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Abstract

Owing to their generality, transformation models can be used to set-up and compute
many interesting regression models for discrete and continuous responses. This document
focuses on the analysis of clustered observations. Marginal predictive distributions are
defined by transformation models and their joint normal distribution depends on a struc-
tured covariance matrix. Applications with skewed, bounded, and survival continuous
outcomes as well as binary and ordered categorical responses are presented. Data is anal-
ysed by a proof-of-concept implementation of parametric linear transformation models for
clustered observations available in the tram add-on package to the R system for statistical
computing.

Keywords: conditional mixed models, marginal models, marginal predictive distributions, sur-
vival analysis, categorical data analysis.

1. Introduction

The purpose of this document is to compare marginally interpretable linear transformation
models for clustered observations (Hothorn 2019) to conventional conditional formulations of
mixed-effects models where such an overlap exists. In addition, novel transformation models
going beyond the capabilities of convential mixed-effects models are estimated and interpreted.
A proof-of-concept implementation (meaning: the algorithms work but need optimisation, the
user interface is very rough) available in package tram (Hothorn and Barbanti 2020) is applied.
The results presented in this document can be reproduced from the mtram package vignette

R> install.packages("tram")

R> vignette("mtram", package = "tram")

2. Normal and Non-normal Mixed-effects Models

First we consider mixed-effects models for reaction times in the sleep deprivation study (Be-
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Figure 1: Sleep deprivation: Average reaction times to a specific task over several days of
sleep deprivation for 18 subjects from Belenky et al. (2003).

lenky et al. 2003). The average reaction times to a specific task over several days of sleep
deprivation are given for 18 subjects in Figure 1.

The classical normal linear random-intercept/random-slope model, treating the study partic-
ipants as independent observations, is fitted by maximum likelihood to the data using the
lmer() function from the lme4 add-on package (Bates et al. 2015):

R> library("lme4")

R> sleep_lmer <- lmer(Reaction ~ Days + (Days | Subject),

+ data = sleepstudy, REML = FALSE)

The corresponding conditional model for subject i reads

P(Reaction ≤ y | day, i) = Φ

(

y − α− βday− αi − βiday

σ

)

, (αi, βi) ∼ N2(0,G(γ))

with σ−2G = Λ(γ)Λ(γ)⊤ and

Λ(γ) =

(

γ1 0
γ2 γ3

)

, γ = (γ1, γ2, γ3)
⊤.

The same model, however using the alternative parameterisation and an independent (of lme4,
only the update() method for Cholesky factors is reused) gradient-based maximisation of the
log-likelihood, is estimated in a two-step approach as

R> sleep_LM <- Lm(Reaction ~ Days, data = sleepstudy)

R> sleep_LMmer <- mtram(sleep_LM, ~ (Days | Subject), data = sleepstudy)
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The first call to Lm() computes the equivalent of a normal linear regression model parame-
terised as a linear transformation model ignoring the longitudinal nature of the observations.
The purpose if to set-up the necessary model infrastructure (model matrices, inverse link func-
tions, etc.) and to compute reasonable starting values for the fixed effects. The second call
to mtram() specifies the random effects structure (here a correlated pair of random intercept
for subject and random slope for days) and optimises the likelihood for all model parameters
ϑ1, α̃, β̃, and γ in the model (here also looking at the conditional model for subject i)

P(Reaction ≤ y | day, i) = Φ
(

ϑ1y + α̃− β̃day− α̃i − β̃iday
)

, (α̃i, β̃i) ∼ N2(0,Λ(γ)Λ(γ))

that is, all fixed and random effect parameters are divided by the residual standard deviation
σ (this is the reparameterisation applied by Lm()). Of course, the parameter ϑ1, the inverse
residual standard deviation, is ensured to be positive via an additional constraint in the
optimiser maximising the log-likelihood.

The log-likelihoods of the two models fitted by lmer() and mtram() are very close

R> logLik(sleep_lmer)

✬log Lik.✬ -875.9697 (df=6)

R> logLik(sleep_LMmer)

✬log Lik.✬ -875.9697 (df=6)

Looking at the model coefficients, the two procedures lead to almost identical inverse residual
standard deviations

R> (sdinv <- 1 / summary(sleep_lmer)$sigma)

[1] 0.03907485

R> coef(sleep_LMmer)["Reaction"]

Reaction

0.03907741

and fixed effects (the slope can be interpreted as inverse coefficient of variation)

R> fixef(sleep_lmer) * c(-1, 1) * sdinv

(Intercept) Days

-9.8236175 0.4090077

R> coef(sleep_LMmer)[c("(Intercept)", "Days")]

(Intercept) Days

-9.8243917 0.4089265



4 Marginally Interpretabel Transformation Models

The random-effect parameters γ are also reasonably close

R> sleep_lmer@theta

[1] 0.92919061 0.01816575 0.22264321

R> coef(sleep_LMmer)[-(1:3)]

gamma1 gamma2 gamma3

0.92901066 0.01843056 0.22280431

Consequently, the variance-covariance and correlation matrices

R> sleep_LMmer$G * (1 / sdinv)^2

2 x 2 sparse Matrix of class "dsCMatrix"

[1,] 565.2580 11.21410

[2,] 11.2141 32.73513

R> cov2cor(sleep_LMmer$G * (1 / sdinv)^2)

2 x 2 sparse Matrix of class "dsCMatrix"

[1,] 1.00000000 0.08243925

[2,] 0.08243925 1.00000000

R> unclass(VarCorr(sleep_lmer))$Subject

(Intercept) Days

(Intercept) 565.47697 11.05512

Days 11.05512 32.68179

attr(,"stddev")

(Intercept) Days

23.779760 5.716799

attr(,"correlation")

(Intercept) Days

(Intercept) 1.00000000 0.08132109

Days 0.08132109 1.00000000

are practically equivalent. This result indicates the correctness of the alternative implementa-
tion of normal linear mixed-effects models in the transformation model framework: mtram()
reuses some infrastructure from lme4 and Matrix, most importantly fast update methods for
Cholesky factors, but the likelihood and corresponding optimisation relies on an independent
implementation. So why are we doing this? Because mtram() is able to deal with models or
likelihoods not available in lme4, for example the likelihood for interval-censored observations.

Let’s assume that the timing of the reaction times was less accurate than suggested by the
numerical representation of the results. The following code
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R> library("survival")

R> sleepstudy$Reaction_I <- with(sleepstudy, Surv(Reaction - 20, Reaction + 20,

+ type = "interval2"))

R> sleepstudy$Reaction_I[1:5]

[1] [229.5600, 269.5600] [238.7047, 278.7047] [230.8006, 270.8006]

[4] [301.4398, 341.4398] [336.8519, 376.8519]

converts the outcome to interval-censored values, where each interval has length 40. The
above mixed model can now be estimated by maximising the likelihood corresponding to
interval-censored observations:

R> sleep_LM_I <- Lm(Reaction_I ~ Days, data = sleepstudy)

R> sleep_LMmer_I <- mtram(sleep_LM_I, ~ (Days | Subject), data = sleepstudy)

Of course, the log-likelihood changes (because this is a log-probability and not a log-density
of a continuous distribution) but the parameter estimates are reasonably close

R> logLik(sleep_LMmer_I)

✬log Lik.✬ -214.9675 (df=6)

R> coef(sleep_LMmer_I)

(Intercept) Reaction_I Days gamma1 gamma2 gamma3

-9.78770607 0.03900116 0.41633415 0.83398952 0.07584130 0.19038611

R> coef(sleep_LMmer)

(Intercept) Reaction Days gamma1 gamma2 gamma3

-9.82439168 0.03907741 0.40892652 0.92901066 0.01843056 0.22280431

The next question is if the normal assumption for reaction times is appropriate. In the
transformation world, this assumption is simple to assess because we can easily (theoretically
and in-silico) switch to the non-normal linear mixed-effects transformation model

P(Reaction ≤ y | day, i) = Φ
(

h(y)− β̃day− α̃i − β̃iday
)

, (α̃i, β̃i) ∼ N2(0,Λ(γ)Λ(γ))

where h(y) = a(y)⊤ϑ represents a monotone non-decreasing transformation function. The
function implementing such a more flexible model in named in honor of the first paper on the
analysis of transformed responses by Box and Cox (1964) but it does not simply apply what
is known as a Box-Cox transformation. Bernstein polynomials h(y) = a(y)⊤ϑ under suitable
constraints are applied instead by

R> sleep_BC <- BoxCox(Reaction ~ Days, data = sleepstudy)

R> sleep_BCmer <- mtram(sleep_BC, ~ (Days | Subject), data = sleepstudy,

+ Hessian = TRUE)

R> logLik(sleep_BCmer)



6 Marginally Interpretabel Transformation Models

Average reaction time (in ms)

h
(y

)

200 250 300 350 400 450

−
4

−
2

0
2

4
6

8

Figure 2: Sleep deprivation: Data-driven transformation ĥ of average reaction times to sleep
deprivation. The non-linearity induces a non-normal marginal distribution function of reaction
times.

✬log Lik.✬ -859.5455 (df=11)

The increase in the log-likelihood compared to the normal model is not a big surprise. Plot-
ting the transformation function h(y) = a(y)⊤ϑ as a function of reaction time can help to
assess deviations from normality because the latter assumption implies a linear transforma-
tion function. Figure 2 clearly indicates that models allowing a certain skewness of reaction
times will provide a better fit to the data. This might also not come as a big surprise to
experienced data analysts.

However, what does this finding mean in terms of a direct comparison of the model and the
data? Looking at the marginal cumulative distribution functions of average reaction time
conditional on days of sleep deprivation in Figure 3 one finds that the non-normal marginal
transformation models provided a better fit to the marginal empirical cumulative distribution
functions than the normal marginal models. Especially for short reaction times in the first
week of sleep deprivation, the yellowish marginal cumulative distribution is much closer to the
empirical cumulative distribution function representing the marginal distribution of reaction
times at each single day of study participation.

It should be noted that the small positive correlation between random intercept and random
slope observed in the normal linear mixed-effects model turned into a negative correlation in
this non-normal model
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Figure 3: Sleep deprivation: Marginal distribution of reaction times, separately for each day
of study participation. The grey step-function corresponds to the empirical cumulative dis-
tribution function, the blue line to the marginal cumulative distribution of a normal linear
mixed-effects model, and the yellowish line to a non-normal linear mixed-effects transforma-
tion model.

R> cov2cor(sleep_BCmer$G)

2 x 2 sparse Matrix of class "dsCMatrix"

[1,] 1.0000000 -0.1946629

[2,] -0.1946629 1.0000000

What is the uncertainty associated with this parameter? The correlation is a non-linear func-
tion of γ and therefore the direct computation of confidence intervals questionable. However,
we can extract an estimate of the covariance of the estimated model parameters from the
model and, relying on the asymptotic normality of the maximum likelihood estimators, we
can sample from the asymptotic distribution of the variance of the random intercept α̃, the
random slope β̃, and their correlation

R> VC <- solve(sleep_BCmer$Hessian)

R> idx <- (nrow(VC) - 2):nrow(VC)

R> Rcoef <- rmvnorm(1000, mean = coef(sleep_BCmer), sigma = VC)[,idx]

R> ret <- apply(Rcoef, 1, function(gamma) {

+ L <- matrix(c(gamma[1:2], 0, gamma[3]), nrow = 2)

+ V <- tcrossprod(L)

+ c(diag(V), cov2cor(V)[1,2])

+ })
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The 95% confidence intervals

R> ### variance random intercept

R> quantile(ret[1,], c(.025, .5, .975))

2.5% 50% 97.5%

0.9127821 2.5713595 5.2493469

R> ### variance random slope

R> quantile(ret[2,], c(.025, .5, .975))

2.5% 50% 97.5%

0.01890987 0.05348231 0.10594879

R> ### correlation random intercept / random slope

R> quantile(ret[3,], c(.025, .5, .975))

2.5% 50% 97.5%

-0.6193527 -0.1883314 0.4689778

indicate rather strong unobserved heterogeneity affecting the intercept and less pronouned
variability in the slope. There is only weak information about the correlation of the two
random effects contained in the data.

The downside of this approach is that, although the model is nicely interpretable on the scale
of marginal or conditional distribution functions, the direct interpretation of the fixed effect β̃
is not very straightforward because it corresponds to the conditional mean after transforming
the outcome. This interpretability issue can be addressed by exchanging the probit link to a
logit link in Section 4.

3. Binary Probit Mixed-effects Models

Here we compare different implementations of binary probit mixed models for the notoriously
difficult toe nail data (Backer et al. 1998). The outcome was categorised to two levels (this
being probably the root of all troubles) and a conditional density plot (Figure 4) suggests
an improvement in both treatment groups over time, however with a more rapid advance in
patients treated with terbinafine.

The random intercept probit model fitted by Laplace and Adaptive Gauss-Hermite Quadra-
ture (AGQ) approximations to the likelihood give quite different results:

R> ### Laplace

R> toenail_glmer_RI_1 <-

+ glmer(outcome ~ treatment * time + (1 | patientID),

+ data = toenail, family = binomial(link = "probit"),

+ nAGQ = 1)

R> summary(toenail_glmer_RI_1)
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Figure 4: Toe nail data: Conditional density plot of two outcome classes (none or mild
vs. moderate or severe) under two treatments.

Generalized linear mixed model fit by maximum likelihood (Laplace

Approximation) [glmerMod]

Family: binomial ( probit )

Formula: outcome ~ treatment * time + (1 | patientID)

Data: toenail

AIC BIC logLik deviance df.resid

1279.0 1306.8 -634.5 1269.0 1898

Scaled residuals:

Min 1Q Median 3Q Max

-3.507 -0.017 -0.004 0.000 54.046

Random effects:

Groups Name Variance Std.Dev.

patientID (Intercept) 20.68 4.548

Number of obs: 1903, groups: patientID, 289

Fixed effects:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -3.39650 0.22091 -15.375 <2e-16 ***

treatmentterbinafine -0.01532 0.25359 -0.060 0.9518

time -0.21749 0.02256 -9.639 <2e-16 ***

treatmentterbinafine:time -0.07155 0.03425 -2.089 0.0367 *

---
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Signif. codes: 0 ✬***✬ 0.001 ✬**✬ 0.01 ✬*✬ 0.05 ✬.✬ 0.1 ✬ ✬ 1

Correlation of Fixed Effects:

(Intr) trtmnt time

trtmnttrbnf -0.593

time -0.009 0.102

trtmnttrbn: 0.093 -0.143 -0.629

R> toenail_glmer_RI_1@theta

[1] 4.547891

R> ### Adaptive Gaussian Quadrature

R> toenail_glmer_RI_2 <-

+ glmer(outcome ~ treatment * time + (1 | patientID),

+ data = toenail, family = binomial(link = "probit"),

+ nAGQ = 20)

R> summary(toenail_glmer_RI_2)

Generalized linear mixed model fit by maximum likelihood (Adaptive

Gauss-Hermite Quadrature, nAGQ = 20) [glmerMod]

Family: binomial ( probit )

Formula: outcome ~ treatment * time + (1 | patientID)

Data: toenail

AIC BIC logLik deviance df.resid

1277.8 1305.6 -633.9 1267.8 1898

Scaled residuals:

Min 1Q Median 3Q Max

-2.847 -0.189 -0.078 -0.001 33.997

Random effects:

Groups Name Variance Std.Dev.

patientID (Intercept) 4.485 2.118

Number of obs: 1903, groups: patientID, 289

Fixed effects:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.93061 0.23176 -4.015 5.93e-05 ***

treatmentterbinafine -0.07609 0.30921 -0.246 0.8056

time -0.19074 0.02059 -9.263 < 2e-16 ***

treatmentterbinafine:time -0.06419 0.03099 -2.071 0.0383 *

---

Signif. codes: 0 ✬***✬ 0.001 ✬**✬ 0.01 ✬*✬ 0.05 ✬.✬ 0.1 ✬ ✬ 1

Correlation of Fixed Effects:
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(Intr) trtmnt time

trtmnttrbnf -0.655

time -0.186 0.212

trtmnttrbn: 0.193 -0.287 -0.611

R> toenail_glmer_RI_2@theta

[1] 2.117846

The sequential reduction (SR) algorithm (Ogden 2015) gives results close to AGQ

R> library("glmmsr")

R> toenail_glmm_RI_3 <-

+ glmm(outcome ~ treatment * time + (1 | patientID),

+ data = toenail, family = binomial(link = "probit"),

+ method = "SR", control = list(nSL = 3))

Fitting the model......................... done.

R> summary(toenail_glmm_RI_3)

Generalized linear mixed model fit by maximum likelihood [glmmFit]

Likelihood approximation: Sequential reduction at level 3

Family: binomial ( probit )

Formula: outcome ~ treatment * time + (1 | patientID)

Random effects:

Groups Name Estimate Std.Error

patientID (Intercept) 2.119 0.1954

Number of obs: 1903, groups: patientID, 289;

Fixed effects:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.93105 0.23217 4.0102 6.066e-05

treatmentterbinafine -0.07618 0.30945 0.2462 8.055e-01

time -0.19076 0.02060 9.2618 2.010e-20

treatmentterbinafine:time -0.06420 0.03099 2.0713 3.834e-02

Because of the probit link, this binary generalised linear model is equivalent to a linear trans-
formation model and we can thus use the exact likelihood implemented for the latter model
in mtram() for parameter estimation (it is still a bit nasty to set-up a constant transformation
function h(y) = α, I plan to add a more convenient interface later)

R> m <- ctm(as.basis(~ outcome, data = toenail),

+ shifting = ~ treatment * time,

+ data = toenail, todistr = "Normal")
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R> toenail_probit <- mlt(m, data = toenail,

+ fixed = c("outcomemoderate or severe" = 0))

R> toenail_mtram_RI <-

+ mtram(toenail_probit, ~ (1 | patientID),

+ data = toenail, Hessian = TRUE)

R> logLik(toenail_mtram_RI)

✬log Lik.✬ -633.9638 (df=5)

R> coef(toenail_mtram_RI)

(Intercept) treatmentterbinafine

0.92946575 0.07699772

time treatmentterbinafine:time

0.19056617 0.06355426

gamma1

2.11447751

For this random intercept model, the exact likelihood is defined as a one-dimensional in-
tegral over the unit interval. We use sparse grids (Heiss and Winschel 2008; Ypma 2013)
to approximate this integral. The integrant is defined by products of normal probabilities,
which are approximated as described by Matić et al. (2018). It is important to note that this
likelihood can be computed as accurately as necessary whereas Laplace, AGQ, and SR are
approximations of limited accuracy.

The results are very close to SR and AGQ, indicating a very good quality of the AGQ and
SR approximations. We can also compare the corresponding covariances

R> vcov(toenail_glmer_RI_2)

4 x 4 Matrix of class "dpoMatrix"

(Intercept) treatmentterbinafine time

(Intercept) 0.0537125190 -0.046953461 -0.0008877046

treatmentterbinafine -0.0469534610 0.095609401 0.0013522326

time -0.0008877046 0.001352233 0.0004239968

treatmentterbinafine:time 0.0013871422 -0.002754670 -0.0003896725

treatmentterbinafine:time

(Intercept) 0.0013871422

treatmentterbinafine -0.0027546700

time -0.0003896725

treatmentterbinafine:time 0.0009603451

R> solve(toenail_mtram_RI$Hessian)[1:4, 1:4]

[,1] [,2] [,3] [,4]

[1,] 0.0535092145 -0.046828492 -0.0008863063 0.0013728319

[2,] -0.0468284922 0.095401203 0.0013454535 -0.0027201601

[3,] -0.0008863063 0.001345453 0.0004223651 -0.0003889276

[4,] 0.0013728319 -0.002720160 -0.0003889276 0.0009479429
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Things get a bit less straightforward when a random slope is added to the model. The two
implementations of the Laplace approximation in packages lme4

R> toenail_glmer_RS <-

+ glmer(outcome ~ treatment * time + (1 + time | patientID),

+ data = toenail, family = binomial(link = "probit"))

R> summary(toenail_glmer_RS)

Generalized linear mixed model fit by maximum likelihood (Laplace

Approximation) [glmerMod]

Family: binomial ( probit )

Formula: outcome ~ treatment * time + (1 + time | patientID)

Data: toenail

AIC BIC logLik deviance df.resid

985.8 1024.7 -485.9 971.8 1896

Scaled residuals:

Min 1Q Median 3Q Max

-1.85421 -0.00210 -0.00037 0.00000 2.35828

Random effects:

Groups Name Variance Std.Dev. Corr

patientID (Intercept) 118.433 10.883

time 3.305 1.818 -0.90

Number of obs: 1903, groups: patientID, 289

Fixed effects:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -4.30119 0.26361 -16.316 <2e-16 ***

treatmentterbinafine 0.05419 0.34652 0.156 0.8757

time -0.06791 0.07846 -0.866 0.3867

treatmentterbinafine:time -0.23478 0.13885 -1.691 0.0909 .

---

Signif. codes: 0 ✬***✬ 0.001 ✬**✬ 0.01 ✬*✬ 0.05 ✬.✬ 0.1 ✬ ✬ 1

Correlation of Fixed Effects:

(Intr) trtmnt time

trtmnttrbnf -0.662

time -0.453 0.342

trtmnttrbn: 0.270 -0.438 -0.335

R> toenail_glmer_RS@theta

[1] 10.8826888 -1.6359617 0.7930867

and glmmsr
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R> toenail_glmm_RS_1 <-

+ glmm(outcome ~ treatment * time + (1 + time | patientID),

+ data = toenail, family = binomial(link = "probit"),

+ method = "Laplace")

Fitting the model..... done.

R> toenail_glmm_RS_1$estim[1:3]

[1] 4.9992215 -0.5644628 0.4110986

R> toenail_glmm_RS_1$estim[-(1:3)]

[1] -3.49232631 0.04197115 -0.06769437 -0.12100940

do not quite agree. Note that the standard deviation of the random intercept is twice as large
in the glmer() output.

The optimisation of the exact discrete likelihood in the transformation framework gives

R> toenail_mtram_RS <-

+ mtram(toenail_probit, ~ (1 + time | patientID),

+ data = toenail)

R> logLik(toenail_mtram_RS)

✬log Lik.✬ -545.1164 (df=7)

R> coef(toenail_mtram_RS)

(Intercept) treatmentterbinafine

1.5765323 -0.2666840

time treatmentterbinafine:time

0.5323918 0.1842506

gamma1 gamma2

5.2172376 -0.3723898

gamma3

0.5285640

The variance parameters are not too far off the results reported by glmm(), but the fixed
effects differ quite a bit.

At least in biostatistics, the probit model is less popular than the logit model owing to the
better interpretability of the fixed effects as conditional log-odds ratios in the latter. Using a
logit link, we can use the transformation approach to compute marginally interpretable time-
dependent log-odds ratios from random intercept transformation logit models (standardise
= TRUE() computes model (M2) instead of the default (M1), see Hothorn 2019):
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R> m <- ctm(as.basis(~ outcome, data = toenail),

+ shifting = ~ treatment * time,

+ data = toenail, todistr = "Logistic")

R> toenail_logit <- mlt(m, data = toenail,

+ fixed = c("outcomemoderate or severe" = 0))

R> toenail_mtram_logit <- mtram(toenail_logit, ~ (1 | patientID),

+ data = toenail)

R> toenail_mtram_logit_s <- mtram(toenail_logit, ~ (1 | patientID),

+ data = toenail, standardise = TRUE,

+ Hessian = TRUE)

It is important to note that this model is not a logistic mixed-effects model and thus we can’t
expect to obtain identical results from glmer() as it was (partially) the case for the probit
model.

From the standardised model, we can compute marginally interpretable probabilities and odds
ratios over time

R> tmp <- toenail_logit

R> cf <- coef(tmp)

R> cf <- cf[names(cf) != "outcomemoderate or severe"]

R> sdrf <- rev(coef(toenail_mtram_logit_s))[1]

R> cf <- coef(toenail_mtram_logit_s)[names(cf)] / sqrt(sdrf^2 + 1)

R> cf <- c(cf[1], "outcomemoderate or severe" = 0, cf[-1])

R> coef(tmp) <- cf

R> time <- 0:180/10

R> treatment <- sort(unique(toenail$treatment))

R> nd <- expand.grid(time = time, treatment = treatment)

R> nd$prob_logit_s <- predict(tmp, newdata = nd, type = "distribution")[1,]

R> nd$odds <- exp(predict(tmp, newdata = nd, type = "trafo")[1,])

We can also sample from the distribution of the maximum likelihood estimators to obtain an
idea about the uncertainty (Figure 5).

From the unstandardised logit and probit models, we can also obtain marginally interpretable
probabilities as (probit)

R> tmp <- toenail_logit

R> cf <- coef(tmp)

R> cf <- cf[names(cf) != "outcomemoderate or severe"]

R> sdrf <- rev(coef(toenail_mtram_logit))[1]

R> cf <- coef(toenail_mtram_logit)[names(cf)]

R> cf <- c(cf[1], "outcomemoderate or severe" = 0, cf[-1])

R> coef(tmp) <- cf

R> pr <- predict(tmp, newdata = nd, type = "distribution")[1,]

R> nd$prob_logit <- pnorm(qnorm(pr) / sdrf)

and (logit)
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Figure 5: Toe nail data: Marginal odds ratio over time (from a logistic random intercept
model). The blue line represents the maximum likelihood estimator, the grey lines are samples
from the corresponding distribution.

R> tmp <- toenail_probit

R> cf <- coef(tmp)

R> cf <- cf[names(cf) != "outcomemoderate or severe"]

R> sdrf <- rev(coef(toenail_mtram_RI))[1]

R> cf <- coef(toenail_mtram_RI)[names(cf)] / sqrt(sdrf^2 + 1)

R> cf <- c(cf[1], "outcomemoderate or severe" = 0, cf[-1])

R> coef(tmp) <- cf

R> nd$prob_probit <- predict(tmp, newdata = nd, type = "distribution")[1,]

The marginal time-dependent probabilities obtained from all three models are very similar as
shown in Figure 6.

4. Proportional Odds Models for Bounded Responses

Manuguerra and Heller (2010) proposed a mixed-effects model for bounded responses whose
fixed effects can be interpreted as log-odds ratios. We fit a transformation model to data from
a randomised controlled trial on chronic neck pain treatment (Chow et al. 2006). The data
are visualised in Figure 7. Subjective neck pain levels were assessed on a visual analog scale,
that is, on a bounded interval.

Manuguerra and Heller (2010) suggested the conditional model

logit(P(pain ≤ y | treatment, time, i)) =

h(y) + βActive + β7 weeks + β12 weeks + β7 weeks, Active + β12 weeks, Active + αi
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Figure 6: Toe nail data: Comparison of marginal probabilities obtained from a probit lin-
ear mixed-effects model and two logistic transformation models (M2: with or M1: without
marginal log-odds ratio treatment effect).

with random intercepts α̃i such that the odds at baseline, for example, are given by

P(pain ≤ y | Active, baseline, i)

P(pain > y | Active, baseline, i)
= exp(βActive)

P(pain ≤ y | Placebo, baseline, i)

P(pain > y | Placebo, baseline, i)

R> library("ordinalCont")

R> neck_ocm <- ocm(vas ~ laser * time + (1 | id), data = pain_df,

+ scale = c(0, 1))

The results

R> summary(neck_ocm)

Call:

ocm(formula = vas ~ laser * time + (1 | id), data = pain_df,

scale = c(0, 1))

Random effects:

Name Variance Std.Dev.

Intercept|id 5.755 2.399

Coefficients:

Estimate StdErr t.value p.value

laserActive -2.07922 0.65055 -3.1961 0.001918 **

time7 weeks -0.60366 0.35744 -1.6889 0.094689 .
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Figure 7: Neck pain: Trajectories of neck pain assessed on a visual analog scale with and
without low-level laser therapy.

time12 weeks -0.23804 0.36365 -0.6546 0.514395

laserActive:time7 weeks 4.40817 0.56073 7.8615 7.604e-12 ***

laserActive:time12 weeks 3.38593 0.53925 6.2790 1.159e-08 ***

---

Signif. codes: 0 ✬***✬ 0.001 ✬**✬ 0.01 ✬*✬ 0.05 ✬.✬ 0.1 ✬ ✬ 1

suggest that there is a difference at baseline; the pain distribution of subjects in the placebo
group on the odds scale is only 13% of the odds in the active group for any cut-off y:

R> exp(cbind(coef(neck_ocm)[2:6], confint(neck_ocm)[2:6,]))

2.5 % 97.5 %

laserActive 0.1250278 0.03493482 0.4474608

time7 weeks 0.5468040 0.27137954 1.1017581

time12 weeks 0.7881704 0.38643700 1.6075391

laserActive:time7 weeks 82.1194073 27.36208405 246.4577275

laserActive:time12 weeks 29.5454666 10.26785879 85.0162253

In contrast, there seems to be a very large treatment effect (at week 7, the odds in the placebo
group is 1 times larger than in the active group. This levels off after 12 weeks, but the effect
is still significant at the 5% level.

The corresponding transformation model with a different parameterisation of the transfor-
mation function h and a completely different optimisation procedure for maximising the log-
likelihood, can be estimated by

R> neck_Colr <- Colr(vas ~ laser * time, data = pain_df,

+ bounds = c(0, 1), support = c(0, 1),
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Figure 8: Neck pain: Marginal distribution functions of chronic neck pain evaluated at three
different time points under placebo or active low-level laser therapy.

+ extrapolate = TRUE)

R> neck_Colrmer <- mtram(neck_Colr, ~ (1 | id), data = pain_df,

+ Hessian = TRUE)

R> logLik(neck_Colrmer)

✬log Lik.✬ 74.35908 (df=13)

Based on this model of form (M1), it is possible to derive the marginal distribution functions
in the two groups, see Figure 8.

5. Marginally Interpretable Weibull and Cox Models

The CAO/ARO/AIO-04 randomised clinical trial (Rödel et al. 2015) compared Oxaliplatin
added to fluorouracil-based preoperative chemoradiotherapy and postoperative chemother-
apy to the same therapy using fluorouracil only for rectal cancer patients. Patients were
randomised in the two treatment arms by block randomisation taking the study center, the
lymph node involvement (negative, positive), and tumour grading (T1-3 vs. T4) into account.
The primary endpoint was disease-free survival, defined as the time between randomisation
and non-radical surgery of the primary tumour (R2 resection), locoregional recurrence after
R0/1 resection, metastatic disease or progression, or death from any cause, whichever oc-
curred first. The observed outcomes are a mix of exact dates (time to death or incomplete
removal of the primary tumour), right-censoring (end of follow-up or drop-out), and interval-
censoring (local or distant metastases). We are interested in a clustered Cox or Weibull model
for interval-censored survival times. The survivor functions, estimated separately for each of
the four strata defined by lymph node involvement and tumour grading, are given in Figure 9.

The implementation of mixed transformation models is currently not able to deal with mixed
exact and censored outcomes in the same cluster. We therefore recode exact event times as
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Figure 9: Rectal cancer: Distribution of disease-free surival times for two treatments in the
four strata defined by lymph node involvement (negative or positive) and tumour grading
(T1-3 or T4).

being interval-censored by adding a 4-day window to each exact event time (variable iDFS2).

R> ### convert "exact" event dates to interval-censoring (+/- one day)

R> tmp <- CAOsurv$iDFS

R> exact <- tmp[,3] == 1

R> tmp[exact,2] <- tmp[exact,1] + 2

R> tmp[exact,1] <- pmax(tmp[exact,1] - 2, 0)

R> tmp[exact,3] <- 3

R> CAOsurv$iDFS2 <- tmp

We start with the random intercept model

P(Y > y | treatment) = exp

(

− exp

(

ϑ1 + ϑ2 log(y)− β5-FU + Ox
√

γ21 + 1

))

assuming a marginal Weibull model whose effects are scaled depending on the variance γ21 of
a block-specific (interaction of lymph node involvement, tumour grading, and study center)
random intercept:

R> CAO_SR <- Survreg(iDFS2 ~ randarm, data = CAOsurv)

R> CAO_SR_mtram_s <- mtram(CAO_SR, ~ (1 | Block), data = CAOsurv,

+ standardise = TRUE, Hessian = TRUE)

R> logLik(CAO_SR_mtram_s)

✬log Lik.✬ -2081.542 (df=4)
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R> (cf <- coef(CAO_SR_mtram_s))

(Intercept) log(iDFS2)

-6.2990054 0.7412855

randarm5-FU + Oxaliplatin gamma1

0.2328600 0.1683613

R> (OR <- exp(-cf["randarm5-FU + Oxaliplatin"] / sqrt(cf["gamma1"]^2 + 1)))

randarm5-FU + Oxaliplatin

0.794829

We are, of course, interested in the marginal treatment effect, that is, the odds ratio

exp(−β5-FU + Ox/
√

γ21 + 1).

We simply sample from the joint normal distribution of the maximum likelihood estimators
ϑ̂1, ϑ̂2, β̂5-FU + Ox, γ̂1 and compute confidence intervals for the marginal treatment effect 0.79
as

R> S <- solve(CAO_SR_mtram_s$Hessian)

R> sqrt(diag(S))

[1] 0.29019989 0.03872268 0.10722445 0.12433065

R> rbeta <- rmvnorm(10000, mean = coef(CAO_SR_mtram_s),

+ sigma = S)

R> s <- rbeta[,ncol(rbeta)]

R> rbeta <- rbeta[,-ncol(rbeta)] / sqrt(s^2 + 1)

R> quantile(exp(-rbeta[, ncol(rbeta)]), prob = c(.025, .5, .975))

2.5% 50% 97.5%

0.6478684 0.7953985 0.9747696

In a next step, we stratify with respect to lymph node involvement and tumour grading: For
each of the four strata, the parameters ϑ1 and ϑ2 are estimated separately:

R> CAO_SR_2 <- Survreg(iDFS2 | 0 + strat_n:strat_t ~ randarm, data = CAOsurv)

R> CAO_SR_2_mtram_s <- mtram(CAO_SR_2, ~ (1 | Block), data = CAOsurv,

+ standardise = TRUE, Hessian = TRUE)

R> logLik(CAO_SR_2_mtram_s)

✬log Lik.✬ -2067.797 (df=10)

R> (cf <- coef(CAO_SR_2_mtram_s))
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(Intercept):strat_ncN0:strat_tcT1-3 log(iDFS2):strat_ncN0:strat_tcT1-3

-7.8833653 0.9584499

(Intercept):strat_ncN+:strat_tcT1-3 log(iDFS2):strat_ncN+:strat_tcT1-3

-6.2225174 0.7198965

(Intercept):strat_ncN0:strat_tcT4 log(iDFS2):strat_ncN0:strat_tcT4

-3.0467542 0.3711277

(Intercept):strat_ncN+:strat_tcT4 log(iDFS2):strat_ncN+:strat_tcT4

-4.8207089 0.6214653

randarm5-FU + Oxaliplatin gamma1

0.2240023 0.1474685

R> (OR_2 <- exp(-cf["randarm5-FU + Oxaliplatin"] / sqrt(cf["gamma1"]^2 + 1)))

randarm5-FU + Oxaliplatin

0.8012313

The corresponding confidence interval for the marginal treatment effect is then

[1] 0.68882415 0.09402924 0.34618756 0.04633063 1.01843933 0.13874107

[7] 0.68657931 0.09534206 0.10731700 0.13455556

2.5% 50% 97.5%

0.6528915 0.8044045 0.9856882

We now relax the Weibull assumption in the Cox model

P(Y > y | treatment, i) = exp

(

− exp

(

a(log(y))⊤ϑ+ β5-FU + Ox
√

γ21 + 1

))

(note the positive sign of the treatment effect).

R> CAO_Cox_2 <- Coxph(iDFS2 | 0 + strat_n:strat_t ~ randarm, data = CAOsurv,

+ support = c(1, 1700), log_first = TRUE, order = 4)

R> logLik(CAO_Cox_2)

✬log Lik.✬ -2021.875 (df=21)

R> CAO_Cox_2_mtram_s <- mtram(CAO_Cox_2, ~ (1 | Block), data = CAOsurv,

+ standardise = TRUE, Hessian = TRUE)

R> logLik(CAO_Cox_2_mtram_s)

✬log Lik.✬ -2031.051 (df=22)

R> coef(CAO_Cox_2_mtram_s)
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Bs1(iDFS2):strat_ncN0:strat_tcT1-3 Bs2(iDFS2):strat_ncN0:strat_tcT1-3

-5.832796e+01 -3.163149e+00

Bs3(iDFS2):strat_ncN0:strat_tcT1-3 Bs4(iDFS2):strat_ncN0:strat_tcT1-3

-3.161654e+00 -2.181838e+00

Bs5(iDFS2):strat_ncN0:strat_tcT1-3 Bs1(iDFS2):strat_ncN+:strat_tcT1-3

-7.656357e-01 -1.653595e+01

Bs2(iDFS2):strat_ncN+:strat_tcT1-3 Bs3(iDFS2):strat_ncN+:strat_tcT1-3

-8.143542e+00 -2.071762e+00

Bs4(iDFS2):strat_ncN+:strat_tcT1-3 Bs5(iDFS2):strat_ncN+:strat_tcT1-3

-1.792342e+00 -7.614334e-01

Bs1(iDFS2):strat_ncN0:strat_tcT4 Bs2(iDFS2):strat_ncN0:strat_tcT4

-2.525002e+00 -2.519727e+00

Bs3(iDFS2):strat_ncN0:strat_tcT4 Bs4(iDFS2):strat_ncN0:strat_tcT4

-2.330486e+00 -3.587793e-01

Bs5(iDFS2):strat_ncN0:strat_tcT4 Bs1(iDFS2):strat_ncN+:strat_tcT4

-1.456236e-01 -4.096546e+01

Bs2(iDFS2):strat_ncN+:strat_tcT4 Bs3(iDFS2):strat_ncN+:strat_tcT4

-2.000965e+00 -1.987891e+00

Bs4(iDFS2):strat_ncN+:strat_tcT4 Bs5(iDFS2):strat_ncN+:strat_tcT4

-3.570476e-01 1.919546e-14

randarm5-FU + Oxaliplatin gamma1

-1.806504e-01 -1.215448e-06

with confidence interval

2.5% 50% 97.5%

0.6911201 0.8325653 1.0084011

Because the estimated variance parameter γ1 is not very large, we would expect to see similar
results in a conditional Cox model with normal frailty term

R> library("coxme")

R> m <- coxme(DFS ~ randarm + (1 | Block), data = CAOsurv)

R> summary(m)

Cox mixed-effects model fit by maximum likelihood

Data: CAOsurv

events, n = 357, 1236

Iterations= 22 91

NULL Integrated Fitted

Log-likelihood -2432.971 -2430.475 -2414.482

Chisq df p AIC BIC

Integrated loglik 4.99 2.00 0.0823850 0.99 -6.76

Penalized loglik 36.98 16.72 0.0029833 3.53 -61.33

Model: DFS ~ randarm + (1 | Block)
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Fixed coefficients

coef exp(coef) se(coef) z p

randarm5-FU + Oxaliplatin -0.2310483 0.7937011 0.1067215 -2.16 0.03

Random effects

Group Variable Std Dev Variance

Block Intercept 0.21741797 0.04727057

R> sd <- sqrt(diag(vcov(m)))

R> exp(coef(m) + c(-1, 0, 1) * qnorm(.975) * sd)

[1] 0.6438957 0.7937011 0.9783596

6. Assessment of Unexplained Variability

Pollet and Nettle (2009) reported on an association between partner wealth and female self-
reported orgasm frequency. It was later (Herberich et al. 2010) pointed out that the finding
was due to an incorrectly implemented variable selection procedure based on a proportional
odds (cumulative logit) model for the ordinal variable corresponding to the question “When
having sex with your current partner, how often did you have orgasm?” with possible answer
categories y1 = Always, y2 = Often, y3 = Sometimes, y4 = Rarely, or y5 = Never. The
full model explains the conditional distribution of orgasm frequency by x = partner income,
partner height, the duration of the relationship, the respondents age, the difference between
both partners regarding education and wealth, the respondents education, health, happiness,
and place of living (regions in China) of the form

P(orgasm ≤ yk | x) = expit(ϑk + x⊤β)

for i = 1, . . . , N = 1531 independent heterosexual couples. In this model, the regression
coefficients β can be interpreted as log-odds ratios and we question the appropriateness of
this model here by including a subject-specific random intercept with standard deviation γ1.
This changes the model to

P(orgasm ≤ yk | x) = Φ

(

Φ−1(expit(ϑk + x⊤β))
√

γ21 + 1

)

A value of γ1 close to zero corresponds to marginal distributions very similar to the pro-
portional odds model and, consequently, it is appropriate to interpret β as log-odds ratios.
Larger values of γ1 indicate a more variable distribution and thus the choice F = expit might
be questionable.

We obtain

R> CHFLS_Polr <- Polr(orgasm ~ AincomeSD + AheightSD + RAdurationSD +

+ RageSD + edudiffSD + wealthdiffSD + Redu +

+ Rhealth + Rhappy + Region, data = orgAcc)

R> logLik(CHFLS_Polr)
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✬log Lik.✬ -1852.615 (df=27)

R> orgAcc$ID <- factor(1:nrow(orgAcc))

R> CHFLS_mtram <- mtram(CHFLS_Polr, ~ (1 | ID),

+ data = orgAcc)

R> logLik(CHFLS_mtram)

✬log Lik.✬ -1852.829 (df=28)

R> coef(CHFLS_mtram)

orgasm1 orgasm2 orgasm3 orgasm4

-3.00585271 -1.38078485 1.20377067 3.14108781

AincomeSD AheightSD RAdurationSD RageSD

0.02603981 -0.02217060 0.07529263 -0.35310380

edudiffSD wealthdiffSD Redujcol Reduupmid

-0.17413324 -0.03428024 0.13682888 0.17668815

Redulowmid Reduprimary Redunoschool Rhealthnot good

-0.42694677 -0.95912533 -1.80236615 1.36152834

Rhealthfair Rhealthgood Rhealthexcellent Rhappynot too

1.69707889 1.83806835 1.86386980 0.29162606

Rhappyrelatively Rhappyvery RegionNortheast RegionNorth

0.75856526 1.02374623 0.40651849 0.20369845

RegionInlandS RegionCoastalE RegionCoastalS gamma1

0.49050565 0.20059228 0.58338272 0.01678467

and from γ̂1 = 0.017 can conclude that the proportional odds model is appropriate here.
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Hirschengraben 84, CH-8001 Zürich, Switzerland
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