Package ‘ArchaeoPhases’

December 1, 2020

Type Package

Title Post-Processing of the Markov Chain Simulated by 'ChronoModel', 'Oxcal' or 'BCal'

Version 1.5

Date 2020-11-26

Author Anne Philippe [aut, cre], Marie-Anne Vibet [aut], Thomas S. Dye [ctb]

Maintainer Anne Philippe <anne.philippe@univ-nantes.fr>

Description Provides a list of functions for the statistical analysis of archaeological dates and groups of dates. It is based on the post-processing of the Markov Chains whose stationary distribution is the posterior distribution of a series of dates. Such output can be simulated by different applications as for instance 'ChronoModel' (see <https://chronomodel.com/>), 'Oxcal' (see <https://c14.arch.ox.ac.uk/oxcal.html>) or 'BCal' (see <https://bcal.shef.ac.uk/>). The only requirement is to have a csv file containing a sample from the posterior distribution. Note that this package interacts with data available through the 'ArchaeoPhases.dataset' package which is available in a separate repository. The size of the 'ArchaeoPhases.dataset' package is approximately 4 MB.

License GPL-3

Depends R (>= 3.5.0), coda, hdnrce

Imports stats, utils, graphics, grDevices, shiny, shinythemes, DT, readr, gggthemes, toOrdinal, ggplot2, ggalt, reshape2, dplyr, digest, ggplot, magrittr, tibble

Suggests knitr, rmarkdown, testthat (>= 2.1.0), ArchaeoPhases.dataset (>= 0.1.0)

VignetteBuilder knitr

BugReports https://github.com/ArchaeoStat/ArchaeoPhases/issues

RoxygenNote 7.1.1

NeedsCompilation no

Encoding UTF-8
LazyData true
Repository CRAN
Date/Publication 2020-12-01 13:10:03 UTC

R topics documented:

app_ArchaeoPhases ... 3
ArchaeoPhases .. 3
coda.mcmc .. 4
CreateMinMaxGroup ... 5
CredibleInterval ... 6
credible_interval .. 6
DatesHiatus ... 7
dates_hiatus ... 8
estimate_range ... 9
Events .. 11
ImportCSV ... 11
ImportCSV.BCal ... 13
MarginalPlot .. 14
MarginalProba .. 16
MarginalStatistics .. 17
marginal_plot .. 18
marginal_statistics ... 20
MultiCredibleInterval 21
MultiDatesPlot ... 22
MultiHPD ... 25
MultiMarginalPlot ... 26
MultiPhasePlot ... 28
MultiPhasesGap .. 29
MultiPhasesTransition 30
MultiPhaseTimeRange 31
MultiSuccessionPlot 33
multi_credible_interval 34
multi_dates_plot ... 35
multi_hpd ... 37
multi_marginal_plot 38
multi_marginal_statistics 39
new_archaeophases_mcmc 41
new_archaeophases_plot 42
OccurrencePlot ... 44
occurrence_plot .. 46
original_file ... 48
original_file.archaeophases_mcmc 49
original_file.archaeophases_plot 50
PhaseDurationPlot .. 50
PhasePlot ... 52
Phases ... 53
Run ArchaeoPhases shiny apps

Description

Run ArchaeoPhases shiny apps

Usage

app_ArchaeoPhases()

ArchaeoPhases: Post-Processing of the Markov Chain Simulated by 'ChronoModel', 'OxCal', or 'BCal'.

Description

Provides a list of functions for the statistical analysis of archaeological dates and groups of dates. It is based on the post-processing of the Markov Chains whose stationary distribution is the posterior distribution of a series of dates. Such output can be simulated by different applications, as for instance ChronoModel, OxCal, or BCal. The only requirement is to have a csv file containing a sample from the posterior distribution.
coda.mcmc

Create an mcmc.list object for coda users

Description

This wrapper function extracts parallel chains from a data frame to create an mcmc.list object for use with coda diagnostic tools.

Usage

coda.mcmc(data, numberChains = 1, iterationColumn = NULL)

Arguments

data
 Data frame containing the output of the MCMC algorithm.
numberChains
 Number of parallel chains, default = 1.
iterationColumn
 Column number corresponding to the iteration values, default = NULL.

Value

An mcmc.list object.

Author(s)

Anne Philippe, <Anne.Philippe@univ-nantes.fr> and
Marie-Anne Vibet, <Marie-Anne.Vibet@univ-nantes.fr>

See Also

mcmc
mcmc.list

Examples

data(Events)
mcmcList = coda.mcmc(data = Events, numberChains = 3, iterationColumn = 1)plot(mcmcList)gelman.diag(mcmcList)
The multivariate criterion can not be evaluated when a phase
contains only one date. This induces colinearity problems.
gelman.diag(mcmcList, multivariate = FALSE)
CreateMinMaxGroup

Construct the minimum and maximum for a group of events (phase)

Description

Constructs a data frame containing the output of the MCMC algorithm corresponding to the minimum and maximum of a group of events.

Usage

CreateMinMaxGroup(
 data,
 position,
 name = "Phase",
 add = NULL,
 exportFile = NULL
)

Arguments

data Data frame containing the output of the MCMC algorithm.
position Numeric vector containing the position of the column corresponding to the MCMC chains of all dates included in the phase of interest.
name Name of the current group of dates or phase.
add Name of the data frame in which the current minimum and maximum should be added, default = NULL.
exportFile Name of the final file that will be saved if chosen, default = NULL.

Value

A data frame containing the minimum and maximum of the group of dates included in the phase of interest. These values may be appended to a data frame add if given.

Author(s)

Anne Philippe, <Anne.Philippe@univ-nantes.fr> and Marie-Anne Vibet, <Marie-Anne.Vibet@univ-nantes.fr>

Examples

data(Events)
 Temp = CreateMinMaxGroup(Events, c(2,4), name = "Phase2")
 ## Not run:
 #To do for saving the new variables in csv file
 Temp = CreateMinMaxGroup(Events, c(3,5), name = "Phase1", add=Temp,
 exportFile = "MinMaxPhases.csv")
 ## End(Not run)
CredibleInterval | *Bayesian credible interval*

Description
Computes the shortest credible interval of the output of the MCMC algorithm for a single parameter.

Usage
```r
CredibleInterval(a_chain, level = 0.95, roundingOfValue = 0)
```

Arguments
- `a_chain`: Numeric vector containing the output of the MCMC algorithm for the parameter.
- `level`: Probability corresponding to the level of confidence used for the credible interval, default = 0.95.
- `roundingOfValue`: Integer indicating the number of decimal places to be used, default = 0.

Details
A \((100 \times level)\) elements of the sample outside the interval. The \((100 \times level)\) value.

Value
A named vector of values containing the confidence level and the endpoints of the shortest credible interval in calendar years (BC/AD).

Examples
```r
data(Events); attach(Events)
CredibleInterval(Event.1)
CredibleInterval(Event.12, 0.50)
```

credible_interval | *Bayesian credible interval*

Description
Computes the shortest credible interval for a single parameter.

Usage
```r
credible_interval(data, level = 0.95, round_to = 0)
```
DatesHiatus

Test for the existence of a hiatus between two parameters

Description

Finds if a gap exists between two dates and returns the longest interval that satisfies: \(P(a_{\text{chain}} < \text{IntervalInf} < \text{IntervalSup} < b_{\text{chain}} | M) = \text{level} \)

Usage

```
DatesHiatus(a_chain, b_chain, level = 0.95)
```

Arguments

- `a_chain`: Numeric vector containing the output of the MCMC algorithm for the first parameter.
- `b_chain`: Numeric vector containing the output of the MCMC algorithm for the second parameter.
- `level`: Probability corresponding to the confidence level of the interval.

Arguments

- `data`: Numeric vector containing the output of the MCMC algorithm for the parameter.
- `level`: Probability corresponding to the level of confidence used for the credible interval, default = 0.95.
- `round_to`: Integer indicating the number of decimal places to be used, default = 0.

Details

A \((100 \times \text{level}) \) that keeps \(N \times (1 - \text{level}) \) elements of the sample outside the interval. The \((100 \times \text{level}) \) of those intervals.

Value

A list with the following components:

- `ci` Named vector of length 2, with \(\text{inf} \) the lower endpoint of the shortest credible interval as a calendar year; and \(\text{sup} \) the upper endpoint of the shortest credible interval as a calendar year;
- `level` Confidence level for the credible intervals; and
- `call` Function call.

Examples

```
data(Events); attach(Events)
credible_interval(Event.1)
credible_interval(Event.12, 0.50)
```
Value

A named vector with the level and the endpoints of the gap in calendar years (AD/BC)

Author(s)

Anne Philippe, <Anne.Philippe@univ-nantes.fr> and
Marie-Anne Vibet, <Marie-Anne.Vibet@univ-nantes.fr>

Examples

```r
data(Events); attach(Events)
DatesHiatus(Event.1, Event.12)
DatesHiatus(Event.1, Event.12, level = 0.5)
```

dates_hiatus

Test for the existence of a hiatus between two MCMC chains.

Description

Determines whether there is a hiatus between two MCMC chains and returns the longest interval that satisfies: \(P(a_{chain} < IntervalInf < IntervalSup < b_{chain}|M) = level \)

Usage

```r
dates_hiatus(a_chain, b_chain, level = 0.95)
```

Arguments

- `a_chain` : Numeric vector containing the output of the MCMC algorithm for the first parameter.
- `b_chain` : Numeric vector containing the output of the MCMC algorithm for the second parameter.
- `level` : Probability corresponding to the confidence level of the interval.

Value

A list with the following components:

- `hiatus` : A named vector where `inf` is the lower endpoint of the hiatus as a calendar year (AD/BC) or `NA` if there is no hiatus at `level`, and `sup` is the upper endpoint of the gap as a calendar year (AD/BC), or `NA` if there is no hiatus at `level`.
- `duration` : The duration of the hiatus at `level`.
- `level` : Probability corresponding to the confidence level of the interval.
- `call` : The function call.
estimate_range

Author(s)

Anne Philippe, <Anne.Philippe@univ-nantes.fr>,
Marie-Anne Vibet, <Marie-Anne.Vibet@univ-nantes.fr>, and
Thomas S. Dye, <tsd@tsdye.online>

Examples

```r
data(Events); attach(Events)
dates_hiatus(Event.1, Event.12)
dates_hiatus(Event.1, Event.12, level = 0.5)
```

estimate_range
Estimate ranges from two or more calibrations

Description

Calculates the ranges of summary statistics from the output of two or more runs of the MCMC algorithm. Results are given in calendar years for statistics that estimate them.

Usage

```r
estimate_range(
mcmc,  
position,  
app = "bcal",  
estimates = c("mean", "q1", "median", "q3", "ci.inf", "ci.sup"),  
quiet = "partial",  
bin_width = 1,  
decimal = ".",  
separator = ","  
)
```

Arguments

- `mcmc`
 A vector of path names to the MCMC files.
- `position`
 Numeric vector containing the positions of the columns corresponding to the MCMC chains of interest, or a vector of column names.
- `app`
 Name of the application that created the MCMC files, one of bcal, oxcal, chronomodel.
- `estimates`
 Numeric vector containing the positions of the columns corresponding to the statistics of interest returned by the `multi_marginal_statistics()` function, or a vector of column names.
- `quiet`
 One of no (default) to allow messages and warnings, partial to suppress messages and allow warnings, or yes to suppress messages and warnings.
estimate_range

bin_width If app is set to bcal, the bin width specified for the BCal calibration. Defaults to the BCal default of 1.
decimal If app is set to chronomodel, either . (default) or ,, the two choices offered by ChronoModel.
separator If app is set to chronomodel, the character used to separate fields in the CSV file. Defaults to ,.

Details

This function is useful for estimating the sensitivity of calibration results to different model parameters.

Value

A list with the following components:

- range_table A matrix of estimate ranges.
- mean The mean of the ranges in range_table.
- sd The standard deviation of the ranges in range_table.
- min The minimum of the ranges in range_table.
- median The median of the ranges in range_table.
- max The maximum value of the ranges in range_table.

Author(s)

Thomas S. Dye, <tsd@tsdye.online>

Examples

```r
## Not run:
## Generate 0's
res <- estimate_range(mcmc = c("http://tsdye.online/AP/ox.csv", "http://tsdye.online/AP/ox.csv"), position = c(1, 2), app = "oxcal", quiet = "yes")
sum(res$range_table)
## End(Not run)
```
Description

A data set containing information on the ages of four dated events.

Usage

Events

Format

A data frame with 30,000 rows and 5 variables:

- **iter** iteration of the MCMC algorithm
- **Event.2** information on event 2
- **Event.1** information on event 1
- **Event.22** information on event 22
- **Event.12** information on event 12

ImportCSV

Importing a CSV file

Description

Import a CSV file containing the output of the MCMC algorithm

Usage

ImportCSV(
 file,
 dec = ".",
 sep = ",",
 comment.char = "#",
 header = TRUE,
 iterationColumn = NULL,
 referenceYear = NULL,
 rowToWithdraw = NULL,
 bin.width = NULL
)
ImportCSV

Arguments

- **file**
 Name of the CSV file containing the output of the MCMC algorithm.

- **dec**
 Character used in the file for decimal points for the use of `read.csv()`.

- **sep**
 Field separator character for the use of `read.csv()`.

- **comment.char**
 Character vector of length one containing a single character or an empty string for the use of `read.csv()`.

- **header**
 Logical value indicating whether the file contains the names of the variables as its first line.

- **iterationColumn**
 Column number corresponding to the iteration values, default = NULL.

- **referenceYear**
 Year of reference for MCMC in date format other than BC/AD, default = NULL.

- **rowToWithdraw**
 Number of the row to be withdrawn or "last" for the last row of the data frame, default = NULL.

- **bin.width**
 Bin width specified in a BCal project (note that `bin.width` does not have to be set if the BCal default bin width of 1 is used).

Details

Use of the `read.csv()` function with default values for CSV files produced by ChronoModel software. For MCMC in a date format different from BC/AD, use the parameter `referenceYear` to convert the MCMC to BC/AD, otherwise the remaining functions of ArchaeoPhases will not work. MCMC files generated by BCal may contain an empty last row. This row should be withdrawn using the `rowToWithdraw` parameter. Otherwise, the functions of ArchaeoPhases will not work properly.

Value

A data frame containing a representation of the data in the file.

Author(s)

Anne Philippe, <Anne.Philippe@univ-nantes.fr>,
Thomas S. Dye, <tsd@tsdye.online>, and
Marie-Anne Vibet, <Marie-Anne.Vibet@univ-nantes.fr>

See Also

ImportCSV.BCal
read_chronomodel
read_oxcal
ImportCSV.BCal

Importing a BCal csv file

Description

Importing a csv file containing the output of the MCMC algorithm from the BCal software

Usage

`ImportCSV.BCal(file, bin.width = NULL)`

Arguments

- `file` Name of the CSV file containing the output of the MCMC algorithm.
- `bin.width` Bin width specified in a BCal project (note: `bin.width` does not have to be set if the BCal default bin width of 1 is used).

Value

A data frame containing a representation of the data in the CSV file

Author(s)

Anne Philippe, <Anne.Philippe@univ-nantes.fr>,
Thomas S. Dye, <tsd@tsdye.online>, and
Marie-Anne Vibet, <Marie-Anne.Vibet@univ-nantes.fr>

Examples

```r
data(Employees)
## Not run:
write.csv(Employees, "data.csv", row.names=FALSE)
data = ImportCSV("data.csv", dec = ".", sep=';', comment.char='#',
                   header = TRUE, iterationColumn = 1)

# Import of MCMC generated by BCal and extracted in cal BP
# (the year of reference is 1950)
if (requireNamespace("ArchaeoPhases.dataset", quietly = TRUE)) {
data(Fishpond)
write.csv(Fishpond, "fishpond_MCMC.csv", row.names=FALSE)
Fishpond = ImportCSV("fishpond_MCMC.csv", dec = ".", sep=';',
                      header = TRUE, iterationColumn = 1,
                      referenceYear = 1950, rowToWithdraw = "last")
}

## End(Not run)
```
Examples

```r
## Not run:
# Import of MCMC generated by BCal and extracted in cal BP (the year of reference is 1950)
data(Fishpond)
write.csv(Fishpond, "fishpond_MCMC.csv", row.names = FALSE)
Fishpond = ImportCSV.BCal("fishpond_MCMC.csv", bin.width = 1)

## End(Not run)

## Not run:
# equivalent call
Fishpond2 = ImportCSV("fishpond_MCMC.csv", dec = ".", sep="", referenceYear = 1950,
                         rowToWithdraw = "last", bin.width = 1)

## End(Not run)
```

MarginalPlot

Plot a marginal posterior density

Description

Draws a plot of the estimated marginal posterior density for the one-parameter and adds the mean and the credible interval at the desired level

Usage

```r
MarginalPlot(
    a_chain,
    level = 0.95,
    GridLength = 1024,
    title = "Characteristics of a date",
    subtitle = NULL,
    caption = "ArchaeoPhases",
    x.label = "Calendar year",
    y.label = NULL,
    y.grid = TRUE,
    x.scale = "calendar",
    elapsed.origin.position = NULL,
    x.min = NULL,
    x.max = NULL,
    height = 7,
    width = 7,
    units = "in",
    file = NULL,
    newWindow = TRUE
)
```
MarginalPlot

Arguments

- `a_chain`: Numeric vector containing the output of the MCMC algorithm for the parameter.
- `level`: Probability corresponding to the level of confidence.
- `GridLength`: Length of the grid used to estimate the density.
- `title`: Title of the graph.
- `subtitle`: Subtitle of the graph.
- `caption`: Caption of the graph.
- `x.label`: Label of the x-axis.
- `y.label`: Label of the y-axis.
- `y.grid`: Switch for horizontal grid lines.
- `x.scale`: One of "calendar" for calendar years, "BP" for years before present, or "elapsed" for time elapsed from a specified origin.
- `elapsed.origin.position`: Position of the column to use as the origin for elapsed time calculations.
- `x.min`: Minimum x axis value.
- `x.max`: Maximum x axis value.
- `height`: Plot height in units.
- `width`: Plot width in units.
- `units`: String recognized by the `ggsave()` function, one of "in", "cm", "mm".
- `file`: Name of the file that will be saved if chosen, default = `NULL`.
- `newWindow`: Whether or not the plot is drawn within a new window.

Details

The density is estimated using `density()` function with `n = GridLength`.

Value

`NULL`, called for its side effects

Author(s)

Anne Philippe, <Anne.Philippe@univ-nantes.fr> and
Marie-Anne Vibet, <Marie-Anne.Vibet@univ-nantes.fr>

Examples

```r
data(Events);
MarginalPlot(a_chain = Events$Event.1, level = 0.95)
```
MarginalProba

Bayesian test for anteriority / posteriority between two parameters

Description

This function estimates the posterior probability that event 'a' is older than event 'b' using the output of the MCMC algorithm. This provides a Bayesian test for checking the following assumption: "Event a is older than event b".

Usage

MarginalProba(a_chain, b_chain)

Arguments

a_chain : Numeric vector containing the output of the MCMC algorithm for the first parameter.
b_chain : Numeric vector containing the output of the MCMC algorithm for the second parameter.

Details

For a given output of MCMC algorithm, this function estimates the posterior probability of the event 'a' < 'b' by the relative frequency of the event "the value of event 'a' is less than the value of event 'b'" in the simulated Markov chain.

Value

An unnamed vector with the posterior probability of the assumption: "event a is older than event b"

Author(s)

Anne Philippe, <Anne.Philippe@univ-nantes.fr> and Marie-Anne Vibet, <Marie-Anne.Vibet@univ-nantes.fr>

Examples

data(Events); attach(Events)
Probability that Event.1 is older than Event.12
MarginalProba(Event.1, Event.12)
Probability that Event.1 is older than Event.2
MarginalProba(Event.1, Event.2)
Probability that the beginning of the phase 1 is older than the end of the phase 1
Should always be 1 for every phase
data(Phases); attach(Phases)
MarginalProba(Phase.1.alpha, Phase.1.beta)
MarginalStatistics

Marginal summary statistics

Description

Calculates summary statistics of the output of the MCMC algorithm for a one-parameter. Results are given in calendar years (BC/AD).

Usage

MarginalStatistics(a_chain, level = 0.95, roundingOfValue = 0)

Arguments

a_chain Numeric vector containing the output of the MCMC algorithm for the parameter.
level Probability corresponding to the level of confidence used for the credible interval and the highest posterior density region.
roundingOfValue Integer indicating the number of decimal places.

Details

The \((100 \times \text{level})\)\%

Value

A named matrix of values corresponding to all the following statistics:

- **title** The title of the summary statistics
- **mean** The mean of the MCMC chain. Use of \text{mean()}\ function.
- **map** The maximum a posteriori of the MCMC chain. Use of \text{hdr()}\ function.
- **sd** The standard deviation of the MCMC chain. Use of \text{sd()}\ function.
- **Q1, median, Q3** The quantiles of the MCMC chain corresponding to 0.25, 0.50 and 0.75. Use of \text{quantile()}\ function.
- **CI** The credible interval corresponding to the desired level. Use of \text{CredibleInterval()}\ function.
- **HPDR** The highest posterior density regions corresponding to the desired level. Use of \text{hdr()}\ function.

Author(s)

Anne Philippe, <Anne.Philippe@univ-nantes.fr> and
Marie-Anne Vibet, <Marie-Anne.Vibet@univ-nantes.fr>
References

Examples

data(Events); attach(Events)
MarginalStatistics(Event.1)
MarginalStatistics(Event.2, level = 0.90)

marginal_plot

Plot a marginal posterior density

Description

Draws a plot of the marginal posterior density for a single parameter, with an option to add the mean and the credible interval at the desired level.

Usage

```r
marginal_plot(
  data,
  position = 1,
  level = 0.95,
  grid_length = 1024,
  title = if (is.numeric(position)) names(data)[position] else position,
  subtitle = "Marginal posterior density",
  caption = paste(level * 100, "% credible interval", sep = ""),
  x_label = "Calendar year",
  y_label = "Density",
  y_grid = TRUE,
  x_scale = "calendar",
  elapsed_origin_position = NULL,
  x_min = NULL,
  x_max = NULL,
  height = 7,
  width = 7,
  units = "in",
  file = NULL,
  plot_result = TRUE,
  mean_linetype = "dashed",
  mean_color = "white",
  mean_size = 0.5,
  ci_linetype = "dotted",
  ci_color = mean_color,
  ci_size = mean_size,
)```
```
line_linetype = "solid",
line_color = "black",
line_size = 1,
density_color = "gray30",
fill_palette = NULL
```

**Arguments**

- `data` Data frame containing the output of the MCMC algorithm.
- `position` Index of the column corresponding to the MCMC chain of interest, or a column name.
- `level` Probability corresponding to the level of confidence.
- `grid_length` Length of the grid used to estimate the density.
- `title` Title of the graph. The default uses the data column name.
- `subtitle` Subtitle of the graph. The default is "Marginal posterior density".
- `caption` Caption of the graph. The default describes the confidence of the credible interval.
- `x_label` Label of the x-axis.
- `y_label` Label of the y-axis.
- `y_grid` Switch for horizontal grid lines.
- `x_scale` One of "calendar" for calendar years, "BP" for years before present, or "elapsed" for time elapsed from a specified origin.
- `elapsed_origin_position` Position of the column to use as the origin for elapsed time calculations.
- `x_min` Minimum x axis value.
- `x_max` Maximum x axis value.
- `height` Plot height in units.
- `width` Plot width in units.
- `units` String recognized by the `ggsave()` function, one of "in", "cm", "mm". This parameter has no effect on the display plot.
- `file` Name of the file that will be saved if chosen, default = NULL.
- `plot_result` If TRUE, then draw a plot on the display, else suppress drawing.
- `mean_linetype` The linetype used to indicate the mean density.
- `mean_color` The color of the line used to indicate mean density.
- `mean_size` The width of the line used to indicate the mean density.
- `ci_linetype` The linetype used to indicate the credible intervals.
- `ci_color` The color of the lines used to indicate the credible intervals.
- `ci_size` The width of the lines used to indicate the credible intervals.
- `line_linetype` The linetype used to indicate the density.
- `line_color` The color of the line used to indicate the density.
- `line_size` The width of the line used to indicate the density.
- `density_color` Color to use if `fill_palette` is not specified.
- `fill_palette` Palette to use for fills.
Details

The plot is drawn with the current theme and color scales; the function does not alter or override theme elements.

Value

An archaeophases_plot object with the data and metadata needed to reproduce the plot.

Author(s)

Anne Philippe, <Anne.Philippe@univ-nantes.fr>; Marie-Anne Vibet, <Marie-Anne.Vibet@univ-nantes.fr>; and Thomas S. Dye, <tsd@tsdye.online>

Examples

data(Events)
mp <- marginal_plot(data = Events, position = 2, level = 0.95)
## View data and metadata
str(mp)

Description

Calculates summary statistics of the output of the MCMC algorithm for a single parameter. Results are given in calendar years (BC/AD).

Usage

marginal_statistics(a_chain, level = 0.95, round_to = 0)

Arguments

a_chain Numeric vector containing the output of the MCMC algorithm for the parameter.
level Probability corresponding to the level of confidence used for the credible interval and the highest posterior density region.
round_to Integer indicating the number of decimal places.

Details

The $(100 \times \text{level})$ using \texttt{hdr()} function from \texttt{hdrcde} package.
Value

A list with the following components:

- **mean** The mean of the MCMC chain.
- **map** The maximum a posteriori of the MCMC chain.
- **sd** The standard deviation of the MCMC chain.
- **quantiles** A vector with the following elements: \( \min = \) minimum value of the MCMC chain; \( q_1 = \) first quantile of the MCMC chain; \( \text{median} = \) median of the MCMC chain; \( q_2 = \) second quantile of the MCMC chain; and \( \max = \) maximum value of the MCMC chain.
- **level** Confidence level for the credible interval and highest posterior density.
- **ci** A vector with the following elements: \( \inf = \) lower credible interval of the MCMC chain at \( \text{level} \); and \( \sup = \) upper credible interval of the MCMC chain at \( \text{level} \).
- **hpdr** A variable length vector with the lower and upper highest posterior density regions of the MCMC chain at \( \text{level} \). List components are named \( \text{inf}_n \) and \( \text{sup}_n \) for \( n = 1 \) to the number of highest posterior density regions.

Author(s)

Anne Philippe, <Anne.Philippe@univ-nantes.fr>, Marie-Anne Vibet, <Marie-Anne.Vibet@univ-nantes.fr>, and Thomas S. Dye, <tsd@tsdye.online>

References


Examples

```r
data(Events); attach(Events)
marginal_statistics(Event.1)
marginal_statistics(Event.2, level = 0.90)
convenient vector
foo <- marginal_statistics(Event.1)
unlist(foo)
```

---

**MultiCredibleInterval**  
Bayesian credible interval for a series of dates

Description

Estimation of the shortest credible interval for each variable of a simulated Markov chain
Usage

`MultiCredibleInterval(data, position, level = 0.95, roundingOfValue = 0)`

Arguments

data: data frame containing the output of the MCMC algorithm.

position: Numeric vector containing the position of the column corresponding to the MCMC chains of interest.

level: Probability corresponding to the level of confidence used for the credible interval.

roundingOfValue: Integer indicating the number of decimal places.

Details

A \( (100 \times level) \) \ The \( (100 \times level) \) \ Value

Returns a matrix of values containing the level of confidence and the endpoints of the shortest credible interval for each variable of the MCMC chain. The name of the resulting rows are the positions of the corresponding columns in the CSV file. The result is given in calendar years (BC/AD).

Author(s)

Anne Philippe, <Anne.Philippe@univ-nantes.fr> and
Marie-Anne Vibet, <Marie-Anne.Vibet@univ-nantes.fr>

Examples

data(Events)
`MultiCredibleInterval(Events, c(2, 4, 3), 0.95)`
**Usage**

```r
MultiDatesPlot(
 data,
 position,
 level = 0.95,
 roundingOfValue = 0,
 intervals = "CI",
 order = "default",
 title = "Plot of intervals",
 subtitle = NULL,
 caption = "ArchaeoPhases",
 labelXaxis = "Calendar Year",
 labelYaxis = NULL,
 height = 7,
 width = 7,
 units = "in",
 x.min = NULL,
 x.max = NULL,
 x.scale = "calendar",
 elapsed.origin.position = NULL,
 dumbbell.size = 3,
 dot.guide = FALSE,
 dot.guide.size = 0.25,
 y.grid = FALSE,
 file = NULL,
 newWindow = TRUE,
 print.data.result = FALSE
)
```

**Arguments**

- **data**
  - Data frame containing the output of the MCMC algorithm.

- **position**
  - Numeric vector containing the position of the column corresponding to the MCMC chains of interest.

- **level**
  - Probability corresponding to the level of confidence.

- **roundingOfValue**
  - Integer indicating the number of decimal places to be used.

- **intervals**
  - One of "CI" for credible intervals, or "HPD" for highest posterior density intervals.

- **order**
  - Order of the events. If "default" then the order of the csv file is followed, if "increasing" events are ordered by the HPDInf of the first region or the CIInf.

- **title**
  - Title of the plot.

- **subtitle**
  - Subtitle of the plot.

- **caption**
  - Caption of the plot.

- **labelXaxis**
  - X axis label of the plot.
MultiDatesPlot

labelYaxis  Y axis label of the plot.
height  Height of the plot in units.
width  Width of the plot in units.
units  A string recognized by ggsave() function, one of "in", "cm", "mm".
x.min  Minimum x axis value.
x.max  Maximum x axis value.
x.scale  One of "calendar" for calendar years, "BP" for years before present, or "elapsed" for years after a specified origin.
elapsed.origin.position  Position of the column corresponding to the origin for elapsed time calculations.
dumbbell.size  Size of the symbols used to plot events.
dot.guide  Switch for guides from y-axis to plot symbols.
dot.guide.size  Size of the dot guides.
y.grid  Switch for horizontal grids.
file  Name of the file to be saved. If NULL then no plot is saved.
newWindow  Whether the plot is drawn within a new window or not.
print.data.result  If TRUE, the list containing the data to plot will be returned.

Value

NULL, called for its side effects. If print.data.result = TRUE then a list containing the data to plot will be returned.

Author(s)

Anne Philippe, <Anne.Philippe@univ-nantes.fr>,
Thomas S. Dye, <tsd@tsdye.online>, and
Marie-Anne Vibet, <Marie-Anne.Vibet@univ-nantes.fr>

Examples

data(Events)
MultiDatesPlot(Events, c(2, 4, 3), level = 0.95, intervals = "CI",
title = "Plot of CI intervals")
MultiDatesPlot(Events, c(2, 4, 3), level = 0.95, intervals = "HPD",
title = "Plot of HPD intervals")
MultiDatesPlot(Events, c(2, 4, 3), level = 0.95, intervals = "HPD",
order = "increasing")
MultiHPD

Bayesian HPD regions for a series of MCMC chains

Description

Estimation of the highest posterior density regions for each variable of a simulated Markov chain. This function uses the hdr() function included in the hdrcde package. An HPD region may be a union of several intervals.

Usage

MultiHPD(data, position, level = 0.95, roundingOfValue = 0)

Arguments

data Data frame containing the output of the MCMC algorithm.
position Numeric vector containing the position of the column corresponding to the MCMC chains of interest.
level Probability corresponding to the level of confidence.
roundingOfValue Integer indicating the number of decimal places.

Details

Highest posterior density function region using the function hdr() from the hdrcde package

Value

Returns a matrix of values containing the level of confidence and the endpoints of each interval for each variable of the MCMC chain. The name of the resulting rows are the positions of the corresponding columns in the CSV file. The result is given in calendar years (BC/AD).

Author(s)

Anne Philippe, <Anne.Philippe@univ-nantes.fr> and Marie-Anne Vibet, <Marie-Anne.Vibet@univ-nantes.fr>

References


Examples

data(Events)
MultiHPD(Events, c(2, 4, 3), 0.95)
MultiMarginalPlot  

Marginal posterior densities of several events

Description

Draws a plot of the estimated marginal posterior density for a parameter and adds the mean and the credible interval at the desired level

Usage

```r
MultiMarginalPlot(
 data,
 position,
 level = 0.95,
 GridLength = 1024,
 x.scale = rep("calendar", length(position)),
 elapsed.origin = NULL,
 title = "Characteristics of several dates",
 subtitle = NULL,
 caption = "ArchaeoPhases",
 x.label = "Calendar year",
 y.label = NULL,
 y.grid = TRUE,
 x.min = NULL,
 x.max = NULL,
 legend.title = "Legend",
 height = 7,
 width = 7,
 units = "in",
 file = NULL,
 newWindow = TRUE
)
```

Arguments

data  
Data frame containing the output of the MCMC algorithm.

position  
Numeric vector containing the position of the column corresponding to the MCMC chains of interest.

level  
Probability corresponding to the level of confidence.

GridLength  
Number of equally spaced points at which the density is to be estimated (for density() function).

x.scale  
One of "calendar" for calendar years, "BP" for years before present, or "elapsed" for time elapsed from a specified origin.

elapsed.origin  
Position of the column to use as the origin for elapsed time calculations.

title  
Title of the plot.
MultiMarginalPlot

subtitle Subtitle of the plot.
caption Caption of the plot.
x.label Label of the x-axis.
y.label Label of the y-axis.
y.grid Switch for horizontal grid lines.
x.min Minimum x-axis value.
x.max Maximum x-axis value.
legend.title Title for the legend.
height Plot height in units.
width Plot width in units.
units String recognized by the ggsave() function, one of "in", "cm", "mm".
file Name of the file that will be saved if specified, default = NULL.
newWindow Whether or not the plot is drawn within a new window.

Details

The density is estimated using density() function with n = GridLength. The input MCMC chains should either be in calendar years or converted to calendar years using x.scale vector or elapsed.origin.

Value

NULL, called for its side effects

Author(s)

Anne Philippe, <Anne.Philippe@univ-nantes.fr> and
Marie-Anne Vibet, <Marie-Anne.Vibet@univ-nantes.fr>

Examples

data(Events);
MultiMarginalPlot(Events, position = c(2, 3, 4), level = 0.95)
MultiPhasePlot

Several phase density plots

Description

Plot of the marginal posterior densities of several groups

Usage

MultiPhasePlot(
  data,
  position_minimum,
  position_maximum = position_minimum + 1,
  level = 0.95,
  title = "Characterisation of several groups",
  colors = NULL,
  exportFile = NULL,
  exportFormat = "PNG"
)

Arguments

data Data frame containing the output of the MCMC algorithm.
position_minimum Numeric vector containing the column number corresponding to the minimum of the events included in each group.
position_maximum Numeric vector containing the column number corresponding to the end of the groups set in the same order as in position_minimum.
level Probability corresponding to the level of confidence.
title Title of the plot.
colors Numeric vector of colors for each group of dates.
exportFile Name of the file to be saved. If NULL then no plot is saved.
exportFormat Format of the export file, one of "PNG" or "SVG".

Details

Draws a plot with the marginal posterior densities of the minimum and the maximum of the dates included in each group. No temporal order between phases is required. The result is given in calendar years (BC/AD).

Value

NULL, called for its side effects
**MultiPhasesGap**

**Author(s)**

Anne Philippe, <Anne.Philippe@univ-nantes.fr> and Marie-Anne Vibet, <Marie-Anne.Vibet@univ-nantes.fr>

**Examples**

```r
Data extracted from ChronoModel software
data(Phases)
List of the name of the groups
names(Phases)
Stipulating position_maximum
MultiPhasePlot(Phases, c(4, 2), c(5, 3), title = "Succession of phase 1 and phase 2")
In this case, equivalent to
MultiPhasePlot(Phases, c(4, 2), title = "Succession of phase 1 and phase 2", colors = c(3, 4))
```

**Description**

Finds, if it exists, a gap or hiatus between two successive groups. This gap or hiatus is the longest interval that satisfies  \( P(\text{Phase1Max} < \text{IntervalInf} < \text{IntervalSup} < \text{Phase2Min}|M) = \text{level} \).

**Usage**

```r
MultiPhasesGap(data, position_minimum, position_maximum = position_minimum + 1, level = 0.95)
```

**Arguments**

- **data**: Data frame containing the output of the MCMC algorithm.
- **position_minimum**: Numeric vector containing the column number corresponding to the minimum of the events included in each group.
- **position_maximum**: Numeric vector containing the column number corresponding to the end of the phases set in the same order as in `position_minimum`.
- **level**: Probability corresponding to the level of confidence.
MultiPhasesTransition

Details

For each i, MultiPhasesGap() computes the gap interval for the phase defined by its minimum position_minimum[i] and its maximum position_maximum[i]. The default value of position_maximum corresponds to CSV files exported from ChronoModel software.

Value

Returns a matrix of values containing the level of confidence and the endpoints of the gap for each pair of successive groups. The result is given in calendar years (BC/AD).

Author(s)

Anne Philippe, <Anne.Philippe@univ-nantes.fr> and Marie-Anne Vibet, <Marie-Anne.Vibet@univ-nantes.fr>

Examples

# Data extracted from ChronoModel software
data(Phases)
# List of the name of the groups
names(Phases)
# Stipulating position_maximum
MultiPhasesGap(Phases, position_minimum = c(4, 2), position_maximum = c(5, 3))
# In this case, equivalent to
MultiPhasesGap(Phases, position_minimum = c(4, 2))
Arguments

- **data**: Data frame containing the output of the MCMC algorithm.
- **position_minimum**: Numeric vector containing the column number corresponding to the minimum of the events included in each group.
- **position_maximum**: Numeric vector containing the column number corresponding to the end of the groups set in the same order as in `codeposition_minimum`.
- **level**: Probability corresponding to the level of confidence.

Details

For each i, `MultiPhasesTransition()` computes the transition interval for the phase defined by its minimum `position_minimum[i]` and its maximum `position_maximum[i]`. The default value of `position_maximum` corresponds to CSV files exported from `ChronoModel` software.

Value

A matrix of values containing the level of confidence and the endpoints of the transition interval for each pair of successive groups. The result is given in calendar years (BC/AD).

Author(s)

Anne Philippe, <Anne.Philippe@univ-nantes.fr> and Marie-Anne Vibet, <Marie-Anne.Vibet@univ-nantes.fr>

Examples

```r
Data extracted from ChronoModel software
data(Phases)
List of the name of the groups
names(Phases)
Stipulating position_maximum
MultiPhasesTransition(Phases, position_minimum = c(4, 2), position_maximum = c(5, 3))
In this case, equivalent to
MultiPhasesTransition(Phases, position_minimum = c(4, 2))
```

**MultiPhaseTimeRange**

*Phase time range for multiple groups*

Description

Computes the shortest interval that satisfies \( P(\text{PhaseMin} < \text{IntervalInf} < \text{IntervalSup} < \text{PhaseMax}|M) = \text{level} \) for each phase.
MultiPhaseTimeRange

Usage

MultiPhaseTimeRange(
  data,
  position_minimum,
  position_maximum = position_minimum + 1,
  level = 0.95
)

Arguments

data Data frame containing the output of the MCMC algorithm.
position_minimum Numeric vector containing the column number corresponding to the minimum
                    of the events included in each phase.
position_maximum Numeric vector containing the column number corresponding to the maximum
                    of the phases set in the same order as in position_minimum.
level Probability corresponding to the desired level of confidence.

Details

For each i, MultiPhaseTimeRange() computes the time range interval for the phase defined by its
minimum position_minimum[i] and its maximum position_maximum[i]. The default value of
position_maximum corresponds to CSV files exported from ChronoModel software.

Value

A matrix of values containing the level of confidence and the endpoints of the shortest time range
associated with the desired level. The result is given in calendar years (BC/AD).

Author(s)

Anne Philippe, <Anne.Philippe@univ-nantes.fr> and
Marie-Anne Vibet, <Marie-Anne.Vibet@univ-nantes.fr>

Examples

# Data extracted from ChronoModel software
data(Phases)
# List of the name of the groups
names(Phases)
# Stipulating position_maximum
MultiPhaseTimeRange(Phases, position_minimum = c(4, 2), position_maximum = c(5, 3))
# In this case, equivalent to
MultiPhaseTimeRange(Phases, position_minimum = c(4, 2))
MultiSuccessionPlot

Successive Phases Density Plots (for phases in temporal order constraint)

Description

This function draws a plot of the densities of several successive phases and adds several statistics (mean, CI, HPDR). The result is given in calendar years (BC/AD).

Usage

```r
MultiSuccessionPlot(
 data,
 position_minimum,
 position_maximum = position_minimum + 1,
 level = 0.95,
 title = "Characterisation of a succession of groups",
 colors = NULL,
 exportFile = NULL,
 exportFormat = "PNG"
)
```

Arguments

- `data` Data frame containing the output of the MCMC algorithm.
- `position_minimum` Numeric vector containing the column number corresponding to the minimum of the events included in each group.
- `position_maximum` Numeric vector containing the column number corresponding to the end of the groups set in the same order as in `position_minimum`.
- `level` Probability corresponding to the level of confidence.
- `title` Title of the plot.
- `colors` Vector of colors corresponding to each group of dates.
- `exportFile` Name of the file to be saved. If `NULL` then no plot is saved.
- `exportFormat` Format of the export file, either "PNG" or "SVG" (default).

Details

Curves represent the density of the minimum (oldest dates) and the maximum (youngest dates) of the dates included in each group. Curves of the same color refer to the same phase. When there is only one curve of one color, it means that there is only one event in the corresponding group and then the minimum equals the maximum. Time range intervals are symbolised by segments above the curves drawn using the same color as the one of the curves of the associated group. Transition and gap range intervals are represented by two-coloured segments using the colors of successive phases. If the gap between the successive groups does not exist, a cross is drawn instead of a segment.
multi_credible_interval

Bayesian credible interval for a series of dates

Description

Estimate the shortest credible interval for each of several MCMC chains.

Usage

multi_credible_interval(data, position, level = 0.95, round_to = 0)

Arguments

data data frame containing the output of the MCMC algorithm.
position Numeric vector containing the position of the column corresponding to the MCMC chains of interest, or a list of column names.
level Probability corresponding to the level of confidence used for the credible interval.
round_to Integer indicating the number of decimal places.

Details

A \( (100 \times level) \) that keeps \( N \times (1 - level) \) elements of the sample outside the interval. The \( (100 \times level) \)
**multi_dates_plot**

**Value**

Returns a list with the following components:

- **ci** A data frame with a row for each column in `data` and two columns: `inf`, the lower credible interval in calendar years (BC/AD); and `sup`, the upper credible interval in calendar years (BC/AD).
- **level** Probability corresponding to the level of confidence used for the credible interval.
- **call** The function call.

**Author(s)**

Anne Philippe, <Anne.Philippe@univ-nantes.fr>, Marie-Anne Vibet, <Marie-Anne.Vibet@univ-nantes.fr>, and Thomas S. Dye, <tsd@tsdye.online>.

**Examples**

```r
data(Events)
multi_credible_interval(Events, c(2, 4, 3), 0.95)
round to decade
multi_credible_interval(Events, c(2, 4, 3), 0.95, -1)
```

---

**multi_dates_plot**

*Plot of credible intervals or HPD regions of a series of events*

**Description**

Plot of credible intervals or HPD regions of a series of events

**Usage**

```r
multi_dates_plot(
 data,
 position = 1:ncol(data),
 level = 0.95,
 plot_result = TRUE,
 round = 0,
 intervals = "CI",
 order = "default",
 title = "Plot of intervals",
 subtitle = NULL,
 caption = "ArchaeoPhases",
 x_label = "Calendar Year",
 y_label = NULL,
 height = 7,
)```
width = 7,
units = "in",
x_min = NULL,
x_max = NULL,
x_scale = "calendar",
elapsed_origin_position = NULL,
dumbbell_size = 1,
dot_guide = FALSE,
dot_guide_size = 0.25,
y_grid = FALSE,
file = NULL,
new_window = TRUE
)

Arguments

data Data frame containing the output of the MCMC algorithm.
position Numeric vector containing the positions of the columns corresponding to the MCMC chains of interest, or a vector of column names.
level Probability corresponding to the level of confidence.
plot_result If TRUE, then draw a plot on the display, else suppress drawing.
round Integer indicating the number of decimal places to be used.
intervals One of "CI" for credible intervals, or "HPD" for highest posterior density intervals.
order Order of the events. If "default" then the order of the csv file is followed, if "increasing" events are ordered by the HPDInf of the first region or the CIInf
title Title of the plot.
subtitle Subtitle of the plot.
caption Caption of the plot.
x_label X axis label of the plot.
y_label Y axis label of the plot.
height Height of the plot in units.
width Width of the plot in units.
units A string recognized by ggsave() function, one of "in", "cm", "mm".
x_min Minimum x axis value.
x_max Maximum x axis value.
x_scale One of "calendar" for calendar years, "BP" for years before present, or "elapsed" for years after a specified origin.
elapsed_origin_position Position of the column corresponding to the origin for elapsed time calculations.
dumbbell_size Size of the symbols used to plot events.
dot_guide Switch for guides from y-axis to plot symbols.
multi_hpd

dot_guide_size Size of the dot guides.

y_grid Switch for horizontal grids.

file Name of the file to be saved. If NULL then no plot is saved.

new_window Whether the plot is drawn within a new window or not.

Value

An archaeophases_plot object with the data and metadata needed to reproduce the plot.

Author(s)

Anne Philippe, <Anne.Philippe@univ-nantes.fr>,

Thomas S. Dye, <tsd@tsdye.online>, and

Marie-Anne Vibet, <Marie-Anne.Vibet@univ-nantes.fr>

Examples

data(Events)

multi_dates_plot(Events, c(2, 4, 3), level = 0.95, intervals = "CI",
 title = "Plot of CI intervals")

multi_dates_plot(Events, c(2, 4, 3), level = 0.95, intervals = "HPD",
 title = "Plot of HPD intervals")

multi_dates_plot(Events, c(2, 4, 3), level = 0.95, intervals = "HPD",
 order = "increasing")

multi_hpd

Bayesian HPD regions for a series of MCMC chains

Description

Estimation of the highest posterior density regions for each variable of a simulated Markov chain. This function uses the hdr() function included in the hdrcde package. An HPD region may be a union of several intervals.

Usage

multi_hpd(data, position, level = 0.95, round_to = 0)

Arguments

- **data** Data frame containing the output of the MCMC algorithm.
- **position** Numeric vector containing the position of the column corresponding to the MCMC chains of interest.
- **level** Probability corresponding to the level of confidence.
- **round_to** Integer indicating the number of decimal places.
Details

Highest posterior density function region using the function `hdr()` from the `hdrcde` package.

Value

Returns a list with the following components:

- **results**: A data frame where the rows correspond to the columns in the selected data set and the columns labeled `inf` and `sup` correspond to the lower and upper endpoints of each highest posterior density interval, respectively.
- **level**: Probability corresponding to the level of confidence.
- **call**: The function call.

matrix of values containing the level of confidence and for each variable of the MCMC chain. The name of the resulting rows are the positions of the corresponding columns in the CSV file. The result is given in calendar years (BC/AD).

Author(s)

Anne Philippe, <Anne.Philippe@univ-nantes.fr> and
Marie-Anne Vibet, <Marie-Anne.Vibet@univ-nantes.fr>

References

Examples

data(Events)
multi_hpd(Events, c(2, 4, 3), 0.95)

Description

Draws a plot of the estimated marginal posterior density for a parameter and adds the mean and the credible interval at the desired level.
Usage

multi_marginal_plot(
 data,
 position = 1:ncol(data),
 level = 0.95,
 grid_length = 1024,
 x_scale = "calendar",
 elapsed_origin_position = NULL,
 title = "Characteristics of several dates",
 subtitle = "Marginal densities",
 caption = paste(level * 100, "% credible interval", sep = " "),
 x_label = "Calendar year",
 y_label = NULL,
 density_fill = "gray30",
 density_color = "black",
 density_alpha = 1,
 mean_color = "white",
 mean_linetype = "dashed",
 mean_size = 0.5,
 ci_color = mean_color,
 ci_linetype = "dotted",
 ci_size = mean_size,
 y_grid = TRUE,
 x_min = NULL,
 x_max = NULL,
 height = 7,
 width = 7,
 units = "in",
 file = NULL,
 new_window = TRUE,
 plot_result = TRUE,
 fill_palatte = NULL,
 colors = NULL,
 color_legend_name = "Legend"
)

Arguments

data Data frame containing the output of the MCMC algorithm.

position Numeric vector containing the position of the column corresponding to the MCMC chains of interest, or a vector of column names.

level Probability corresponding to the level of confidence.

grid_length Number of equally spaced points at which the density is to be estimated (for density() function).

x_scale One of "calendar" for calendar years, "BP" for years before present, or "elapsed" for time elapsed from a specified origin.
elapsed_origin_position
 Position of the column to use as the origin for elapsed time calculations.

title
 Title of the plot.
subtitle
 Subtitle of the plot.
caption
 Caption of the plot.
x_label
 Label of the x-axis.
y_label
 Label of the y-axis.
density_fill
 A color specification for the fill under the density line.
density_color
 A color specification for the density line.
density_alpha
 A number between 0 for transparent and 1 for opaque.
mean_color
 A color specification for the mean line.
mean_linetype
 A line type specification for the mean line.
mean_size
 A size specification for the mean line.
ci_color
 A color specification for the credible interval lines.
ci_linetype
 A line type specification for the credible interval lines.
ci_size
 A size specification of the credible interval lines.
y_grid
 Switch for horizontal grid lines.
x_min
 Minimum x-axis value.
x_max
 Maximum x-axis value.
height
 Plot height in units.
width
 Plot width in units.
units
 String recognized by the ggsave() function, one of "in", "cm", "mm".
file
 Name of the file that will be saved if specified, default = NULL.
new_window
 Whether or not the plot is drawn within a new window.
plot_result
 If TRUE, then draw a plot on the display, else suppress drawing.
fill_palette
 A vector of colors for qualitative data.
colors
 A vector of indices into palette keyed by position.
color_legend_name
 A label for the legend.

Details

The density is estimated using density() function with n = grid_length. The input MCMC chains should either be in calendar years or converted to calendar years using x_scale vector or elapsed_origin_position.

Value

An archaeophases_plot object with the data and metadata needed to reproduce the plot.
Author(s)
Anne Philippe, <Anne.Philippe@univ-nantes.fr>;
Marie-Anne Vibet, <Marie-Anne.Vibet@univ-nantes.fr>; and
Thomas S. Dye, <tsd@tsdye.online>

Examples
```
data(Events);
multi_marginal_plot(Events, position = c(2, 3, 4), level = 0.95)
```

multi_marginal_statistics
Marginal summary statistics for multiple MCMC chains

Description
Calculates summary statistics of the output of the MCMC algorithm for multiple parameters. Results are given in calendar years (BC/AD).

Usage
```
multi_marginal_statistics(
  data,
  position = 1:ncol(data),
  level = 0.95,
  round_to = 0
)
```

Arguments
- **data**
 Data frame containing the output of the MCMC algorithm.
- **position**
 Numeric vector containing the positions of the columns corresponding to the MCMC chains of interest, or a vector of column names.
- **level**
 Probability corresponding to the level of confidence used for the credible interval and the highest posterior density region.
- **round_to**
 Integer indicating the number of decimal places.

Value
A data frame where the rows correspond to the chains of interest and columns to the following statistics:
- **mean** The mean of the MCMC chain.
- **sd** The standard deviation of the MCMC chain.
new_archaeophases_mcmc

- **min** Minimum value of the MCMC chain;
- **q1** First quantile of the MCMC chain;
- **median** Median of the MCMC chain;
- **q3** Third quantile of the MCMC chain; and
- **max** Maximum value of the MCMC chain.

- **ci.inf** Lower credible interval of the MCMC chain at level.
- **ci.sup** Upper credible interval of the MCMC chain at level.

Author(s)
Anne Philippe, <Anne.Philippe@univ-nantes.fr>,
Marie-Anne Vibet, <Marie-Anne.Vibet@univ-nantes.fr>, and
Thomas S. Dye, <tsd@tsdye.online>

Examples
```r
data(Events)
multi_marginal_statistics(Events, 2:5)
multi_marginal_statistics(Events, 2:5, level = 0.90)
## round to decades
multi_marginal_statistics(Events, 2:5, round_to = -1)
```

new_archaeophases_mcmc

Constructor for archaeophases_mcmc object

Description
Object to be returned by functions that read MCMC data from csv files.

Usage
```r
new_archaeophases_mcmc(x = list(), call = match.call(), hash = character())
```

Arguments
- **x** A data frame with the data from the csv file.
- **call** How the function was called.
- **hash** A SHA256 hash of the csv file.

Details
The SHA256 hash should be secure against intentional and unintentional alterations of the MCMC csv file.
new_archaeophases_plot

Value

An archaeophases_mcmc object that inherits from tbl_df.

Author(s)

Thomas S. Dye, <tsd@tsdye.online>

See Also

read_chronomodel
read_bcals
read_oxcal

new_archaeophases_plot

Constructor for archaeophases_plot object

Description

Objects returned by ArchaeoPhases plot functions.

Usage

new_archaeophases_plot(x = list(), mcmc = list(), call = match.call())

Arguments

x A data frame with the plot data.
mcmc An archaeophases_mcmc object.
call How the function was called.

Value

An archaeophases_plot object that inherits from archaeophases_mcmc.

Author(s)

Thomas S. Dye, <tsd@tsdye.online>

See Also

read_chronomodel
read_bcals
read_oxcal
OccurrencePlot

Plot occurrences

Description
A statistical graphic designed for the archaeological study of when events of a specified kind occurred.

Usage
OccurrencePlot(
 data,
 position,
 plot.result = NULL,
 level = 0.95,
 intervals = "CI",
 title = "Occurrence plot",
 subtitle = NULL,
 caption = "ArchaeoPhases",
 labelXaxis = "Calendar year",
 labelYaxis = NULL,
 language = "English",
 occurrence = "occurrence",
 height = 7,
 width = 7,
 units = "in",
 x.min = NULL,
 x.max = NULL,
 x.scale = "calendar",
 elapsed.origin.position = NULL,
 dumbbell.size = 1,
 dot.guide = FALSE,
 dot.guide.size = 0.25,
 y.grid = FALSE,
 file = NULL,
 newWindow = TRUE,
 print.data.result = FALSE
)

Arguments

- **data**
 Data frame containing the output of the MCMC algorithm.
- **position**
 Numeric vector containing the position of the column corresponding to the MCMC chains of interest.
- **plot.result**
 If TRUE, then draw a plot on the display, else suppress drawing.
- **level**
 Probability corresponding to the level of confidence.
intervals One of "CI" for credible intervals or "HPD" for highest posterior density intervals.
title Title of the plot.
subtitle Subtitle of the plot.
caption Caption of the plot.
labelXaxis Label of the x-axis.
labelYaxis Label of the y-axis.
language String indicating a language recognized by the toOrdinal package.
ocurrence String to append to each y-axis tic label.
height Plot height in units.
width Plot width in units.
units String recognized by the ggsave() function, one of "in", "cm", "mm".
x.min Minimum x-axis value.
x.max Maximum x-axis value.
x.scale One of "calendar" for calendar years, "BP" for years before present, or "elapsed" for time elapsed from a specified origin.
elapsed.origin.position Position of the column to use as the origin for elapsed time calculations.
dumbbell.size Size of the plot symbol.
dot.guide Switch for a horizontal guide from the y axis.
dot.guide.size Size of the dot guide.
y.grid Switch for horizontal grid lines.
file Name of the file that will be saved if specified. If NULL no plot will be saved.
newWindow Whether or not the plot is drawn within a new window.
print.data.result If TRUE, the list containing the data to plot will be returned.

Details

If we have k events, then we can estimate the calendar date t corresponding to the smallest date such that the number of events observed before t is equal to k. The OccurrencePlot() estimates these occurrences and gives the credible interval or the highest posterior density (HPD) region with a desired level of confidence.

Value

NULL, called for its side effects. It may also return a list containing the data to plot (if print.data.result = TRUE).

Author(s)

Anne Philippe, <Anne.Philippe@univ-nantes.fr>,
Thomas S. Dye, <tsd@tsdye.online>, and
Marie-Anne Vibet, <Marie-Anne.Vibet@univ-nantes.fr>
Examples

```r
data(Events);
OccurrencePlot(Events[1:1000, ], c(2:5), print.data.result = FALSE)
```

occurrence_plot

Plot occurrences

Description

A statistical graphic designed for the archaeological study of when events of a specified kind occurred.

Usage

```r
occurrence_plot(
  data, position = 1:ncol(data), level = 0.95, plot_result = TRUE, intervals = "CI",
  title = "Occurrence plot", subtitle = NULL, caption = "ArchaeoPhases",
  x_label = "Calendar year", y_label = NULL, language = "English",
  occurrence = "occurrence", height = 7, width = 7, units = "in",
  x_min = NULL, x_max = NULL, x_scale = "calendar",
  elapsed_origin_position = NULL, dumbbell_size = 1, dot_guide = FALSE,
  dot_guide_size = 0.25, y_grid = FALSE, file = NULL,
  new_window = TRUE
)
```

Arguments

- **data**
 Data frame containing the output of the MCMC algorithm.
position Numeric vector containing the positions of the columns corresponding to the MCMC chains of interest, or a vector of column names.

level Probability corresponding to the level of confidence.

plot_result If TRUE, then draw a plot on the display, else suppress drawing.

intervals One of "CI" for credible intervals or "HPD" for highest posterior density intervals.

title Title of the plot.

subtitle Subtitle of the plot.

caption Caption of the plot.

x_label Label of the x-axis.

y_label Label of the y-axis.

language String indicating a language recognized by the toOrdinal package.

occurrence String to append to each y-axis tic label.

height Plot height in units.

width Plot width in units.

units String recognized by the ggsave() function, one of "in", "cm", "mm".

x_min Minimum x-axis value.

x_max Maximum x-axis value.

x_scale One of "calendar" for calendar years, "BP" for years before present, or "elapsed" for time elapsed from a specified origin.

elapsed_origin_position Position of the column to use as the origin for elapsed time calculations.

dumbbell_size Size of the plot symbol.

dot_guide Switch for a horizontal guide from the y axis.

dot_guide_size Size of the dot guide.

y_grid Switch for horizontal grid lines.

file Name of the file that will be saved if specified. If NULL no plot will be saved.

new_window Whether or not the plot is drawn within a new window.

Details

If we have k events, then we can estimate the calendar date t corresponding to the smallest date such that the number of events observed before t is equal to k. The occurrencePlot() estimates these occurrences and gives the credible interval or the highest posterior density (HPD) region with a desired level of confidence.

Value

An archaeophases_plot object with the data and metadata needed to reproduce the plot.
Author(s)

Anne Philippe, <Anne.Philippe@univ-nantes.fr>,
Thomas S. Dye, <tsd@tsdye.online>, and
Marie-Anne Vibet, <Marie-Anne.Vibet@univ-nantes.fr>

Examples

data(Events);
OccurrencePlot(Events[1:1000,], c(2:5), print.data.result = FALSE)

Not run:
Read from connection
ox <- read_oxcal("http://tsdye.online/AP/ox.csv")
Plot all the columns
op <- occurrence_plot(ox, position = 1:ncol(ox))
Plot again
plot(op)
View metadata
str(op)

End(Not run)

original_file Check for an original mcmc file

Description

Checks whether or not a file is identical to the one used to create an archaeophases_mcmc object.

Usage

original_file(x, ...)

Arguments

x An archaeophases_mcmc object.

... Either a path to a CSV file, a connection, or the value clipboard() to read from the system clipboard. The CSV file can be compressed or plain.

Value

A boolean, TRUE if the files match, FALSE otherwise.

Author(s)

Thomas S. Dye, <tsd@tsdye.online>
Not run:
```r
rem <- read_chronomodel("http://tsdye.online/AP/cm/Chain_all_Events.csv")
original_file(rem, "http://tsdye.online/AP/cm/Chain_all_Events.csv")
```
End(Not run)

original_file.archaeophases_mcmc

Check for an original mcmc file

Description

Checks whether or not a file is identical to the one used to create an `archaeophases_mcmc` object.

Usage

```r
## S3 method for class 'archaeophases_mcmc'
original_file(x, file = NULL, ...)
```

Arguments

- `x`
 An `archaeophases_mcmc` object.

- `file`
 Either a path to a CSV file, a connection, or the value `clipboard()` to read from the system clipboard. The CSV file can be compressed or plain.

- `...`
 Other parameters.

Details

If called with a single argument, checks the file indicated by the `file_path` attribute.

Value

A boolean, TRUE if the files match, FALSE otherwise.

Author(s)

Thomas S. Dye, <tsd@tsdye.online>
PhaseDurationPlot

original_file.archaeophases_plot

Check for an original archaeophases_plot file

Description
Checks whether or not a file is identical to the one used to create an archaeophases_plot object.

Usage
S3 method for class 'archaeophases_plot'
original_file(x, file = NULL, ...)

Arguments
- **x**: An archaeophases_plot object.
- **file**: Either a path to a plot file, a connection, or the value clipboard() to read from the system clipboard.
- **...**: Other parameters.

Details
If called with a single argument, checks the file indicated by the file_path attribute.

Value
A boolean, TRUE if the files match, FALSE otherwise.

Author(s)
Thomas S. Dye, <tsd@tsdye.online>

PhaseDurationPlot Plot the duration of a group

Description
This function draws the marginal posterior densities of the time elapsed between the minimum and the maximum of the dates included in a phase, and adds summary statistics (mean, CI)
PhaseDurationPlot

Usage

PhaseDurationPlot(
 PhaseMin_chain,
 PhaseMax_chain,
 level = 0.95,
 title = "Duration of a group of dates",
 colors = TRUE,
 exportFile = NULL,
 exportFormat = "PNG",
 GridLength = 1024
)

Arguments

PhaseMin_chain Numeric vector containing the output of the MCMC algorithm for the minimum of the events included in the phase.
PhaseMax_chain Numeric vector containing the output of the MCMC algorithm for the maximum of the events included in the phase.
level Probability corresponding to the level of confidence used for the credible interval and the time range.
title Title of the plot.
colors If TRUE, use colors in the plot, otherwise produce a black and white plot.
exportFile Name of the file to be saved. If NULL, then no plot is saved.
exportFormat Format of the export file, either "PNG" or "SVG".
GridLength Length of the grid used to estimate the density.

Details

Plot of the density of the time elapsed between the minimum and the maximum calendar years of the events included in a phase, along with mean and credible interval

Value

NULL, called for its side effects

Author(s)

Anne Philippe, <Anne.Philippe@univ-nantes.fr> and
Marie-Anne Vibet, <Marie-Anne.Vibet@univ-nantes.fr>

Examples

data(Phases); attach(Phases)
PhaseDurationPlot(Phase.1.alpha, Phase.1.beta, 0.95, "Duration of Phase 1")
PhaseDurationPlot(Phase.2.alpha, Phase.2.beta, 0.95, "Duration of Phase 2", colors = FALSE)
PhasePlot

Plot the characteristics of a group of events

Description

This function draws the marginal posterior densities of the minimum and the maximum of the events included in the phase and summary statistics including mean, credible interval, and time range. The result is given in calendar years (BC/AD).

Usage

```r
PhasePlot(
  PhaseMin_chain,
  PhaseMax_chain,
  level = 0.95,
  title = "Characterisation of a group of dates",
  colors = TRUE,
  exportFile = NULL,
  exportFormat = "PNG",
  GridLength = 1024
)
```

Arguments

- **PhaseMin_chain**: Numeric vector containing the output of the MCMC algorithm for the minimum of the events included in the phase.
- **PhaseMax_chain**: Numeric vector containing the output of the MCMC algorithm for the maximum of the events included in the phase.
- **level**: Probability corresponding to the level of confidence used for the credible interval and the time range.
- **title**: The title of the plot
- **colors**: If TRUE, then use of colors in the plot, otherwise draw the plot in black and white.
- **exportFile**: Name of the file to be saved. If NULL, then no plot is saved.
- **exportFormat**: Format of the export file, either "PNG" or "SVG".
- **GridLength**: Length of the grid used to estimate the density.

Value

NULL, called for its side effects

Author(s)

Anne Philippe, <Anne.Philippe@univ-nantes.fr> and Marie-Anne Vibet, <Marie-Anne.Vibet@univ-nantes.fr>
Examples

data(Phases); attach(Phases)
PhasePlot(Phase.1.alpha, Phase.1.beta, level = 0.95, title = "Densities of Phase 1")

Description

A data set containing information on the start and end dates of two phases.

Usage

Phases

Format

A data frame with 30,000 rows and 5 variables:

- **iter** iteration of the MCMC algorithm
- **Phase.2.alpha** start date of Phase 2
- **Phase.2.beta** end date of Phase 2
- **Phase.1.alpha** start date of Phase 1
- **Phase.1.beta** end date of Phase 1

PhasesGap

Gap or hiatus between two successive phases (for phases in temporal order constraint)

Description

This function finds, if it exists, a gap or hiatus between two successive phases. This gap or hiatus is the longest interval that satisfies

\[
P(\text{Phase1Max}_\text{chain} < \text{IntervalInf} < \text{IntervalSup} < \text{Phase2Min}_\text{chain}|M) = \text{level}\]

Usage

PhasesGap(Phase1Max_chain, Phase2Min_chain, level = 0.95)
PhaseStatistics

Arguments

Phase1Max_chain
Numeric vector containing the output of the MCMC algorithm for the maximum of the events included in the oldest phase.

Phase2Min_chain
Numeric vector containing the output of the MCMC algorithm for the minimum of the events included in the following phase.

level
Probability corresponding to the level of confidence.

Value

Returns a vector of values containing the level of confidence and the endpoints of the gap between the successive phases. The result is given in calendar years (BC/AD).

Author(s)

Anne Philippe, <Anne.Philippe@univ-nantes.fr> and Marie-Anne Vibet, <Marie-Anne.Vibet@univ-nantes.fr>

Examples

data(Phases); attach(Phases)
PhasesGap(Phase.1.beta, Phase.2.alpha, 0.95)
PhasesGap(Phase.1.beta, Phase.2.alpha, 0.50)

PhaseStatistics

Summary statistics of a phase

Description

Estimation of summary statistics, including the beginning and end of a phase, and the duration of the phase

Usage

PhaseStatistics(
 PhaseMin_chain,
 PhaseMax_chain,
 level = 0.95,
 roundingOfValue = 0
)
PhaseStatistics

Arguments

PhaseMin_chain Numeric vector containing the output of the MCMC algorithm for the minimum of the dates included in the phase.

PhaseMax_chain Numeric vector containing the output of the MCMC algorithm for the maximum of the dates included in the phase.

level Probability corresponding to the level of confidence used for the credible interval and the highest density region.

roundingOfValue Integer indicating the number of decimal places.

Details

The summary statistics are those given by the MarginalStatistics() function. The time range is given by PhaseTimeRange() function. The duration is computed as follows: \(\text{duration} = \text{maximum} - \text{minimum} \) at each iteration of the MCMC output.

Value

A matrix of values corresponding to the summary statistics:

1. Statistics of the minimum of the dates included in the phase
2. Statistics of the maximum of the dates included in the phase
3. Statistics of the duration of the dates included in the phase

The results are given in calendar year (in format BC/AD).

Author(s)

Anne Philippe, <Anne.Philippe@univ-nantes.fr> and Marie-Anne Vibet, <Marie-Anne.Vibet@univ-nantes.fr>

Examples

data(Phases); attach(Phases)
PhaseStatistics(Phase.1.alpha, Phase.1.beta, 0.95)
PhaseStatistics(Phase.2.alpha, Phase.2.beta, 0.95)
PhasesTransition

Transition range between two successive phases (for phases in temporal order constraint)

Description

Finds, if it exists, the shortest interval that satisfies $P(\text{TransitionRangeInf} < \text{Phase1Max}_{\text{chain}} < \text{Phase2Min}_{\text{chain}} < \text{TransitionRangeSup}|M) = \text{level}$

Usage

PhasesTransition(Phase1Max_chain, Phase2Min_chain, level = 0.95)

Arguments

Phase1Max_chain
- Numeric vector containing the output of the MCMC algorithm for the maximum of the events included in the oldest phase.

Phase2Min_chain
- Numeric vector containing the output of the MCMC algorithm for the minimum of the events included in the following phase.

level
- Probability corresponding to the level of confidence.

Value

a vector of values containing the level of confidence and the endpoints of the transition interval between the successive phases. The result is given in calendar years (BC/AD).

Author(s)

Anne Philippe, <Anne.Philippe@univ-nantes.fr> and
Marie-Anne Vibet, <Marie-Anne.Vibet@univ-nantes.fr>

Examples

data(Phases); attach(Phases)
PhasesTransition(Phase.1.beta, Phase.2.alpha, 0.95)
PhasesTransition(Phase.1.beta, Phase.2.alpha, 0.50)
phases_gap

Gap or hiatus between two successive phases (for phases in temporal order constraint)

Description

This function finds, if it exists, a gap or hiatus between two successive phases. This gap or hiatus is the longest interval that satisfies \(P(\text{Phase1Max,chain} < \text{IntervalInf} < \text{IntervalSup} < \text{Phase2Min,chain}|M) = \text{level} \)

Usage

```r
phases_gap(a_chain, b_chain, level = 0.95)
```

Arguments

- `a_chain`: Numeric vector containing the output of the MCMC algorithm for the upper boundary of the older phase.
- `b_chain`: Numeric vector containing the output of the MCMC algorithm for the lower boundary of the younger phase.
- `level`: Probability corresponding to the level of confidence.

Value

A list with the following components:

- `hiatus`: A named vector where `inf` is the lower endpoint of the hiatus as a calendar year (AD/BC) or `NA` if there is no hiatus at `level`, and `sup` is the upper endpoint of the gap as a calendar year (AD/BC), or `NA` if there is no hiatus at `level`.
- `level`: Probability corresponding to the confidence level of the interval.
- `call`: The function call.

Author(s)

Anne Philippe, <Anne.Philippe@univ-nantes.fr>, Marie-Anne Vibet, <Marie-Anne.Vibet@univ-nantes.fr>, and Thomas S. Dye, <tsd@tsdye.online>

Examples

```r
data(Phases); attach(Phases)
phases_gap(Phase.1.beta, Phase.2.alpha, 0.95)
phases_gap(Phase.1.beta, Phase.2.alpha, 0.50)
```
PhaseTimeRange

Description

Computes the shortest interval that satisfies \(P(\text{PhaseMin}_{chain} \leq \text{IntervalInf} < \text{IntervalSup} \leq \text{PhaseMax}_{chain}|M) = \text{level} \)

Usage

PhaseTimeRange(PhaseMin_chain, PhaseMax_chain, level = 0.95)

Arguments

PhaseMin_chain : Numeric vector containing the output of the MCMC algorithm for the minimum of the events included in the phase.
PhaseMax_chain : Numeric vector containing the output of the MCMC algorithm for the maximum of the events included in the phase.
level : Probability corresponding to the desired level of confidence.

Value

A vector of values containing the desired level of confidence and the endpoints of the shortest time range associated with this desired level. The result is given in calendar years (BC/AD).

Author(s)

Anne Philippe, <Anne.Philippe@univ-nantes.fr> and Marie-Anne Vibet, <Marie-Anne.Vibet@univ-nantes.fr>

Examples

data(Phases); attach(Phases)
PhaseTimeRange(Phase.1.alpha, Phase.1.beta, 0.95)
PhaseTimeRange(Phase.2.alpha, Phase.2.beta, 0.90)
Description

Estimation of summary statistics for the beginning, end, and duration of a phase.

Usage

phase_statistics(min_chain, max_chain, level = 0.95, round_to = 0)

Arguments

- **min_chain**: Numeric vector containing the output of the MCMC algorithm for the start of the phase.
- **max_chain**: Numeric vector containing the output of the MCMC algorithm for the end of the phase.
- **level**: Probability corresponding to the level of confidence used for the credible interval and the highest density region.
- **round_to**: Integer indicating the number of decimal places.

Details

The summary statistics are those given by the `MarginalStatistics()` function. The time range is given by `PhaseTimeRange()` function. The duration is computed as follows: \(\text{duration} = \text{maximum} - \text{minimum} \) at each iteration of the MCMC output.

Value

A list with the following components:

- **statistics**: A data frame where the rows correspond to the summary statistics and the columns include: \text{start}, the start of the phase in calendar years (BC/AD); \text{end}, the end of the phase in calendar years (BC/AD); and \text{duration}, the duration of the phase in years.
- **level**: Probability corresponding to the level of confidence used for the credible interval and the highest density region.
- **call**: The function call.

Author(s)

Anne Philippe, <Anne.Philippe@univ-nantes.fr>,
Marie-Anne Vibet, <Marie-Anne.Vibet@univ-nantes.fr>, and
Thomas S. Dye, <tsd@tsdye.online>
Examples

```r
data(Phases); attach(Phases)
phase_statistics(Phase.1.alpha, Phase.1.beta, 0.95)
phase_statistics(Phase.2.alpha, Phase.2.beta, 0.95)
## round to decade
phase_statistics(Phase.2.alpha, Phase.2.beta, 0.95, -1)
```

plot.archaeophases_plot

Recreate a graphical plot

Description

Recreates a graphic from data and metadata held in a *archaeophases_plot* object.

Usage

```r
## S3 method for class 'archaeophases_plot'
plot(x, ...)
```

Arguments

- `x`
 An *archaeophases_plot* object.
- `...`
 Other parameters.

Details

Uses data stored in the *archaeophases_plot* object, along with metadata from the call of the plotting function, to recreate the original graphic on the display.

Author(s)

Thomas S. Dye, <tsd@tsdye.online>

See Also

- `tempo_plot`
- `occurrence_plot`
- `marginal_plot`
- `multi_marginal_plot`
- `tempo_activity_plot`
- `multi_dates_plot`
Examples

```r
## Not run:
# Read from connection
ox <- read_oxcal("http://tsdye.online/AP/ox.csv")
tp_1 <- tempo_plot(ox, position = 1:ncol(ox))
# Recreate the tempo_plot with the original arguments
plot(tp_1)

## End(Not run)
```

read_bcal

Read MCMC output from BCal

Description
Import a CSV file containing the output of the MCMC algorithm produced by BCal.

Usage

```r
read_bcal(file, bin_width = 1, quiet = "no")
```

Arguments

- **file**: Either a path to a CSV file, a connection, or the value `clipboard()` to read from the system clipboard. The CSV file can be compressed or plain. See `read_csv` for details.
- **bin_width**: The bin width specified for the BCal calibration. Defaults to the BCal default of 1.
- **quiet**: One of "no" (default) to allow messages and warnings, "partial" to suppress messages and allow warnings, or "yes" to suppress messages and warnings.

Details
The `read_bcal` function is built on `read_csv`. It aims to be fast and simple, and to return the marginal posteriors free of extraneous artifacts. The iteration column in the CSV file is discarded, as are an empty last column and an empty last row.

Value
An `archaeophases_mcmc` object containing the marginal posterior(s) as a data frame.

Author(s)

Thomas S. Dye, <tsd@tsdye.online>
See Also

read_csv
ImportCSV
new_archaeophases_mcmc

Examples

Not run:
Import of MCMC output from BCaI
data(Fishpond)
write.csv(Fishpond, "fishpond_MCMC.csv", row.names=FALSE)
fishpond <- read_bcal("fishpond_MCMC.csv")

Read from connection
bc_1 <- read_bcal("http://tsdye.online/AP/bc-1.csv")
bc_17 <- read_bcal("http://tsdye.online/AP/bc-17.csv", bin_width = 17)

End(Not run)
Value

An `archaeophases_mcmc` object containing the marginal posterior(s) from file.

Author(s)

Thomas S. Dye, <tsd@tsdye.online>

See Also

`read_delim`
`ImportCSV`
`new_archaeophases_mcmc`

Examples

```r
data(Events)
## Not run:
write.csv(Events, "events.csv", row.names=FALSE)
events = read_chronomodel("events.csv", decimal = ".", separator = ",")
# equivalent
events = read_chronomodel("events.csv")

rem <- read_chronomodel("http://tsdye.online/AP/cm/Chain_all_Events.csv")
## End(Not run)
```

read_oxcal
Read MCMC output from OxCal

Description

Import a CSV file containing the output of the MCMC algorithm produced by OxCal.

Usage

```r
read_oxcal(file, quiet = "no")
```

Arguments

- **file**
 Either a path to a CSV file, a connection, or the value `clipboard()` to read from the system clipboard. The CSV file can be compressed or plain. See `read_csv` for details.

- **quiet**
 One of "no" (default) to allow messages and warnings, "partial" to suppress messages and allow warnings, or "yes" to suppress messages and warnings.
Details

The read_oxcal function is built on read_csv. It aims to be fast and simple, and to return the marginal posteriors free of extraneous artifacts. The iteration column in the CSV file is discarded, as is an empty last column.

Value

An archaeophases_mcmc object containing the marginal posterior(s) as a data frame.

Author(s)

Thomas S. Dye, <tsd@tsdye.online>

See Also

read_csv
ImportCSV

Examples

```r
## Not run:
# Import of MCMC output from OxCal
data(Events)
#To do for saving in csv file
# write.csv(Events, "events.csv", row.names = FALSE)
fishpond <- read_oxcal("events.csv")

# Read from connection
oxc <- read_oxcal("http://tsdye.online/PA/ox.csv")

## End(Not run)
```

reproduce.archaeophases_mcmc

Reproduce an MCMC data frame

Description

Reproduces a data frame from metadata held in an archaeophases_mcmc object.

Usage

```r
## S3 method for class 'archaeophases_mcmc'
reproduce(x, file = NULL, ...)
```
reproduce.archaeophases_plot

Arguments

x An archaeophases_mcmc object.
file A path to the original MCMC csv file, or a copy of the file.
... Other parameters.

Author(s)

Thomas S. Dye, <tsd@tsdye.online>

See Also

original_file

Examples

Not run:
x <- read_bcal("http://tsdye.online/AP/bc-1.csv")
y <- reproduce(x)
TRUE
identical(x, y)
End(Not run)

reproduce.archaeophases_plot

Reproduce an ArchaeoPhases plot

Description

Reproduces a plot from metadata held in an archaeophases_plot object.

Usage

S3 method for class 'archaeophases_plot'
reproduce(x, file = NULL, ...)

Arguments

x An archaeophases_plot object.
file Path to the original MCMC csv file, or a copy of the file.
... Other parameters.

Author(s)

Thomas S. Dye, <tsd@tsdye.online>
SuccessionPlot

See Also

original_file

Examples

Not run:
x <- read_bcal("http://tsdye.online/AP/bc-1.csv")
y <- multi_dates_plot(x)
z <- reproduce(y)
TRUE
identical(y, z)

#error, Not the original file.
z <- reproduce(y, file = "foo.csv")

End(Not run)

SuccessionPlot

Density plots of two successive groups (for groups in temporal order constraint)

Description

Plot of the densities of the minimum and the maximum of the events included in each group, with summary statistics including the mean, credible interval, and highest posterior density. The result is given in calendar years (BC/AD).

Usage

SuccessionPlot(
 Phase1Min_chain,
 Phase1Max_chain,
 Phase2Min_chain,
 Phase2Max_chain,
 level = 0.95,
 title = "Characterisation of a succession of groups",
 exportFile = NULL,
 exportFormat = "PNG",
 GridLength = 1024
)

Arguments

Phase1Min_chain

Numeric vector containing the output of the MCMC algorithm for the minimum of the events included in the oldest phase.
SuccessionPlot

Phase1Max_chain
Numeric vector containing the output of the MCMC algorithm for the maximum of the events included in the oldest phase.

Phase2Min_chain
Numeric vector containing the output of the MCMC algorithm for the minimum of the events included in the youngest phase.

Phase2Max_chain
Numeric vector containing the output of the MCMC algorithm for the maximum of the events included in the youngest phase.

level
Probability corresponding to the level of confidence.

title
Title of the plot.

exportFile
Name of the file to be saved. If NULL then no plot is saved.

exportFormat
Format of the export file, either "PNG" or "SVG".

GridLength
Length of the grid used to estimate the density.

Details
Curves represent the density of the minimum (oldest event) and the maximum (youngest event) of the events included in each group. Curves of the same color refer to the same group. Time range intervals are symbolised by segments above the curves drawn using the same color as curves of the associated group. Transition and gap range intervals are represented by two-coloured segments using the colors of the both groups in succession. If the gap between the successive groups does not exist, a cross is drawn instead of a segment.

Value
NULL, called for its side effects

Author(s)
Anne Philippe, <Anne.Philippe@univ-nantes.fr> and
Marie-Anne Vibet, <Marie-Anne.Vibet@univ-nantes.fr>

Examples

data(Phases); attach(Phases)
SuccessionPlot(Phase.1.alpha, Phase.1.beta, Phase.2.alpha, Phase.2.beta, level = 0.95)
TempoActivityPlot
Plot the derivative of the tempo plot Bayesian estimate

Description

A statistical graphic designed for the archaeological study of rhythms of the long term that embodies a theory of archaeological evidence for the occurrence of events.

Usage

```r
TempoActivityPlot(
  data,  # Data frame containing the output of the MCMC algorithm.
  position,  # Numeric vector containing the position of the column corresponding to the MCMC chains of interest.
  plot.result = NULL,  # List containing the data to plot, typically the result of a previous run of TempoActivityPlot().
  level = 0.95,  # Probability corresponding to the level of confidence.
  title = "Activity plot",  # Title of the plot.
  subtitle = NULL,  # Subtitle of the plot.
  caption = "ArcheoPhases",  # Caption of the plot.
  x.label = "Calendar year",  # Label of the x-axis.
  y.label = "Activity",  # Label of the y-axis.
  line.types = c("solid"),  # Line types for the plot.
  width = 7,  # Width of the plot in inches.
  height = 7,  # Height of the plot in inches.
  units = "in",  # Units for the plot.
  x.min = NULL,  # Minimum x value.
  x.max = NULL,  # Maximum x value.
  file = NULL,  # File to save the plot.
  x.scale = "calendar",  # X-axis scale.
  elapsed.origin.position = NULL,  # Position of the elapsed origin.
  newWindow = TRUE,  # Whether to open a new window.
  print.data.result = FALSE)  # Whether to print the data result.
```

Arguments

- `data`: Data frame containing the output of the MCMC algorithm.
- `position`: Numeric vector containing the position of the column corresponding to the MCMC chains of interest.
- `plot.result`: List containing the data to plot, typically the result of a previous run of TempoActivityPlot().
- `level`: Probability corresponding to the level of confidence.
- `title`: Title of the plot.
- `subtitle`: Subtitle of the plot.
- `caption`: Caption of the plot.
- `x.label`: Label of the x-axis.
- `y.label`: Label of the y-axis.
TempoActivityPlot

line.types Type of the lines drawn on the plot.
width Width of the plot in units.
height Height of the plot in units.
units Units used to specify width and height, one of "in" (default), "cm", or "mm".
x.min Minimum value for x-axis.
x.max Maximum value for x-axis.
file Name of the file to be saved if specified. If Null, then no file is saved.
x.scale One of "calendar", "bp", or "elapsed".
elapsed.origin.position If x.scale is "elapsed", the position of the column corresponding to the event from which elapsed time is calculated.
newWindow Whether or not the plot is drawn within a new window.
print.data.result If TRUE, the list containing the data to plot is returned.

Value

NULL, called for its side effects. It may also return a list containing the data to plot (if print.data.result = TRUE). The result is given in calendar years (BC/AD).

Author(s)

Anne Philippe, <Anne.Philippe@univ-nantes.fr> and
Marie-Anne Vibet, <Marie-Anne.Vibet@univ-nantes.fr>

References

Examples

data(Events);
TempoActivityPlot(Events[1:1000,], c(2:5), print.data.result = FALSE)
TempoActivityPlot(Events[1:1000,], c(2:5), print.data.result = FALSE)
TempoPlot

Description

A statistical graphic designed for the archaeological study of rhythms of the long term that embodies a theory of archaeological evidence for the occurrence of events.

Usage

TempoPlot(
 data,
 position,
 plot.result = NULL,
 level = 0.95,
 count = TRUE,
 Gauss = FALSE,
 title = "Tempo plot",
 subtitle = NULL,
 caption = "ArcheoPhases",
 legend.title = "Legend",
 legend.labels = c("Bayes estimate", "Credible interval, low",
 "Credible interval, high", "Gaussian approx., high", "Gaussian approx., low"),
 x.label = "Calendar year",
 y.label = "Cumulative events",
 line.types = c("solid", "12", "11", "28", "28"),
 width = 7,
 height = 7,
 units = "in",
 x.min = NULL,
 x.max = NULL,
 colors = TRUE,
 file = NULL,
 x.scale = "calendar",
 elapsed.origin.position = NULL,
 newWindow = TRUE,
 print.data.result = FALSE
)

Arguments

data Data frame containing the output of the MCMC algorithm.
position Numeric vector containing the position of the column corresponding to the MCMC chains of interest.
plot.result List containing the data to plot, typically the result of a previous run of TempoPlot().
level Probability corresponding to the level of confidence.
TempoPlot

count If TRUE the counting process is a number, otherwise it is a probability.
Gauss If TRUE, the Gaussian approximation of the credible interval is used.
title Title of the plot.
subtitle Subtitle of the plot.
caption Caption of the plot.
legend.title Title of the plot legend.
legend.labels Vector of strings to label legend entries.
x.label Label of the x-axis.
y.label Label of the y-axis.
line.types Type of the lines drawn on the plot in the order of legend.labels.
width Width of the plot in units.
height Height of the plot in units.
units Units used to specify width and height, one of "in" (default), "cm", or "mm".
x.min Minimum value for x-axis.
x.max Maximum value for x-axis.
colors If TRUE, the plot is drawn with colors, otherwise it is drawn in black and white.
file Name of the file that will be saved if specified. If NULL no file is saved.
x.scale One of "calendar", "bp", or "elapsed".
elapsed.origin.position If x.scale is "elapsed", the position of the column corresponding to the event from which elapsed time is calculated.
newWindow Whether or not the plot is drawn within a new window.
print.data.result If TRUE, a list containing the data to plot will be returned.

Details

The tempo plot is one way to measure change over time: it estimates the cumulative occurrence of archaeological events in a Bayesian calibration. The tempo plot yields a graphic where the slope of the plot directly reflects the pace of change: a period of rapid change yields a steep slope and a period of slow change yields a gentle slope. When there is no change, the plot is horizontal. When change is instantaneous, the plot is vertical.

Value

NULL, called for its side effects. It may also return a list containing the data to plot (if print.data.result = TRUE).

Author(s)

Anne Philippe, <Anne.Philippe@univ-nantes.fr>,
Thomas S. Dye, <tsd@tsdye.online>, and
Marie-Anne Vibet, <Marie-Anne.Vibet@univ-nantes.fr>
tempo_activity_plot

References

See Also
tempo_plot

Examples
data(Events);
TempoPlot(Events[1:1000,], c(2:5), print.data.result = FALSE)
TempoPlot(Events[1:1000,], c(2:5), count = TRUE, print.data.result = FALSE)

tempo_activity_plot Plot the derivative of the tempo plot Bayesian estimate

Description

A statistical graphic designed for the archaeological study of rhythms of the long term that embodies a theory of archaeological evidence for the occurrence of events

Usage
tempo_activity_plot(
 data,
 position = 1:ncol(data),
 title = "Tempo Activity Plot",
 subtitle = NULL,
 caption = "ArcheoPhases",
 x_label = "Calendar year",
 y_label = "Activity",
 line_types = c("solid"),
 width = 7,
 height = 7,
 units = "in",
 x_min = NULL,
 x_max = NULL,
 file = NULL,
 x_scale = "calendar",
 elapsed_origin_position = NULL,
 new_window = TRUE,
 plot_result = TRUE
)
tempo_activity_plot

Arguments

- **data**
 Data frame containing the output of the MCMC algorithm.

- **position**
 Numeric vector containing the position of the column corresponding to the MCMC chains of interest, or a vector of column names.

- **title**
 Title of the plot.

- **subtitle**
 Subtitle of the plot.

- **caption**
 Caption of the plot.

- **x_label**
 Label of the x-axis.

- **y_label**
 Label of the y-axis.

- **line_types**
 Type of the lines drawn on the plot.

- **width**
 Width of the plot in units.

- **height**
 Height of the plot in units.

- **units**
 Units used to specify width and height, one of "in" (default), "cm", or "mm".

- **x_min**
 Minimum value for x-axis.

- **x_max**
 Maximum value for x-axis.

- **file**
 Name of the file to be saved if specified. If Null, then no file is saved.

- **x_scale**
 One of "calendar", "bp", or "elapsed".

- **elapsed_origin_position**
 If x_scale is "elapsed", the position of the column corresponding to the event from which elapsed time is calculated.

- **new_window**
 Whether or not the plot is drawn within a new window.

- **plot_result**
 If TRUE, then draw a plot on the display, else suppress drawing.

Value

An archaeophases_plot object with the data and metadata needed to reproduce the plot.

Author(s)

Anne Philippe, <Anne.Philippe@univ-nantes.fr> and Marie-Anne Vibet, <Marie-Anne.Vibet@univ-nantes.fr>

Thomas S. Dye, <tsd@tsdye.online>

References

Examples

```r
data(Events);
tempo_activity_plot(Events[1:1000, ], c(2:5))
```
tempo_plot

Description

A statistical graphic designed for the archaeological study of rhythms of the long term that embodies a theory of archaeological evidence for the occurrence of events.

Usage

tempo_plot(
 data,
 position = 1:ncol(data),
 level = 0.95,
 count = TRUE,
 Gauss = FALSE,
 title = NULL,
 subtitle = NULL,
 caption = NULL,
 legend_title = NULL,
 legend_position = "bottom",
 legend_labels = c("Bayes estimate", "Credible interval high", "Credible interval low"),
 x_label = "Calendar year",
 y_label = "Cumulative events",
 line_types = c("solid", "dotted", "dotted"),
 line_sizes = c(1.2, 0.8, 0.8),
 line_colors = c("black", "grey50", "grey50"),
 width = 7,
 height = 7,
 units = "in",
 x_min = NULL,
 x_max = NULL,
 color_palette = NULL,
 file = NULL,
 x_scale = "calendar",
 elapsed_origin_position = NULL,
 new_window = TRUE,
 plot_result = TRUE
)

Arguments

data Data frame or archaeophases_mcmc object containing the output of the MCMC algorithm.
position Numeric vector containing the position of the column corresponding to the MCMC chains of interest, or a vector of column names.
level Probability corresponding to the level of confidence.
count If TRUE the counting process is a number, otherwise it is a probability.
Gauss If TRUE, the Gaussian approximation of the credible interval is used.
title Title of the plot.
subtitle Subtitle of the plot.
caption Caption of the plot.
legend_title Title of the plot legend.
legend_position One of "top", "bottom" (default), "left", "right".
legend_labels Vector of three strings to label legend entries. The strings must be unique. The first string labels the central tendency and the second and third strings label the high and low spreads.
x_label Label of the x-axis.
y_label Label of the y-axis.
line_types Type of the lines drawn on the plot in the order of legend_labels.
line_sizes Width of the lines drawn on the plot in the order of legend_labels.
line_colors Color names for the lines drawn on the plot in the order of legend_labels. If color_palette is NULL, then standard color names are expected, otherwise the color names are from the supplied color_palette.
width Width of the plot in units.
hight Height of the plot in units.
units Units used to specify width and height, one of "in" (default), "cm", or "mm".
x_min Minimum value for x-axis.
x_max Maximum value for x-axis.
color_palette A palette that supplies the colors used in the plot.
file Name of the file that will be saved if specified. If NULL no file is saved.
x_scale One of "calendar", "bp", or "elapsed".
elapsed_origin_position If x_scale is "elapsed", the position of the column corresponding to the event from which elapsed time is calculated.
new_window Whether or not the plot is drawn within a new window.
plot_result If TRUE, then draw a plot on the display, else suppress drawing.

Details

The tempo plot is one way to measure change over time: it estimates the cumulative occurrence of archaeological events in a Bayesian calibration. The tempo plot yields a graphic where the slope of the plot directly reflects the pace of change: a period of rapid change yields a steep slope and a period of slow change yields a gentle slope. When there is no change, the plot is horizontal. When change is instantaneous, the plot is vertical.
Value

An archaeophases_plot object with the data and metadata needed to reproduce the plot.

Author(s)

Anne Philippe, <Anne.Philippe@univ-nantes.fr>,
Thomas S. Dye, <tsd@tsdye.online>, and
Marie-Anne Vibet, <Marie-Anne.Vibet@univ-nantes.fr>

References

See Also

TempoPlot
new_archaeophases_plot

Examples

data(Events);
tempo_plot(Events[1:1000,], c(2:5))
tempo_plot(Events[1:1000,], c(2:5), count = TRUE)

Not run:
Read from connection
ox <- read_oxcal("http://tsdye.online/AP/ox.csv")
Plot all the columns
tp <- tempo_plot(ox)
Reproduce the tempo plot
plot(tp)
View metadata
str(tp)
Check that the MCMC data file hasn't changed
original_file(tp)

Use a custom palette
library(khroma)
light <- colours("light")
 tp <- tempo_plot(ox, color_palette = light(2),
 line_colors = c("light blue", "pale grey", "pale grey"))

End(Not run)
Index

* datasets

 Events, 11
 Phases, 53

 app_ArchaeoPhases, 3
 ArchaeoPhases, 3

 coda.mcmc, 4
 CreateMinMaxGroup, 5
 credible_interval, 6
 CredibleInterval, 6

 dates_hiatus, 8
 DatesHiatus, 7

 estimate_range, 9
 Events, 11

 ImportCSV, 11, 62–64
 ImportCSV.BCal, 12, 13

 marginal_plot, 18, 60
 marginal_statistics, 20
 MarginalPlot, 14
 MarginalProba, 16
 MarginalStatistics, 17
 mcmc, 4
 mcmc.list, 4
 multi_credible_interval, 34
 multi_dates_plot, 35, 60
 multi_hpd, 37
 multi_marginal_plot, 38, 60
 multi_marginal_statistics, 41
 MultiCredibleInterval, 21
 MultiDatesPlot, 22
 MultiHPD, 25
 MultiMarginalPlot, 26
 MultiPhasePlot, 28
 MultiPhasesGap, 29
 MultiPhasesTransition, 30
 MultiPhaseTimeRange, 31

 MultiSuccessionPlot, 33

 new_archaeophases_mcmc, 42, 62, 63
 new_archaeophases_plot, 43, 76

 occurrence_plot, 46, 60
 OccurrencePlot, 44
 original_file, 48, 63, 66
 original_file.archaeophases_mcmc, 49
 original_file.archaeophases_plot, 50

 phase_statistics, 59
 PhaseDurationPlot, 50
 PhasePlot, 52
 Phases, 53
 phases_gap, 57
 PhasesGap, 53
 PhaseStatistics, 54
 PhasesTransition, 56
 PhaseTimeRange, 58
 plot.archaeophases_plot, 60

 read_bcal, 43, 61
 read_chronomodel, 12, 43, 62
 read_csv, 61–64
 read_delim, 62, 63
 read_oxcal, 12, 43, 63
 reproduce.archaeophases_mcmc, 64
 reproduce.archaeophases_plot, 65

 SuccessionPlot, 66

 tempo_activity_plot, 60, 72
 tempo_plot, 60, 72, 74
 TempoActivityPlot, 68
 TempoPlot, 70, 76