
 fileName = "filteredDataset"
)
```

**Arguments**

- `object`: DISCBIO class object.
- `GeneFlitering`: GeneFlitering has to be one of the followings: ["NoiseF","ExpF"]. Default is "NoiseF"
- `export`: A logical vector that allows writing the final gene list in excel file. Default is TRUE.
- `quiet`: if ‘TRUE’, intermediary output is suppressed
- `fileName`: File name for exporting (if ‘export = TRUE’)

**Value**

If ‘object’ is of class DISCBIO, the output is the same object with the MBclusters slot filled. If the ‘object’ is a data frame, the function returns a named list containing the four objects that together correspond to the contents of the MBclusters slot.
FindOutliers

Value

The DISCBIO-class object input with the FinalGeneList slot filled.

Examples

```r
sc <- DISCBIO(valuesG1msTest)
sc <- NoiseFiltering(sc, percentile=0.9, CV=0.2, export=FALSE)
sc <- FinalPreprocessing(sc, GeneFiltering="NoiseF", export=FALSE)
```

FindOutliers | Inference of outlier cells

Description

This functions performs the outlier identification for k-means and model-based clustering.

Usage

```r
FindOutliers(
 object,
 K,
 outminc = 5,
 outlg = 2,
 probthr = 0.001,
 thr = 2^(1:40),
 outdistquant = 0.75,
 plot = TRUE,
 quiet = FALSE
)
```

```r
S4 method for signature 'DISCBIO'
FindOutliers(
 object,
 K,
 outminc = 5,
 outlg = 2,
 probthr = 0.001,
 thr = 2^(1:40),
 outdistquant = 0.75,
 plot = TRUE,
 quiet = FALSE
)
```
Arguments

- **object**: DISCBIO class object.
- **K**: Number of clusters to be used.
- **outminc**: minimal transcript count of a gene in a clusters to be tested for being an outlier gene. Default is 5.
- **outlg**: Minimum number of outlier genes required for being an outlier cell. Default is 2.
- **probthr**: outlier probability threshold for a minimum of outlg genes to be an outlier cell. This probability is computed from a negative binomial background model of expression in a cluster. Default is 0.001.
- **thr**: probability values for which the number of outliers is computed in order to plot the dependence of the number of outliers on the probability threshold. Default is \(2^{\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\star\sta
Arguments

\[
\begin{align*}
\text{x} & \quad \text{x} \\
\text{y} & \quad \text{y} \\
\text{depth} & \quad \text{depth}
\end{align*}
\]

HumanMouseGeneIds

*Human and Mouse Gene Identifiers.*

Description

Data frame including ENTREZID, SYMBOL, and ENSEMBL gene identifiers of human and mouse genes.

Source

Data were imported, modified, and formatted from the Mus.musculus (ver 1.3.1) and the Homo.sapiens (ver 1.3.1) BioConductor libraries.

Description

The decision tree analysis is implemented over a training dataset, which consisted of the DEGs obtained by either SAMseq or the binomial differential expression.

Usage

\[
J48DT(\text{data, quiet = FALSE, plot = TRUE})
\]

Arguments

\[
\begin{align*}
\text{data} & \quad \text{A data frame resulted from running the function ClassVectoringDT.} \\
\text{quiet} & \quad \text{If ‘TRUE’, suppresses intermediary output} \\
\text{plot} & \quad \text{If ‘FALSE’, suppresses plot output}
\end{align*}
\]

Value

Information about the J48 model and, by default, a plot of the decision tree.
J48DTeval  

Evaluating the performance of the J48 decision tree.

Description

This function evaluates the performance of the generated trees for error estimation by ten-fold cross validation assessment.

Usage

J48DTeval(data, num.folds = 10, First = "CL1", Second = "CL2", quiet = FALSE)

Arguments

data  The resulted data from running the function J48DT.
num.folds  A numeric value of the number of folds for the cross validation assessment. Default is 10.
First  A string vector showing the first target cluster. Default is "CL1"
Second  A string vector showing the second target cluster. Default is "CL2"
quiet  If 'TRUE', suppresses intermediary output

Value

Statistics about the J48 model

Jaccard  

Jaccard’s similarity

Description

Robustness of the clusters can be assessed by Jaccard’s similarity, which reflects the reproducibility of individual clusters across bootstrapping runs. Jaccard’s similarity is the intersect of two clusters divided by the union.

Usage

Jaccard(object, Clustering = "K-means", K, plot = TRUE, R = 100, ...)
Arguments

object DISCBIO class object.
Clustering Clustering has to be one of the following: ['K-means','MB']. Default is 'K-means'
K A numeric value of the number of clusters
plot if 'TRUE', plots the mean Jaccard similarities
R number of bootstrap replicates
... Further arguments passed to boot::boot

Value

A plot of the mean Jaccard similarity coefficient per cluster.

Description

This function takes the exact output of exprmclust function and construct Pseudo-time ordering by mapping all cells onto the path that connects cluster centers.

Usage

KmeanOrder(
    object,
    quiet = FALSE,
    export = FALSE,
    filename = "Cellular_pseudo-time_ordering_based_on_k-means_clusters"
)

## S4 method for signature 'DISCBIO'
KmeanOrder(
    object,
    quiet = FALSE,
    export = FALSE,
    filename = "Cellular_pseudo-time_ordering_based_on_k-means_clusters"
)

Arguments

object DISCBIO class object.
quiet if 'TRUE', suppresses intermediary output
export if 'TRUE', exports order table to csv
filename Name of the exported file (if 'export=TRUE')
Value

The DISCBIO-class object input with the kordering slot filled.

Note

This function has been replaced by pseudoTimeOrdering(), but it is being kept for legacy purposes. It will, however, be removed from future versions of DISCBIO.

Description

This function checks the connectivity degree and the betweenness centrality, which reflect the communication flow in the defined PPI networks.

Usage

NetAnalysis(data, export = FALSE, FileName = "NetworkAnalysisTable-1")

Arguments

data Protein-protein interaction data frame resulted from running the PPI function.
export if ‘TRUE’, exports the analysis table as a csv file
FileName suffix for the file name (if export = TRUE)

Value

A network analysis table

Networking

Plotting the network.

Description

This function uses STRING-api to plot the network.

Usage

Networking(
  data,
  FileName = NULL,
  species = "9606",
  plot_width = 25,
  plot_height = 15
)
## NoiseFiltering

### Arguments

- **data**
  - A gene list.

- **FileName**
  - A string vector showing the name to be used to save the resulted network. If ‘NULL’, the network will be saved to a temporary directory.

- **species**
  - The taxonomy name/id. Default is "9606" for Homo sapiens.

- **plot_width**
  - Plot width

- **plot_height**
  - Plot height

### Value

- A plot of the network

### Description

Given a matrix or data frame of count data, this function estimates the size factors as follows:

Each column is divided by the geometric means of the rows. The median (or, if requested, another location estimator) of these ratios (skipping the genes with a # geometric mean of zero) is used as the size factor for this column. Source: DESeq package.

### Usage

```r
NoiseFiltering(
 object,
 percentile = 0.8,
 CV = 0.3,
 geneCol = "yellow",
 FgeneCol = "black",
 erccCol = "blue",
 Val = TRUE,
 plot = TRUE,
 export = FALSE,
 quiet = FALSE,
 filename = "Noise_filtering_genes_test"
)
```

```r
S4 method for signature 'DISCBIO'
NoiseFiltering(
 object,
 percentile = 0.8,
 CV = 0.3,
 geneCol = "yellow",
 FgeneCol = "black",
)```
NoiseFiltering

```r
erccCol = "blue",
Val = TRUE,
plot = TRUE,
export = FALSE,
quiet = FALSE,
filename = "Noise_filtering_genes_test"
```

Arguments

- `object` DISCBIO class object.
- `percentile` A numeric value of the percentile. It is used to validate the ERCC spik-ins. Default is 0.8.
- `CV` A numeric value of the coefficient of variation. It is used to validate the ERCC spik-ins. Default is 0.5.
- `geneCol` Color of the genes that did not pass the filtration.
- `FgeneCol` Color of the genes that pass the filtration.
- `erccCol` Color of the ERCC spik-ins.
- `Val` A logical vector that allows plotting only the validated ERCC spike-ins. Default is TRUE. If `Val=FALSE` will plot all the ERCC spike-ins.
- `plot` A logical vector that allows plotting the technical noise. Default is TRUE.
- `export` A logical vector that allows writing the final gene list in excel file. Default is TRUE.
- `quiet` if 'TRUE', suppresses printed output
- `filename` Name of the exported file (if 'export=TRUE')

Value

The DISCBIO-class object input with the noiseF slot filled.

Note

This function should be used only if the dataset has ERCC.

Examples

```r
sc <- DISCBIO(valuesG1msTest) # changes signature of data
sd_filtered <- NoiseFiltering(sc, export=FALSE)
str(sd_filtered)
```
Normalizedata

Description
This function allows filtering of genes and cells to be used in the downstream analysis.

Usage
```r
Normalizedata(
  object,
  mintotal = 1000,
  minexpr = 0,
  minnumber = 0,
  maxexpr = Inf,
  downsample = FALSE,
  dsn = 1,
  rseed = NULL
)
```

```r
## S4 method for signature 'DISCBIO'
Normalizedata(
  object,
  mintotal = 1000,
  minexpr = 0,
  minnumber = 0,
  maxexpr = Inf,
  downsample = FALSE,
  dsn = 1,
  rseed = NULL
)
```

Arguments
- **object**: DISCBIO class object.
- **mintotal**: minimum total transcript number required. Cells with less than `mintotal` transcripts are filtered out. Default is 1000.
- **minexpr**: minimum required transcript count of a gene in at least `minnumber` cells. All other genes are filtered out. Default is 0.
- **minnumber**: minimum number of cells that are expressing each gene at `minexpr` transcripts. Default is 0.
- **maxexpr**: maximum allowed transcript count of a gene in at least a single cell after normalization or downsampling. All other genes are filtered out. Default is Inf.
- **downsample**: A logical vector. Default is FALSE. If `downsample` is set to TRUE, then transcript counts are downsampled to `mintotal` transcripts per cell, instead of the
normalization. Downsampling versions of the transcript count data are averaged across dsn samples.

dsn A numeric value of the number of samples to be used to average the downsampled versions of the transcript count data. Default is 1 which means that sampling noise should be comparable across cells. For high numbers of dsn the data will become similar to the median normalization.

rseed Random integer to enforce reproducible clustering results.

Value

The DISCBIO-class object input with the ndata and fdata slots filled.

Examples

```r
sc <- DISCBIO(valuesG1msTest) # changes signature of data

# In this case this function is used to normalize the reads
sc_normal <- Normalizedata(
  sc, mintotal=1000, minexpr=0, minnumber=0, maxexpr=Inf, downsample=FALSE,
  dsn=1, rseed=17000
)
summary(sc_normal@fdata)
```

PCAplotSymbols

Description

Generates a plot of grouped PCA components.

Usage

```r
PCAplotSymbols(object, types = NULL)
```

Arguments

- `object` DISCBIO class object.
- `types` If types=NULL then the names of the cells will be grouped automatically. Default is NULL.

Value

Plot of the Principal Components.
plotExptSNE \hspace{1cm} \textit{Highlighting gene expression in the t-SNE map}

\textbf{Description}

The t-SNE map representation can also be used to analyze expression of a gene or a group of genes, to investigate cluster specific gene expression patterns.

\textbf{Usage}

\begin{verbatim}
plotExptSNE(object, g, n = NULL)

S4 method for signature 'DISCBIO'
plotExptSNE(object, g, n = NULL)
\end{verbatim}

\textbf{Arguments}

- \texttt{object}
 DISCBIO class object.
- \texttt{g}
 Individual gene name or vector with a group of gene names corresponding to a subset of valid row names of the \texttt{n}\texttt{data} slot of the \texttt{DISCBIO} object.
- \texttt{n}
 String of characters representing the title of the plot. Default is NULL and the first element of \texttt{g} is chosen.

\textbf{Value}

t-SNE plot for one particular gene

\begin{verbatim}
plotGap \hspace{1cm} \textit{Plotting Gap Statistics}
\end{verbatim}

\textbf{Description}

Plotting Gap Statistics

\textbf{Usage}

\begin{verbatim}
plotGap(object, y_limits = NULL)

S4 method for signature 'DISCBIO'
plotGap(object, y_limits = NULL)
\end{verbatim}

\textbf{Arguments}

- \texttt{object}
 DISCBIO class object.
- \texttt{y_limits}
 2-length numeric vector with the limits for the gap plot
Value
A plot of the gap statistics

Description
Visualizing k-means or model-based clusters using tSNE maps

Usage
plotLabelstSNE(object)

S4 method for signature 'DISCBIO'
plotLabelstSNE(object)

Arguments
object DISCBIO class object.

Value
Plot containing the ID of the cells in each cluster

Description
The PCA representation can either be used to show pseudo-time ordering or the gene expression of a particular gene.

Usage
PlotMBpca(object, type = "order", g = NULL, n = NULL)

Arguments
object DISCBIO class object.
type either 'order' to plot pseudo-time ordering or 'exp' to plot gene expression
g Individual gene name or vector with a group of gene names corresponding to a subset of valid row names of the ndata slot of the DISCBIO object. Ignored if 'type="order"'.
n String of characters representing the title of the plot. Default is NULL and the first element of g is chosen. Ignored if 'type="order"'.

plotLabelstSNE tSNE map with labels

PlotMBpca Plotting pseudo-time ordering or gene expression in Model-based
clustering in PCA
plotOrderTsne

Description
The tSNE representation can also be used to show the pseudo-time ordering.

Usage
plotOrderTsne(object)

```r
## S4 method for signature 'DISCBIO'
plotOrderTsne(object)
```

Arguments
- `object` DISCBIO class object.

Value
A plot of the pseudo-time ordering.

PlotmclustMB

Plotting the Model-based clusters in PCA.

Description
Plot the model-based clustering results

Usage
PlotmclustMB(object)

```r
## S4 method for signature 'DISCBIO'
PlotmclustMB(object)
```

Arguments
- `object` DISCBIO class object.

Value
A plot of the PCA.

plotOrderTsne

Plotting the pseudo-time ordering in the t-SNE map

Description
The tSNE representation can also be used to show the pseudo-time ordering.

Usage
plotOrderTsne(object)

```r
## S4 method for signature 'DISCBIO'
plotOrderTsne(object)
```

Arguments
- `object` DISCBIO class object.

Value
A plot of the pseudo-time ordering.
plotSilhouette Silhouette Plot for K-means clustering

Description

The silhouette provides a representation of how well each point is represented by its cluster in comparison to the closest neighboring cluster. It computes for each point the difference between the average similarity to all points in the same cluster and to all points in the closest neighboring cluster. This difference it normalize such that it can take values between -1 and 1 with higher values reflecting better representation of a point by its cluster.

Usage

plotSilhouette(object, K)

S4 method for signature 'DISCBIO'
plotSilhouette(object, K)

Arguments

- **object**: DISCBIO class object.
- **K**: A numeric value of the number of clusters

Value

A silhouette plot

plotSymbolstSNE tSNE map for K-means clustering with symbols

Description

Visualizing the K-means clusters using tSNE maps

Usage

plotSymbolstSNE(object, types = NULL, legloc = "bottomright")

S4 method for signature 'DISCBIO'
plotSymbolstSNE(object, types = NULL, legloc = "bottomright")
Arguments

object: DISCBIO class object.
types: If types=NULL then the names of the cells will be grouped automatically. Default is NULL.
legloc: A keyword from the list "bottomright", "bottom", "bottomleft", "left", "topleft", "top", "topright", "right" and "center". Default is "bottomright"

Value

Plot of tsne objet slot, grouped by gene.

plottSNE | tSNE map

Description

Visualizing the k-means or model-based clusters using tSNE maps

Usage

plottSNE(object)

S4 method for signature 'DISCBIO'
plottSNE(object)

Arguments

object: DISCBIO class object.

Value

A plot of t-SNEs.

PPI

Defining protein-protein interactions (PPI) over a list of genes,

Description

This function uses STRING-api. The outcome of STRING analysis will be stored in tab separated values (TSV) files.

Usage

PPI(data, FileName = NULL, species = "9606")
prepExampleDataset

Arguments

- **data**: A gene list.
- **FileName**: A string vector showing the name to be used to save the resulted table. If null, no file will be exported.
- **species**: The taxonomy name/id. Default is "9606" for Homo sapiens.

Value

Either a TSV file stored in the user’s file system and its corresponding ‘data.frame’ object in R or an R object containing that information.

Description

Internal function that prepares a pre-treated dataset for use in several examples.

Usage

```r
prepExampleDataset(dataset, save = TRUE)
```

Arguments

- **dataset**: Dataset used for transformation.
- **save**: save results?

Details

This function serves the purpose of treating datasets such as valuesG1msReduced to reduce examples of other functions by bypassing some analysis steps covered in the vignettes.

Value

Two rda files, ones for K-means clustering and another for Model-based clustering.

Author(s)

Waldir Leoncio
Description

This function takes the exact output of exprmclust function and construct Pseudo-time ordering by
mapping all cells onto the path that connects cluster centers.

Usage

pseudoTimeOrdering(
 object,
 quiet = FALSE,
 export = FALSE,
 filename = "Cellular_pseudo-time_ordering"
)

S4 method for signature 'DISCBIO'
pseudoTimeOrdering(
 object,
 quiet = FALSE,
 export = FALSE,
 filename = "Cellular_pseudo-time_ordering"
)

Arguments

 object DISCBIO class object.
 quiet if ‘TRUE’, suppresses intermediary output
 export if ‘TRUE’, exports order table to csv
 filename Name of the exported file (if ‘export=TRUE’)

Value

The DISCBIO-class object input with the kordering slot filled.

rankcols

Rank columns

Description

Ranks the elements within each col of the matrix x and returns these ranks in a matrix

Usage

rankcols(x)
reformatSiggenes

Arguments

x x

Note

this function is equivalent to 'samr::rankcol', but uses 'apply' to rank the columns instead of a compiled Fortran function which was causing our DEGanalysis functions to freeze in large datasets.

reformatSiggenes Reformat Siggenes Table

Description

Reformats the Siggenes table output from the SAMR package

Usage

reformatSiggenes(table)

Arguments

table output from 'samr::samr.compute.siggenes.table'

Author(s)

Waldir Leoncio

See Also

replaceDecimals

replaceDecimals Replace Decimals

Description

Replaces decimals separators between comma and periods on a character vector

Usage

replaceDecimals(x, from = ",", to = ".")

Arguments

x vector of characters
from decimal separator on input file
to decimal separator for output file
Note
This function was especially designed to be used with retormatSiggenes

See Also
reformatSiggenes

resa Resampling

Description
Corresponds to ‘samr::resample’

Usage
resa(x, d, nresamp = 20)

Arguments
x data matrix. nrow=#gene, ncol=#sample
d estimated sequencing depth
nresamp number of resamplings

Value
xresamp: an rank array with dim #gene*#sample*nresamp

RpartDT RPART Decision Tree

Description
The decision tree analysis is implemented over a training dataset, which consisted of the DEGs obtained by either SAMseq or the binomial differential expression.

Usage
RpartDT(data, quiet = FALSE, plot = TRUE)

Arguments
data The exact output of the exprmclust function.
quiet If ‘TRUE’, suppresses intermediary output
plot If ‘FALSE’, suppresses plot output
RpartEVAL

Value

Information about the model and, by default, a plot of the decision tree.

Description

Evaluating the performance of the RPART Decision Tree.

This function evaluates the performance of the generated trees for error estimation by ten-fold cross validation assessment.

Usage

RpartEVAL(data, num.folds = 10, First = "CL1", Second = "CL2", quiet = FALSE)

Arguments

data The resulted data from running the function J48DT.
num.folds A numeric value of the number of folds for the cross validation assessment. Default is 10.
First A string vector showing the first target cluster. Default is "CL1"
Second A string vector showing the second target cluster. Default is "CL2"
quiet If ‘TRUE’, suppresses intermediary output

Value

Performance statistics of the model

sammy

Significance analysis of microarrays

Description

This function is an adaptation of ‘samr::samr’
Usage

```r
sammy(
  data,
  resp.type = c("Quantitative", "Two class unpaired", "Survival", "Multiclass",
               "One class", "Two class paired", "Two class unpaired timecourse",
               "One class timecourse", "Two class paired timecourse", "Pattern discovery"),
  assay.type = c("array", "seq"),
  s0 = NULL,
  s0.perc = NULL,
  nperms = 100,
  center.arrays = FALSE,
  testStatistic = c("standard", "wilcoxon"),
  time.summary.type = c("slope", "signed.area"),
  regression.method = c("standard", "ranks"),
  return.x = FALSE,
  knn.neighbors = 10,
  random.seed = NULL,
  nresamp = 20,
  nresamp.perm = NULL,
  xl.mode = c("regular", "firsttime", "next20", "lasttime"),
  xl.time = NULL,
  xl.prevfit = NULL
)
```

Arguments

data
- Data object with components x- p by n matrix of features, one observation per column (missing values allowed); y- n-vector of outcome measurements; censoring.status- n-vector of censoring censoring.status (1= died or event occurred, 0=survived, or event was censored), needed for a censored survival outcome

resp.type
- Problem type: "Quantitative" for a continuous parameter (Available for both array and sequencing data); "Two class unpaired" (for both array and sequencing data); "Survival" for censored survival outcome (for both array and sequencing data); "Multiclass": more than 2 groups (for both array and sequencing data); "One class" for a single group (only for array data); "Two class paired" for two classes with paired observations (for both array and sequencing data); "Two class unpaired timecourse" (only for array data), "One class timecourse" (only for array data), "Two classpaired timecourse" (only for array data), or "Pattern discovery" (only for array data)

assay.type
- Assay type: "array" for microarray data, "seq" for counts from sequencing

s0
- Exchangeability factor for denominator of test statistic; Default is automatic choice. Only used for array data.

s0.perc
- Percentile of standard deviation values to use for s0; default is automatic choice; -1 means s0=0 (different from s0.perc=0, meaning s0=zeroeth percentile of standard deviation values= min of sd values. Only used for array data.

nperms
- Number of permutations used to estimate false discovery rates
center.arrays Should the data for each sample (array) be median centered at the outset? Default = FALSE. Only used for array data.

testStatistic Test statistic to use in two class unpaired case. Either "standard" (t-statistic) or "wilcoxon" (Two-sample wilcoxon or Mann-Whitney test). Only used for array data.

time.summary.type Summary measure for each time course: "slope", or "signed.area"). Only used for array data.

regression.method Regression method for quantitative case: "standard" (linear least squares) or "ranks" (linear least squares on ranked data). Only used for array data.

return.x Should the matrix of feature values be returned? Only useful for time course data, where x contains summaries of the features over time. Otherwise x is the same as the input data data\$x

knn.neighbors Number of nearest neighbors to use for imputation of missing features values. Only used for array data.

random.seed Optional initial seed for random number generator (integer)

nresamp For assay.type="seq", number of resamples used to construct test statistic. Default 20. Only used for sequencing data.

nresamp.perm For assay.type="seq", number of resamples used to construct test statistic for permutations. Default is equal to nresamp and it must be at most nresamp. Only used for sequencing data.

xl.mode Used by Excel interface

xl.time Used by Excel interface

xl.prevfit Used by Excel interface

samr.estimate.depth Estimate sequencing depths

Description

Estimate sequencing depths

Usage

```r
samr.estimate.depth(x)
```

Arguments

- `x` data matrix. nrow=#gene, ncol=#sample

Value

- `depth`: estimated sequencing depth. a vector with len sample.
valuesG1msTest
Single-cells data from a myxoid liposarcoma cell line

Description

A sample of single cells from a myxoid liposarcoma cell line. Columns refer to samples and rows refer to genes. The last rows refer to external RNA controls consortium (ERCC) spike-ins. This dataset is part of a larger dataset containing 94 single cells. The complete dataset is fully compatible with this package and an rda file can be obtained at https://github.com/ocbe-uio/DiscBIO/blob/dev/data/valuesG1ms.rda

VolcanoPlot

Volcano Plot

Description

Plotting differentially expressed genes (DEGs) in a particular cluster. Volcano plots are used to readily show the DEGs by plotting significance versus fold-change on the y and x axes, respectively.

Usage

```r
VolcanoPlot(object, value = 0.05, name = NULL, fc = 0.5, FS = 0.4)
```

Arguments

- `object`: A data frame showing the differentially expressed genes (DEGs) in a particular cluster
- `value`: A numeric value of the false discovery rate. Default is 0.05. Default is 0.05
- `name`: A string vector showing the name to be used on the plot title
- `fc`: A numeric value of the fold change. Default is 0.5.
- `FS`: A numeric value of the font size. Default is 0.4.

Value

A volcano plot
Twoclass Wilcoxon statistics

Description

Twoclass Wilcoxon statistics

Usage

wilcoxon.unpaired.seq.func(xresamp, y)

Arguments

xresamp an rank array with dim #gene*#sample*nresamp
y outcome vector of values 1 and 2

Value

the statistic.
Index

as.DISCBIO, 3
check.format, 4
ClassVectoringDT, 4
ClassVectoringDT,DISCBIO-method
 (ClassVectoringDT), 4
ClustDiffGenes, 5
ClustDiffGenes,DISCBIO-method
 (ClustDiffGenes), 5
Clustexp, 7
Clustexp,DISCBIO-method (Clustexp), 7
clustheatmap, 8
clustheatmap,DISCBIO-method
 (clustheatmap), 8
comptSNE, 9
comptSNE,DISCBIO-method (comptSNE), 9
customConvertFeats, 10
DEGanalysis, 11
DEGanalysis,DISCBIO-method
 (DEGanalysis), 11
DEGanalysis2clust, 12
DEGanalysis2clust,DISCBIO-method
 (DEGanalysis2clust), 12
DISCBIO, 14
DISCBIO-class (DISCBIO), 14
DISCBIO-class, (DISCBIO), 14
DISCBIOSingleCellExperiment, 15
Exprmclust, 16
Exprmclust,data.frame-method
 (Exprmclust), 16
Exprmclust,DISCBIO-method (Exprmclust), 16
FinalPreprocessing, 17
FinalPreprocessing,DISCBIO-method
 (FinalPreprocessing), 17
FindOutliers, 18
FindOutliers,DISCBIO-method
 (FindOutliers), 18
foldchange.seq.twoclass.unpaired, 19
HumanMouseGeneIds, 20
J48DT, 20
J48DTeval, 21
Jaccard, 21
KmeanOrder, 22
KmeanOrder,DISCBIO-method (KmeanOrder), 22
NetAnalysis, 23
Networking, 23
NoiseFiltering, 24
NoiseFiltering,DISCBIO-method
 (NoiseFiltering), 24
Normalizedata, 26
Normalizedata,DISCBIO-method
 (Normalizedata), 26
PCAPlotSymbols, 27
PCAPlotSymbols,DISCBIO-method
 (PCAPlotSymbols), 27
plotExptSNE, 28
plotExptSNE,DISCBIO-method
 (plotExptSNE), 28
plotGap, 28
plotGap,DISCBIO-method (plotGap), 28
plotLabelstSNE, 29
plotLabelstSNE,DISCBIO-method
 (plotLabelstSNE), 29
PlotMBpca, 29
PlotmclustMB, 30
PlotmclustMB,DISCBIO-method
 (PlotmclustMB), 30
plotOrderTsne, 30
plotOrderTsne,DISCBIO-method
 (plotOrderTsne), 30
plotSilhouette, 31
plotSilhouette, DISCBIO-method (plotSilhouette), 31
plotSymbolstSNE, 31
plotSymbolstSNE, DISCBIO-method (plotSymbolstSNE), 31
plottSNE, 32
plottSNE, DISCBIO-method (plottSNE), 32
PPI, 32
prepExampleDataset, 33
pseudoTimeOrdering, 34
pseudoTimeOrdering, DISCBIO-method (pseudoTimeOrdering), 34
rankcols, 34
reformatSiggenes, 35
replaceDecimals, 35
resa, 36
RpartDT, 36
RpartEVAL, 37
sammy, 37
samr.estimate.depth, 39
valuesG1msTest, 40
VolcanoPlot, 40
wilcoxon.unpaired.seq.func, 41