Last updated on 2020-12-04 00:48:27 CET.
Flavor | Version | Tinstall | Tcheck | Ttotal | Status | Flags |
---|---|---|---|---|---|---|
r-devel-linux-x86_64-debian-clang | 1.5.1 | 704.20 | 99.34 | 803.54 | OK | |
r-devel-linux-x86_64-debian-gcc | 1.5.1 | 502.62 | 76.05 | 578.67 | ERROR | |
r-devel-linux-x86_64-fedora-clang | 1.5.1 | 1160.34 | NOTE | |||
r-devel-linux-x86_64-fedora-gcc | 1.5.1 | 1083.74 | ERROR | |||
r-devel-windows-ix86+x86_64 | 1.5.1 | 1574.00 | 216.00 | 1790.00 | NOTE | |
r-patched-linux-x86_64 | 1.5.1 | 603.47 | 98.18 | 701.65 | OK | |
r-patched-solaris-x86 | 1.5.1 | 908.60 | OK | |||
r-release-linux-x86_64 | 1.5.1 | 597.34 | 97.80 | 695.14 | OK | |
r-release-macos-x86_64 | 1.5.1 | NOTE | ||||
r-release-windows-ix86+x86_64 | 1.5.1 | 1213.00 | 214.00 | 1427.00 | NOTE | |
r-oldrel-macos-x86_64 | 1.5.1 | NOTE | ||||
r-oldrel-windows-ix86+x86_64 | 1.5.1 | 1282.00 | 209.00 | 1491.00 | NOTE |
Version: 1.5.1
Check: tests
Result: ERROR
Running ‘ClusterSimul.R’ [0s/1s]
Running ‘clusterDiagGaussianLikelihood.R’ [1s/1s]
Running ‘clusterGammaLikelihood.R’ [1s/2s]
Running ‘simulHeterogeneous.R’ [0s/0s]
Running ‘simulNonLinear.R’ [0s/1s]
Running ‘testAllLearners.R’ [1s/1s]
Running ‘testPoissonExample.R’ [1s/2s]
Running ‘testPredict.R’ [6s/9s]
Running the tests in ‘tests/testAllLearners.R’ failed.
Complete output:
> library(MixAll)
Loading required package: rtkore
Loading required package: Rcpp
Attaching package: 'rtkore'
The following object is masked from 'package:Rcpp':
LdFlags
> ## get data and target from iris data set
> data(iris)
> x <- as.matrix(iris[,1:4]); z <- as.vector(iris[,5]); n <- nrow(x); p <- ncol(x)
> ## add missing values at random
> indexes <- matrix(c(round(runif(5,1,n)), round(runif(5,1,p))), ncol=2)
> cbind(indexes, x[indexes])
[,1] [,2] [,3]
[1,] 145 3 5.7
[2,] 61 3 3.5
[3,] 149 3 5.4
[4,] 96 3 4.2
[5,] 26 4 0.2
> x[indexes] <- NA
> ## learn continuous model
> model <- learnDiagGaussian( data=x, labels= z, prop = c(1/3,1/3,1/3)
+ , models = clusterDiagGaussianNames(prop = "equal")
+ , algo = "simul", nbIter = 2, epsilon = 1e-08
+ )
> missingValues(model)
row col value
1 61 3 3.6716278
2 96 3 3.5737922
3 145 3 4.9110918
4 149 3 5.4618991
5 26 4 -0.6602505
> print(model)
****************************************
* model name = gaussian_p_s
* data =
Sepal.Length Sepal.Width Petal.Length Petal.Width
[1,] 5.1000000 3.5000000 1.4000000 0.2000000
[2,] 4.9000000 3.0000000 1.4000000 0.2000000
[3,] 4.7000000 3.2000000 1.3000000 0.2000000
[4,] 4.6000000 3.1000000 1.5000000 0.2000000
[5,] 5.0000000 3.6000000 1.4000000 0.2000000
[6,] 5.4000000 3.9000000 1.7000000 0.4000000
[7,] 4.6000000 3.4000000 1.4000000 0.3000000
[8,] 5.0000000 3.4000000 1.5000000 0.2000000
[9,] 4.4000000 2.9000000 1.4000000 0.2000000
[10,] 4.9000000 3.1000000 1.5000000 0.1000000
[11,] 5.4000000 3.7000000 1.5000000 0.2000000
[12,] 4.8000000 3.4000000 1.6000000 0.2000000
[13,] 4.8000000 3.0000000 1.4000000 0.1000000
[14,] 4.3000000 3.0000000 1.1000000 0.1000000
[15,] 5.8000000 4.0000000 1.2000000 0.2000000
[16,] 5.7000000 4.4000000 1.5000000 0.4000000
[17,] 5.4000000 3.9000000 1.3000000 0.4000000
[18,] 5.1000000 3.5000000 1.4000000 0.3000000
[19,] 5.7000000 3.8000000 1.7000000 0.3000000
[20,] 5.1000000 3.8000000 1.5000000 0.3000000
[21,] 5.4000000 3.4000000 1.7000000 0.2000000
[22,] 5.1000000 3.7000000 1.5000000 0.4000000
[23,] 4.6000000 3.6000000 1.0000000 0.2000000
[24,] 5.1000000 3.3000000 1.7000000 0.5000000
[25,] 4.8000000 3.4000000 1.9000000 0.2000000
[26,] 5.0000000 3.0000000 1.6000000 -0.6602505
[27,] 5.0000000 3.4000000 1.6000000 0.4000000
[28,] 5.2000000 3.5000000 1.5000000 0.2000000
[29,] 5.2000000 3.4000000 1.4000000 0.2000000
[30,] 4.7000000 3.2000000 1.6000000 0.2000000
[31,] 4.8000000 3.1000000 1.6000000 0.2000000
[32,] 5.4000000 3.4000000 1.5000000 0.4000000
[33,] 5.2000000 4.1000000 1.5000000 0.1000000
[34,] 5.5000000 4.2000000 1.4000000 0.2000000
[35,] 4.9000000 3.1000000 1.5000000 0.2000000
[36,] 5.0000000 3.2000000 1.2000000 0.2000000
[37,] 5.5000000 3.5000000 1.3000000 0.2000000
[38,] 4.9000000 3.6000000 1.4000000 0.1000000
[39,] 4.4000000 3.0000000 1.3000000 0.2000000
[40,] 5.1000000 3.4000000 1.5000000 0.2000000
[41,] 5.0000000 3.5000000 1.3000000 0.3000000
[42,] 4.5000000 2.3000000 1.3000000 0.3000000
[43,] 4.4000000 3.2000000 1.3000000 0.2000000
[44,] 5.0000000 3.5000000 1.6000000 0.6000000
[45,] 5.1000000 3.8000000 1.9000000 0.4000000
[46,] 4.8000000 3.0000000 1.4000000 0.3000000
[47,] 5.1000000 3.8000000 1.6000000 0.2000000
[48,] 4.6000000 3.2000000 1.4000000 0.2000000
[49,] 5.3000000 3.7000000 1.5000000 0.2000000
[50,] 5.0000000 3.3000000 1.4000000 0.2000000
[51,] 7.0000000 3.2000000 4.7000000 1.4000000
[52,] 6.4000000 3.2000000 4.5000000 1.5000000
[53,] 6.9000000 3.1000000 4.9000000 1.5000000
[54,] 5.5000000 2.3000000 4.0000000 1.3000000
[55,] 6.5000000 2.8000000 4.6000000 1.5000000
[56,] 5.7000000 2.8000000 4.5000000 1.3000000
[57,] 6.3000000 3.3000000 4.7000000 1.6000000
[58,] 4.9000000 2.4000000 3.3000000 1.0000000
[59,] 6.6000000 2.9000000 4.6000000 1.3000000
[60,] 5.2000000 2.7000000 3.9000000 1.4000000
[61,] 5.0000000 2.0000000 3.6716278 1.0000000
[62,] 5.9000000 3.0000000 4.2000000 1.5000000
[63,] 6.0000000 2.2000000 4.0000000 1.0000000
[64,] 6.1000000 2.9000000 4.7000000 1.4000000
[65,] 5.6000000 2.9000000 3.6000000 1.3000000
[66,] 6.7000000 3.1000000 4.4000000 1.4000000
[67,] 5.6000000 3.0000000 4.5000000 1.5000000
[68,] 5.8000000 2.7000000 4.1000000 1.0000000
[69,] 6.2000000 2.2000000 4.5000000 1.5000000
[70,] 5.6000000 2.5000000 3.9000000 1.1000000
[71,] 5.9000000 3.2000000 4.8000000 1.8000000
[72,] 6.1000000 2.8000000 4.0000000 1.3000000
[73,] 6.3000000 2.5000000 4.9000000 1.5000000
[74,] 6.1000000 2.8000000 4.7000000 1.2000000
[75,] 6.4000000 2.9000000 4.3000000 1.3000000
[76,] 6.6000000 3.0000000 4.4000000 1.4000000
[77,] 6.8000000 2.8000000 4.8000000 1.4000000
[78,] 6.7000000 3.0000000 5.0000000 1.7000000
[79,] 6.0000000 2.9000000 4.5000000 1.5000000
[80,] 5.7000000 2.6000000 3.5000000 1.0000000
[81,] 5.5000000 2.4000000 3.8000000 1.1000000
[82,] 5.5000000 2.4000000 3.7000000 1.0000000
[83,] 5.8000000 2.7000000 3.9000000 1.2000000
[84,] 6.0000000 2.7000000 5.1000000 1.6000000
[85,] 5.4000000 3.0000000 4.5000000 1.5000000
[86,] 6.0000000 3.4000000 4.5000000 1.6000000
[87,] 6.7000000 3.1000000 4.7000000 1.5000000
[88,] 6.3000000 2.3000000 4.4000000 1.3000000
[89,] 5.6000000 3.0000000 4.1000000 1.3000000
[90,] 5.5000000 2.5000000 4.0000000 1.3000000
[91,] 5.5000000 2.6000000 4.4000000 1.2000000
[92,] 6.1000000 3.0000000 4.6000000 1.4000000
[93,] 5.8000000 2.6000000 4.0000000 1.2000000
[94,] 5.0000000 2.3000000 3.3000000 1.0000000
[95,] 5.6000000 2.7000000 4.2000000 1.3000000
[96,] 5.7000000 3.0000000 3.5737922 1.2000000
[97,] 5.7000000 2.9000000 4.2000000 1.3000000
[98,] 6.2000000 2.9000000 4.3000000 1.3000000
[99,] 5.1000000 2.5000000 3.0000000 1.1000000
[100,] 5.7000000 2.8000000 4.1000000 1.3000000
[101,] 6.3000000 3.3000000 6.0000000 2.5000000
[102,] 5.8000000 2.7000000 5.1000000 1.9000000
[103,] 7.1000000 3.0000000 5.9000000 2.1000000
[104,] 6.3000000 2.9000000 5.6000000 1.8000000
[105,] 6.5000000 3.0000000 5.8000000 2.2000000
[106,] 7.6000000 3.0000000 6.6000000 2.1000000
[107,] 4.9000000 2.5000000 4.5000000 1.7000000
[108,] 7.3000000 2.9000000 6.3000000 1.8000000
[109,] 6.7000000 2.5000000 5.8000000 1.8000000
[110,] 7.2000000 3.6000000 6.1000000 2.5000000
[111,] 6.5000000 3.2000000 5.1000000 2.0000000
[112,] 6.4000000 2.7000000 5.3000000 1.9000000
[113,] 6.8000000 3.0000000 5.5000000 2.1000000
[114,] 5.7000000 2.5000000 5.0000000 2.0000000
[115,] 5.8000000 2.8000000 5.1000000 2.4000000
[116,] 6.4000000 3.2000000 5.3000000 2.3000000
[117,] 6.5000000 3.0000000 5.5000000 1.8000000
[118,] 7.7000000 3.8000000 6.7000000 2.2000000
[119,] 7.7000000 2.6000000 6.9000000 2.3000000
[120,] 6.0000000 2.2000000 5.0000000 1.5000000
[121,] 6.9000000 3.2000000 5.7000000 2.3000000
[122,] 5.6000000 2.8000000 4.9000000 2.0000000
[123,] 7.7000000 2.8000000 6.7000000 2.0000000
[124,] 6.3000000 2.7000000 4.9000000 1.8000000
[125,] 6.7000000 3.3000000 5.7000000 2.1000000
[126,] 7.2000000 3.2000000 6.0000000 1.8000000
[127,] 6.2000000 2.8000000 4.8000000 1.8000000
[128,] 6.1000000 3.0000000 4.9000000 1.8000000
[129,] 6.4000000 2.8000000 5.6000000 2.1000000
[130,] 7.2000000 3.0000000 5.8000000 1.6000000
[131,] 7.4000000 2.8000000 6.1000000 1.9000000
[132,] 7.9000000 3.8000000 6.4000000 2.0000000
[133,] 6.4000000 2.8000000 5.6000000 2.2000000
[134,] 6.3000000 2.8000000 5.1000000 1.5000000
[135,] 6.1000000 2.6000000 5.6000000 1.4000000
[136,] 7.7000000 3.0000000 6.1000000 2.3000000
[137,] 6.3000000 3.4000000 5.6000000 2.4000000
[138,] 6.4000000 3.1000000 5.5000000 1.8000000
[139,] 6.0000000 3.0000000 4.8000000 1.8000000
[140,] 6.9000000 3.1000000 5.4000000 2.1000000
[141,] 6.7000000 3.1000000 5.6000000 2.4000000
[142,] 6.9000000 3.1000000 5.1000000 2.3000000
[143,] 5.8000000 2.7000000 5.1000000 1.9000000
[144,] 6.8000000 3.2000000 5.9000000 2.3000000
[145,] 6.7000000 3.3000000 4.9110918 2.5000000
[146,] 6.7000000 3.0000000 5.2000000 2.3000000
[147,] 6.3000000 2.5000000 5.0000000 1.9000000
[148,] 6.5000000 3.0000000 5.2000000 2.0000000
[149,] 6.2000000 3.4000000 5.4618991 2.3000000
[150,] 5.9000000 3.0000000 5.1000000 1.8000000
* missing =
row col
[1,] 61 3
[2,] 96 3
[3,] 145 3
[4,] 149 3
[5,] 26 4
* nbSample = 150
* nbCluster = 3
* lnLikelihood = -1035.894
* nbFreeParameter= 70
* criterion name = ICL
* criterion value= 2429.652
* zi =
[1] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
[38] 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[75] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2
[112] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[149] 2 2
****************************************
*** Cluster: 1
* Proportion = 0.3333333
* Means = 5.006000 3.428000 1.462000 0.228795
* S.D. = 0.3887947 0.3887947 0.3887947 0.3887947
****************************************
*** Cluster: 2
* Proportion = 0.3333333
* Means = 5.936000 2.770000 4.250908 1.326000
* S.D. = 0.3887947 0.3887947 0.3887947 0.3887947
****************************************
*** Cluster: 3
* Proportion = 0.3333333
* Means = 6.58800 2.97400 5.53746 2.02600
* S.D. = 0.3887947 0.3887947 0.3887947 0.3887947
****************************************
> model <- learnDiagGaussian( data=x, labels= z,
+ , models = clusterDiagGaussianNames(prop = "equal")
+ , algo = "impute", nbIter = 2, epsilon = 1e-08)
> missingValues(model)
row col value
> print(model)
****************************************
* model name = gaussian_p_sjk
* data =
Sepal.Length Sepal.Width Petal.Length Petal.Width
[1,] 5.1000000 3.5000000 1.4000000 0.2000000
[2,] 4.9000000 3.0000000 1.4000000 0.2000000
[3,] 4.7000000 3.2000000 1.3000000 0.2000000
[4,] 4.6000000 3.1000000 1.5000000 0.2000000
[5,] 5.0000000 3.6000000 1.4000000 0.2000000
[6,] 5.4000000 3.9000000 1.7000000 0.4000000
[7,] 4.6000000 3.4000000 1.4000000 0.3000000
[8,] 5.0000000 3.4000000 1.5000000 0.2000000
[9,] 4.4000000 2.9000000 1.4000000 0.2000000
[10,] 4.9000000 3.1000000 1.5000000 0.1000000
[11,] 5.4000000 3.7000000 1.5000000 0.2000000
[12,] 4.8000000 3.4000000 1.6000000 0.2000000
[13,] 4.8000000 3.0000000 1.4000000 0.1000000
[14,] 4.3000000 3.0000000 1.1000000 0.1000000
[15,] 5.8000000 4.0000000 1.2000000 0.2000000
[16,] 5.7000000 4.4000000 1.5000000 0.4000000
[17,] 5.4000000 3.9000000 1.3000000 0.4000000
[18,] 5.1000000 3.5000000 1.4000000 0.3000000
[19,] 5.7000000 3.8000000 1.7000000 0.3000000
[20,] 5.1000000 3.8000000 1.5000000 0.3000000
[21,] 5.4000000 3.4000000 1.7000000 0.2000000
[22,] 5.1000000 3.7000000 1.5000000 0.4000000
[23,] 4.6000000 3.6000000 1.0000000 0.2000000
[24,] 5.1000000 3.3000000 1.7000000 0.5000000
[25,] 4.8000000 3.4000000 1.9000000 0.2000000
[26,] 5.0000000 3.0000000 1.6000000 -0.6602505
[27,] 5.0000000 3.4000000 1.6000000 0.4000000
[28,] 5.2000000 3.5000000 1.5000000 0.2000000
[29,] 5.2000000 3.4000000 1.4000000 0.2000000
[30,] 4.7000000 3.2000000 1.6000000 0.2000000
[31,] 4.8000000 3.1000000 1.6000000 0.2000000
[32,] 5.4000000 3.4000000 1.5000000 0.4000000
[33,] 5.2000000 4.1000000 1.5000000 0.1000000
[34,] 5.5000000 4.2000000 1.4000000 0.2000000
[35,] 4.9000000 3.1000000 1.5000000 0.2000000
[36,] 5.0000000 3.2000000 1.2000000 0.2000000
[37,] 5.5000000 3.5000000 1.3000000 0.2000000
[38,] 4.9000000 3.6000000 1.4000000 0.1000000
[39,] 4.4000000 3.0000000 1.3000000 0.2000000
[40,] 5.1000000 3.4000000 1.5000000 0.2000000
[41,] 5.0000000 3.5000000 1.3000000 0.3000000
[42,] 4.5000000 2.3000000 1.3000000 0.3000000
[43,] 4.4000000 3.2000000 1.3000000 0.2000000
[44,] 5.0000000 3.5000000 1.6000000 0.6000000
[45,] 5.1000000 3.8000000 1.9000000 0.4000000
[46,] 4.8000000 3.0000000 1.4000000 0.3000000
[47,] 5.1000000 3.8000000 1.6000000 0.2000000
[48,] 4.6000000 3.2000000 1.4000000 0.2000000
[49,] 5.3000000 3.7000000 1.5000000 0.2000000
[50,] 5.0000000 3.3000000 1.4000000 0.2000000
[51,] 7.0000000 3.2000000 4.7000000 1.4000000
[52,] 6.4000000 3.2000000 4.5000000 1.5000000
[53,] 6.9000000 3.1000000 4.9000000 1.5000000
[54,] 5.5000000 2.3000000 4.0000000 1.3000000
[55,] 6.5000000 2.8000000 4.6000000 1.5000000
[56,] 5.7000000 2.8000000 4.5000000 1.3000000
[57,] 6.3000000 3.3000000 4.7000000 1.6000000
[58,] 4.9000000 2.4000000 3.3000000 1.0000000
[59,] 6.6000000 2.9000000 4.6000000 1.3000000
[60,] 5.2000000 2.7000000 3.9000000 1.4000000
[61,] 5.0000000 2.0000000 3.6716278 1.0000000
[62,] 5.9000000 3.0000000 4.2000000 1.5000000
[63,] 6.0000000 2.2000000 4.0000000 1.0000000
[64,] 6.1000000 2.9000000 4.7000000 1.4000000
[65,] 5.6000000 2.9000000 3.6000000 1.3000000
[66,] 6.7000000 3.1000000 4.4000000 1.4000000
[67,] 5.6000000 3.0000000 4.5000000 1.5000000
[68,] 5.8000000 2.7000000 4.1000000 1.0000000
[69,] 6.2000000 2.2000000 4.5000000 1.5000000
[70,] 5.6000000 2.5000000 3.9000000 1.1000000
[71,] 5.9000000 3.2000000 4.8000000 1.8000000
[72,] 6.1000000 2.8000000 4.0000000 1.3000000
[73,] 6.3000000 2.5000000 4.9000000 1.5000000
[74,] 6.1000000 2.8000000 4.7000000 1.2000000
[75,] 6.4000000 2.9000000 4.3000000 1.3000000
[76,] 6.6000000 3.0000000 4.4000000 1.4000000
[77,] 6.8000000 2.8000000 4.8000000 1.4000000
[78,] 6.7000000 3.0000000 5.0000000 1.7000000
[79,] 6.0000000 2.9000000 4.5000000 1.5000000
[80,] 5.7000000 2.6000000 3.5000000 1.0000000
[81,] 5.5000000 2.4000000 3.8000000 1.1000000
[82,] 5.5000000 2.4000000 3.7000000 1.0000000
[83,] 5.8000000 2.7000000 3.9000000 1.2000000
[84,] 6.0000000 2.7000000 5.1000000 1.6000000
[85,] 5.4000000 3.0000000 4.5000000 1.5000000
[86,] 6.0000000 3.4000000 4.5000000 1.6000000
[87,] 6.7000000 3.1000000 4.7000000 1.5000000
[88,] 6.3000000 2.3000000 4.4000000 1.3000000
[89,] 5.6000000 3.0000000 4.1000000 1.3000000
[90,] 5.5000000 2.5000000 4.0000000 1.3000000
[91,] 5.5000000 2.6000000 4.4000000 1.2000000
[92,] 6.1000000 3.0000000 4.6000000 1.4000000
[93,] 5.8000000 2.6000000 4.0000000 1.2000000
[94,] 5.0000000 2.3000000 3.3000000 1.0000000
[95,] 5.6000000 2.7000000 4.2000000 1.3000000
[96,] 5.7000000 3.0000000 3.5737922 1.2000000
[97,] 5.7000000 2.9000000 4.2000000 1.3000000
[98,] 6.2000000 2.9000000 4.3000000 1.3000000
[99,] 5.1000000 2.5000000 3.0000000 1.1000000
[100,] 5.7000000 2.8000000 4.1000000 1.3000000
[101,] 6.3000000 3.3000000 6.0000000 2.5000000
[102,] 5.8000000 2.7000000 5.1000000 1.9000000
[103,] 7.1000000 3.0000000 5.9000000 2.1000000
[104,] 6.3000000 2.9000000 5.6000000 1.8000000
[105,] 6.5000000 3.0000000 5.8000000 2.2000000
[106,] 7.6000000 3.0000000 6.6000000 2.1000000
[107,] 4.9000000 2.5000000 4.5000000 1.7000000
[108,] 7.3000000 2.9000000 6.3000000 1.8000000
[109,] 6.7000000 2.5000000 5.8000000 1.8000000
[110,] 7.2000000 3.6000000 6.1000000 2.5000000
[111,] 6.5000000 3.2000000 5.1000000 2.0000000
[112,] 6.4000000 2.7000000 5.3000000 1.9000000
[113,] 6.8000000 3.0000000 5.5000000 2.1000000
[114,] 5.7000000 2.5000000 5.0000000 2.0000000
[115,] 5.8000000 2.8000000 5.1000000 2.4000000
[116,] 6.4000000 3.2000000 5.3000000 2.3000000
[117,] 6.5000000 3.0000000 5.5000000 1.8000000
[118,] 7.7000000 3.8000000 6.7000000 2.2000000
[119,] 7.7000000 2.6000000 6.9000000 2.3000000
[120,] 6.0000000 2.2000000 5.0000000 1.5000000
[121,] 6.9000000 3.2000000 5.7000000 2.3000000
[122,] 5.6000000 2.8000000 4.9000000 2.0000000
[123,] 7.7000000 2.8000000 6.7000000 2.0000000
[124,] 6.3000000 2.7000000 4.9000000 1.8000000
[125,] 6.7000000 3.3000000 5.7000000 2.1000000
[126,] 7.2000000 3.2000000 6.0000000 1.8000000
[127,] 6.2000000 2.8000000 4.8000000 1.8000000
[128,] 6.1000000 3.0000000 4.9000000 1.8000000
[129,] 6.4000000 2.8000000 5.6000000 2.1000000
[130,] 7.2000000 3.0000000 5.8000000 1.6000000
[131,] 7.4000000 2.8000000 6.1000000 1.9000000
[132,] 7.9000000 3.8000000 6.4000000 2.0000000
[133,] 6.4000000 2.8000000 5.6000000 2.2000000
[134,] 6.3000000 2.8000000 5.1000000 1.5000000
[135,] 6.1000000 2.6000000 5.6000000 1.4000000
[136,] 7.7000000 3.0000000 6.1000000 2.3000000
[137,] 6.3000000 3.4000000 5.6000000 2.4000000
[138,] 6.4000000 3.1000000 5.5000000 1.8000000
[139,] 6.0000000 3.0000000 4.8000000 1.8000000
[140,] 6.9000000 3.1000000 5.4000000 2.1000000
[141,] 6.7000000 3.1000000 5.6000000 2.4000000
[142,] 6.9000000 3.1000000 5.1000000 2.3000000
[143,] 5.8000000 2.7000000 5.1000000 1.9000000
[144,] 6.8000000 3.2000000 5.9000000 2.3000000
[145,] 6.7000000 3.3000000 4.9110918 2.5000000
[146,] 6.7000000 3.0000000 5.2000000 2.3000000
[147,] 6.3000000 2.5000000 5.0000000 1.9000000
[148,] 6.5000000 3.0000000 5.2000000 2.0000000
[149,] 6.2000000 3.4000000 5.4618991 2.3000000
[150,] 5.9000000 3.0000000 5.1000000 1.8000000
* missing =
row col
* nbSample = 150
* nbCluster = 3
* lnLikelihood = -1070.76
* nbFreeParameter= 70
* criterion name = ICL
* criterion value= 2500.053
* zi =
[1] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
[38] 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[75] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2
[112] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[149] 2 2
****************************************
*** Cluster: 1
* Proportion = 0.3333333
* Means = 5.006000 3.428000 1.462000 0.228795
* S.D. = 0.3489470 0.3752546 0.1719186 0.1642299
****************************************
*** Cluster: 2
* Proportion = 0.3333333
* Means = 5.936000 2.770000 4.250908 1.326000
* S.D. = 0.5109834 0.3106445 0.4701432 0.1957652
****************************************
*** Cluster: 3
* Proportion = 0.3333333
* Means = 6.58800 2.97400 5.53746 2.02600
* S.D. = 0.6294887 0.3192554 0.5529576 0.2718897
****************************************
> model <- learnGamma( data=x, labels= z,
+ , models = clusterGammaNames(prop = "equal")
+ , algo = "simul", nbIter = 2, epsilon = 1e-08
+ )
*** caught segfault ***
address 0x120, cause 'memory not mapped'
Traceback:
1: learnGamma(data = x, labels = z, , models = clusterGammaNames(prop = "equal"), algo = "simul", nbIter = 2, epsilon = 1e-08)
An irrecoverable exception occurred. R is aborting now ...
Segmentation fault
Flavor: r-devel-linux-x86_64-debian-gcc
Version: 1.5.1
Check: installed package size
Result: NOTE
installed size is 40.6Mb
sub-directories of 1Mb or more:
libs 38.3Mb
Flavors: r-devel-linux-x86_64-fedora-clang, r-devel-windows-ix86+x86_64, r-release-macos-x86_64, r-release-windows-ix86+x86_64, r-oldrel-macos-x86_64, r-oldrel-windows-ix86+x86_64
Version: 1.5.1
Check: tests
Result: ERROR
Running ‘ClusterSimul.R’
Running ‘clusterDiagGaussianLikelihood.R’
Running ‘clusterGammaLikelihood.R’
Running ‘simulHeterogeneous.R’
Running ‘simulNonLinear.R’
Running ‘testAllLearners.R’
Running ‘testPoissonExample.R’
Running ‘testPredict.R’ [10s/12s]
Running the tests in ‘tests/testAllLearners.R’ failed.
Complete output:
> library(MixAll)
Loading required package: rtkore
Loading required package: Rcpp
Attaching package: 'rtkore'
The following object is masked from 'package:Rcpp':
LdFlags
> ## get data and target from iris data set
> data(iris)
> x <- as.matrix(iris[,1:4]); z <- as.vector(iris[,5]); n <- nrow(x); p <- ncol(x)
> ## add missing values at random
> indexes <- matrix(c(round(runif(5,1,n)), round(runif(5,1,p))), ncol=2)
> cbind(indexes, x[indexes])
[,1] [,2] [,3]
[1,] 31 4 0.2
[2,] 105 2 3.0
[3,] 101 3 6.0
[4,] 129 4 2.1
[5,] 143 2 2.7
> x[indexes] <- NA
> ## learn continuous model
> model <- learnDiagGaussian( data=x, labels= z, prop = c(1/3,1/3,1/3)
+ , models = clusterDiagGaussianNames(prop = "equal")
+ , algo = "simul", nbIter = 2, epsilon = 1e-08
+ )
> missingValues(model)
row col value
1 105 2 3.3429273
2 143 2 2.3899493
3 101 3 4.9437216
4 31 4 -0.0605292
5 129 4 1.6524928
> print(model)
****************************************
* model name = gaussian_p_sj
* data =
Sepal.Length Sepal.Width Petal.Length Petal.Width
[1,] 5.1000000 3.5000000 1.4000000 0.2000000
[2,] 4.9000000 3.0000000 1.4000000 0.2000000
[3,] 4.7000000 3.2000000 1.3000000 0.2000000
[4,] 4.6000000 3.1000000 1.5000000 0.2000000
[5,] 5.0000000 3.6000000 1.4000000 0.2000000
[6,] 5.4000000 3.9000000 1.7000000 0.4000000
[7,] 4.6000000 3.4000000 1.4000000 0.3000000
[8,] 5.0000000 3.4000000 1.5000000 0.2000000
[9,] 4.4000000 2.9000000 1.4000000 0.2000000
[10,] 4.9000000 3.1000000 1.5000000 0.1000000
[11,] 5.4000000 3.7000000 1.5000000 0.2000000
[12,] 4.8000000 3.4000000 1.6000000 0.2000000
[13,] 4.8000000 3.0000000 1.4000000 0.1000000
[14,] 4.3000000 3.0000000 1.1000000 0.1000000
[15,] 5.8000000 4.0000000 1.2000000 0.2000000
[16,] 5.7000000 4.4000000 1.5000000 0.4000000
[17,] 5.4000000 3.9000000 1.3000000 0.4000000
[18,] 5.1000000 3.5000000 1.4000000 0.3000000
[19,] 5.7000000 3.8000000 1.7000000 0.3000000
[20,] 5.1000000 3.8000000 1.5000000 0.3000000
[21,] 5.4000000 3.4000000 1.7000000 0.2000000
[22,] 5.1000000 3.7000000 1.5000000 0.4000000
[23,] 4.6000000 3.6000000 1.0000000 0.2000000
[24,] 5.1000000 3.3000000 1.7000000 0.5000000
[25,] 4.8000000 3.4000000 1.9000000 0.2000000
[26,] 5.0000000 3.0000000 1.6000000 0.2000000
[27,] 5.0000000 3.4000000 1.6000000 0.4000000
[28,] 5.2000000 3.5000000 1.5000000 0.2000000
[29,] 5.2000000 3.4000000 1.4000000 0.2000000
[30,] 4.7000000 3.2000000 1.6000000 0.2000000
[31,] 4.8000000 3.1000000 1.6000000 -0.0605292
[32,] 5.4000000 3.4000000 1.5000000 0.4000000
[33,] 5.2000000 4.1000000 1.5000000 0.1000000
[34,] 5.5000000 4.2000000 1.4000000 0.2000000
[35,] 4.9000000 3.1000000 1.5000000 0.2000000
[36,] 5.0000000 3.2000000 1.2000000 0.2000000
[37,] 5.5000000 3.5000000 1.3000000 0.2000000
[38,] 4.9000000 3.6000000 1.4000000 0.1000000
[39,] 4.4000000 3.0000000 1.3000000 0.2000000
[40,] 5.1000000 3.4000000 1.5000000 0.2000000
[41,] 5.0000000 3.5000000 1.3000000 0.3000000
[42,] 4.5000000 2.3000000 1.3000000 0.3000000
[43,] 4.4000000 3.2000000 1.3000000 0.2000000
[44,] 5.0000000 3.5000000 1.6000000 0.6000000
[45,] 5.1000000 3.8000000 1.9000000 0.4000000
[46,] 4.8000000 3.0000000 1.4000000 0.3000000
[47,] 5.1000000 3.8000000 1.6000000 0.2000000
[48,] 4.6000000 3.2000000 1.4000000 0.2000000
[49,] 5.3000000 3.7000000 1.5000000 0.2000000
[50,] 5.0000000 3.3000000 1.4000000 0.2000000
[51,] 7.0000000 3.2000000 4.7000000 1.4000000
[52,] 6.4000000 3.2000000 4.5000000 1.5000000
[53,] 6.9000000 3.1000000 4.9000000 1.5000000
[54,] 5.5000000 2.3000000 4.0000000 1.3000000
[55,] 6.5000000 2.8000000 4.6000000 1.5000000
[56,] 5.7000000 2.8000000 4.5000000 1.3000000
[57,] 6.3000000 3.3000000 4.7000000 1.6000000
[58,] 4.9000000 2.4000000 3.3000000 1.0000000
[59,] 6.6000000 2.9000000 4.6000000 1.3000000
[60,] 5.2000000 2.7000000 3.9000000 1.4000000
[61,] 5.0000000 2.0000000 3.5000000 1.0000000
[62,] 5.9000000 3.0000000 4.2000000 1.5000000
[63,] 6.0000000 2.2000000 4.0000000 1.0000000
[64,] 6.1000000 2.9000000 4.7000000 1.4000000
[65,] 5.6000000 2.9000000 3.6000000 1.3000000
[66,] 6.7000000 3.1000000 4.4000000 1.4000000
[67,] 5.6000000 3.0000000 4.5000000 1.5000000
[68,] 5.8000000 2.7000000 4.1000000 1.0000000
[69,] 6.2000000 2.2000000 4.5000000 1.5000000
[70,] 5.6000000 2.5000000 3.9000000 1.1000000
[71,] 5.9000000 3.2000000 4.8000000 1.8000000
[72,] 6.1000000 2.8000000 4.0000000 1.3000000
[73,] 6.3000000 2.5000000 4.9000000 1.5000000
[74,] 6.1000000 2.8000000 4.7000000 1.2000000
[75,] 6.4000000 2.9000000 4.3000000 1.3000000
[76,] 6.6000000 3.0000000 4.4000000 1.4000000
[77,] 6.8000000 2.8000000 4.8000000 1.4000000
[78,] 6.7000000 3.0000000 5.0000000 1.7000000
[79,] 6.0000000 2.9000000 4.5000000 1.5000000
[80,] 5.7000000 2.6000000 3.5000000 1.0000000
[81,] 5.5000000 2.4000000 3.8000000 1.1000000
[82,] 5.5000000 2.4000000 3.7000000 1.0000000
[83,] 5.8000000 2.7000000 3.9000000 1.2000000
[84,] 6.0000000 2.7000000 5.1000000 1.6000000
[85,] 5.4000000 3.0000000 4.5000000 1.5000000
[86,] 6.0000000 3.4000000 4.5000000 1.6000000
[87,] 6.7000000 3.1000000 4.7000000 1.5000000
[88,] 6.3000000 2.3000000 4.4000000 1.3000000
[89,] 5.6000000 3.0000000 4.1000000 1.3000000
[90,] 5.5000000 2.5000000 4.0000000 1.3000000
[91,] 5.5000000 2.6000000 4.4000000 1.2000000
[92,] 6.1000000 3.0000000 4.6000000 1.4000000
[93,] 5.8000000 2.6000000 4.0000000 1.2000000
[94,] 5.0000000 2.3000000 3.3000000 1.0000000
[95,] 5.6000000 2.7000000 4.2000000 1.3000000
[96,] 5.7000000 3.0000000 4.2000000 1.2000000
[97,] 5.7000000 2.9000000 4.2000000 1.3000000
[98,] 6.2000000 2.9000000 4.3000000 1.3000000
[99,] 5.1000000 2.5000000 3.0000000 1.1000000
[100,] 5.7000000 2.8000000 4.1000000 1.3000000
[101,] 6.3000000 3.3000000 4.9437216 2.5000000
[102,] 5.8000000 2.7000000 5.1000000 1.9000000
[103,] 7.1000000 3.0000000 5.9000000 2.1000000
[104,] 6.3000000 2.9000000 5.6000000 1.8000000
[105,] 6.5000000 3.3429273 5.8000000 2.2000000
[106,] 7.6000000 3.0000000 6.6000000 2.1000000
[107,] 4.9000000 2.5000000 4.5000000 1.7000000
[108,] 7.3000000 2.9000000 6.3000000 1.8000000
[109,] 6.7000000 2.5000000 5.8000000 1.8000000
[110,] 7.2000000 3.6000000 6.1000000 2.5000000
[111,] 6.5000000 3.2000000 5.1000000 2.0000000
[112,] 6.4000000 2.7000000 5.3000000 1.9000000
[113,] 6.8000000 3.0000000 5.5000000 2.1000000
[114,] 5.7000000 2.5000000 5.0000000 2.0000000
[115,] 5.8000000 2.8000000 5.1000000 2.4000000
[116,] 6.4000000 3.2000000 5.3000000 2.3000000
[117,] 6.5000000 3.0000000 5.5000000 1.8000000
[118,] 7.7000000 3.8000000 6.7000000 2.2000000
[119,] 7.7000000 2.6000000 6.9000000 2.3000000
[120,] 6.0000000 2.2000000 5.0000000 1.5000000
[121,] 6.9000000 3.2000000 5.7000000 2.3000000
[122,] 5.6000000 2.8000000 4.9000000 2.0000000
[123,] 7.7000000 2.8000000 6.7000000 2.0000000
[124,] 6.3000000 2.7000000 4.9000000 1.8000000
[125,] 6.7000000 3.3000000 5.7000000 2.1000000
[126,] 7.2000000 3.2000000 6.0000000 1.8000000
[127,] 6.2000000 2.8000000 4.8000000 1.8000000
[128,] 6.1000000 3.0000000 4.9000000 1.8000000
[129,] 6.4000000 2.8000000 5.6000000 1.6524928
[130,] 7.2000000 3.0000000 5.8000000 1.6000000
[131,] 7.4000000 2.8000000 6.1000000 1.9000000
[132,] 7.9000000 3.8000000 6.4000000 2.0000000
[133,] 6.4000000 2.8000000 5.6000000 2.2000000
[134,] 6.3000000 2.8000000 5.1000000 1.5000000
[135,] 6.1000000 2.6000000 5.6000000 1.4000000
[136,] 7.7000000 3.0000000 6.1000000 2.3000000
[137,] 6.3000000 3.4000000 5.6000000 2.4000000
[138,] 6.4000000 3.1000000 5.5000000 1.8000000
[139,] 6.0000000 3.0000000 4.8000000 1.8000000
[140,] 6.9000000 3.1000000 5.4000000 2.1000000
[141,] 6.7000000 3.1000000 5.6000000 2.4000000
[142,] 6.9000000 3.1000000 5.1000000 2.3000000
[143,] 5.8000000 2.3899493 5.1000000 1.9000000
[144,] 6.8000000 3.2000000 5.9000000 2.3000000
[145,] 6.7000000 3.3000000 5.7000000 2.5000000
[146,] 6.7000000 3.0000000 5.2000000 2.3000000
[147,] 6.3000000 2.5000000 5.0000000 1.9000000
[148,] 6.5000000 3.0000000 5.2000000 2.0000000
[149,] 6.2000000 3.4000000 5.4000000 2.3000000
[150,] 5.9000000 3.0000000 5.1000000 1.8000000
* missing =
row col
[1,] 105 2
[2,] 143 2
[3,] 101 3
[4,] 31 4
[5,] 129 4
* nbSample = 150
* nbCluster = 3
* lnLikelihood = -1036.574
* nbFreeParameter= 70
* criterion name = ICL
* criterion value= 2431.382
* zi =
[1] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
[38] 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[75] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2
[112] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[149] 2 2
****************************************
*** Cluster: 1
* Proportion = 0.3333333
* Means = 5.0060000 3.4280000 1.4620000 0.2407894
* S.D. = 0.5096155 0.3402298 0.4271579 0.2061894
****************************************
*** Cluster: 2
* Proportion = 0.3333333
* Means = 5.936 2.770 4.260 1.326
* S.D. = 0.5096155 0.3402298 0.4271579 0.2061894
****************************************
*** Cluster: 3
* Proportion = 0.3333333
* Means = 6.588000 2.974658 5.530874 2.017050
* S.D. = 0.5096155 0.3402298 0.4271579 0.2061894
****************************************
> model <- learnDiagGaussian( data=x, labels= z,
+ , models = clusterDiagGaussianNames(prop = "equal")
+ , algo = "impute", nbIter = 2, epsilon = 1e-08)
> missingValues(model)
row col value
> print(model)
****************************************
* model name = gaussian_p_sjk
* data =
Sepal.Length Sepal.Width Petal.Length Petal.Width
[1,] 5.1000000 3.5000000 1.4000000 0.2000000
[2,] 4.9000000 3.0000000 1.4000000 0.2000000
[3,] 4.7000000 3.2000000 1.3000000 0.2000000
[4,] 4.6000000 3.1000000 1.5000000 0.2000000
[5,] 5.0000000 3.6000000 1.4000000 0.2000000
[6,] 5.4000000 3.9000000 1.7000000 0.4000000
[7,] 4.6000000 3.4000000 1.4000000 0.3000000
[8,] 5.0000000 3.4000000 1.5000000 0.2000000
[9,] 4.4000000 2.9000000 1.4000000 0.2000000
[10,] 4.9000000 3.1000000 1.5000000 0.1000000
[11,] 5.4000000 3.7000000 1.5000000 0.2000000
[12,] 4.8000000 3.4000000 1.6000000 0.2000000
[13,] 4.8000000 3.0000000 1.4000000 0.1000000
[14,] 4.3000000 3.0000000 1.1000000 0.1000000
[15,] 5.8000000 4.0000000 1.2000000 0.2000000
[16,] 5.7000000 4.4000000 1.5000000 0.4000000
[17,] 5.4000000 3.9000000 1.3000000 0.4000000
[18,] 5.1000000 3.5000000 1.4000000 0.3000000
[19,] 5.7000000 3.8000000 1.7000000 0.3000000
[20,] 5.1000000 3.8000000 1.5000000 0.3000000
[21,] 5.4000000 3.4000000 1.7000000 0.2000000
[22,] 5.1000000 3.7000000 1.5000000 0.4000000
[23,] 4.6000000 3.6000000 1.0000000 0.2000000
[24,] 5.1000000 3.3000000 1.7000000 0.5000000
[25,] 4.8000000 3.4000000 1.9000000 0.2000000
[26,] 5.0000000 3.0000000 1.6000000 0.2000000
[27,] 5.0000000 3.4000000 1.6000000 0.4000000
[28,] 5.2000000 3.5000000 1.5000000 0.2000000
[29,] 5.2000000 3.4000000 1.4000000 0.2000000
[30,] 4.7000000 3.2000000 1.6000000 0.2000000
[31,] 4.8000000 3.1000000 1.6000000 -0.0605292
[32,] 5.4000000 3.4000000 1.5000000 0.4000000
[33,] 5.2000000 4.1000000 1.5000000 0.1000000
[34,] 5.5000000 4.2000000 1.4000000 0.2000000
[35,] 4.9000000 3.1000000 1.5000000 0.2000000
[36,] 5.0000000 3.2000000 1.2000000 0.2000000
[37,] 5.5000000 3.5000000 1.3000000 0.2000000
[38,] 4.9000000 3.6000000 1.4000000 0.1000000
[39,] 4.4000000 3.0000000 1.3000000 0.2000000
[40,] 5.1000000 3.4000000 1.5000000 0.2000000
[41,] 5.0000000 3.5000000 1.3000000 0.3000000
[42,] 4.5000000 2.3000000 1.3000000 0.3000000
[43,] 4.4000000 3.2000000 1.3000000 0.2000000
[44,] 5.0000000 3.5000000 1.6000000 0.6000000
[45,] 5.1000000 3.8000000 1.9000000 0.4000000
[46,] 4.8000000 3.0000000 1.4000000 0.3000000
[47,] 5.1000000 3.8000000 1.6000000 0.2000000
[48,] 4.6000000 3.2000000 1.4000000 0.2000000
[49,] 5.3000000 3.7000000 1.5000000 0.2000000
[50,] 5.0000000 3.3000000 1.4000000 0.2000000
[51,] 7.0000000 3.2000000 4.7000000 1.4000000
[52,] 6.4000000 3.2000000 4.5000000 1.5000000
[53,] 6.9000000 3.1000000 4.9000000 1.5000000
[54,] 5.5000000 2.3000000 4.0000000 1.3000000
[55,] 6.5000000 2.8000000 4.6000000 1.5000000
[56,] 5.7000000 2.8000000 4.5000000 1.3000000
[57,] 6.3000000 3.3000000 4.7000000 1.6000000
[58,] 4.9000000 2.4000000 3.3000000 1.0000000
[59,] 6.6000000 2.9000000 4.6000000 1.3000000
[60,] 5.2000000 2.7000000 3.9000000 1.4000000
[61,] 5.0000000 2.0000000 3.5000000 1.0000000
[62,] 5.9000000 3.0000000 4.2000000 1.5000000
[63,] 6.0000000 2.2000000 4.0000000 1.0000000
[64,] 6.1000000 2.9000000 4.7000000 1.4000000
[65,] 5.6000000 2.9000000 3.6000000 1.3000000
[66,] 6.7000000 3.1000000 4.4000000 1.4000000
[67,] 5.6000000 3.0000000 4.5000000 1.5000000
[68,] 5.8000000 2.7000000 4.1000000 1.0000000
[69,] 6.2000000 2.2000000 4.5000000 1.5000000
[70,] 5.6000000 2.5000000 3.9000000 1.1000000
[71,] 5.9000000 3.2000000 4.8000000 1.8000000
[72,] 6.1000000 2.8000000 4.0000000 1.3000000
[73,] 6.3000000 2.5000000 4.9000000 1.5000000
[74,] 6.1000000 2.8000000 4.7000000 1.2000000
[75,] 6.4000000 2.9000000 4.3000000 1.3000000
[76,] 6.6000000 3.0000000 4.4000000 1.4000000
[77,] 6.8000000 2.8000000 4.8000000 1.4000000
[78,] 6.7000000 3.0000000 5.0000000 1.7000000
[79,] 6.0000000 2.9000000 4.5000000 1.5000000
[80,] 5.7000000 2.6000000 3.5000000 1.0000000
[81,] 5.5000000 2.4000000 3.8000000 1.1000000
[82,] 5.5000000 2.4000000 3.7000000 1.0000000
[83,] 5.8000000 2.7000000 3.9000000 1.2000000
[84,] 6.0000000 2.7000000 5.1000000 1.6000000
[85,] 5.4000000 3.0000000 4.5000000 1.5000000
[86,] 6.0000000 3.4000000 4.5000000 1.6000000
[87,] 6.7000000 3.1000000 4.7000000 1.5000000
[88,] 6.3000000 2.3000000 4.4000000 1.3000000
[89,] 5.6000000 3.0000000 4.1000000 1.3000000
[90,] 5.5000000 2.5000000 4.0000000 1.3000000
[91,] 5.5000000 2.6000000 4.4000000 1.2000000
[92,] 6.1000000 3.0000000 4.6000000 1.4000000
[93,] 5.8000000 2.6000000 4.0000000 1.2000000
[94,] 5.0000000 2.3000000 3.3000000 1.0000000
[95,] 5.6000000 2.7000000 4.2000000 1.3000000
[96,] 5.7000000 3.0000000 4.2000000 1.2000000
[97,] 5.7000000 2.9000000 4.2000000 1.3000000
[98,] 6.2000000 2.9000000 4.3000000 1.3000000
[99,] 5.1000000 2.5000000 3.0000000 1.1000000
[100,] 5.7000000 2.8000000 4.1000000 1.3000000
[101,] 6.3000000 3.3000000 4.9437216 2.5000000
[102,] 5.8000000 2.7000000 5.1000000 1.9000000
[103,] 7.1000000 3.0000000 5.9000000 2.1000000
[104,] 6.3000000 2.9000000 5.6000000 1.8000000
[105,] 6.5000000 3.3429273 5.8000000 2.2000000
[106,] 7.6000000 3.0000000 6.6000000 2.1000000
[107,] 4.9000000 2.5000000 4.5000000 1.7000000
[108,] 7.3000000 2.9000000 6.3000000 1.8000000
[109,] 6.7000000 2.5000000 5.8000000 1.8000000
[110,] 7.2000000 3.6000000 6.1000000 2.5000000
[111,] 6.5000000 3.2000000 5.1000000 2.0000000
[112,] 6.4000000 2.7000000 5.3000000 1.9000000
[113,] 6.8000000 3.0000000 5.5000000 2.1000000
[114,] 5.7000000 2.5000000 5.0000000 2.0000000
[115,] 5.8000000 2.8000000 5.1000000 2.4000000
[116,] 6.4000000 3.2000000 5.3000000 2.3000000
[117,] 6.5000000 3.0000000 5.5000000 1.8000000
[118,] 7.7000000 3.8000000 6.7000000 2.2000000
[119,] 7.7000000 2.6000000 6.9000000 2.3000000
[120,] 6.0000000 2.2000000 5.0000000 1.5000000
[121,] 6.9000000 3.2000000 5.7000000 2.3000000
[122,] 5.6000000 2.8000000 4.9000000 2.0000000
[123,] 7.7000000 2.8000000 6.7000000 2.0000000
[124,] 6.3000000 2.7000000 4.9000000 1.8000000
[125,] 6.7000000 3.3000000 5.7000000 2.1000000
[126,] 7.2000000 3.2000000 6.0000000 1.8000000
[127,] 6.2000000 2.8000000 4.8000000 1.8000000
[128,] 6.1000000 3.0000000 4.9000000 1.8000000
[129,] 6.4000000 2.8000000 5.6000000 1.6524928
[130,] 7.2000000 3.0000000 5.8000000 1.6000000
[131,] 7.4000000 2.8000000 6.1000000 1.9000000
[132,] 7.9000000 3.8000000 6.4000000 2.0000000
[133,] 6.4000000 2.8000000 5.6000000 2.2000000
[134,] 6.3000000 2.8000000 5.1000000 1.5000000
[135,] 6.1000000 2.6000000 5.6000000 1.4000000
[136,] 7.7000000 3.0000000 6.1000000 2.3000000
[137,] 6.3000000 3.4000000 5.6000000 2.4000000
[138,] 6.4000000 3.1000000 5.5000000 1.8000000
[139,] 6.0000000 3.0000000 4.8000000 1.8000000
[140,] 6.9000000 3.1000000 5.4000000 2.1000000
[141,] 6.7000000 3.1000000 5.6000000 2.4000000
[142,] 6.9000000 3.1000000 5.1000000 2.3000000
[143,] 5.8000000 2.3899493 5.1000000 1.9000000
[144,] 6.8000000 3.2000000 5.9000000 2.3000000
[145,] 6.7000000 3.3000000 5.7000000 2.5000000
[146,] 6.7000000 3.0000000 5.2000000 2.3000000
[147,] 6.3000000 2.5000000 5.0000000 1.9000000
[148,] 6.5000000 3.0000000 5.2000000 2.0000000
[149,] 6.2000000 3.4000000 5.4000000 2.3000000
[150,] 5.9000000 3.0000000 5.1000000 1.8000000
* missing =
row col
* nbSample = 150
* nbCluster = 3
* lnLikelihood = -1041.336
* nbFreeParameter= 70
* criterion name = ICL
* criterion value= 2440.986
* zi =
[1] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
[38] 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[75] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2
[112] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[149] 2 2
****************************************
*** Cluster: 1
* Proportion = 0.3333333
* Means = 5.0060000 3.4280000 1.4620000 0.2407894
* S.D. = 0.3489470 0.3752546 0.1719186 0.1126665
****************************************
*** Cluster: 2
* Proportion = 0.3333333
* Means = 5.936 2.770 4.260 1.326
* S.D. = 0.5109834 0.3106445 0.4651881 0.1957652
****************************************
*** Cluster: 3
* Proportion = 0.3333333
* Means = 6.588000 2.974658 5.530874 2.017050
* S.D. = 0.6294887 0.3315916 0.5490316 0.2766307
****************************************
> model <- learnGamma( data=x, labels= z,
+ , models = clusterGammaNames(prop = "equal")
+ , algo = "simul", nbIter = 2, epsilon = 1e-08
+ )
*** caught segfault ***
address 0x120, cause 'memory not mapped'
Traceback:
1: learnGamma(data = x, labels = z, , models = clusterGammaNames(prop = "equal"), algo = "simul", nbIter = 2, epsilon = 1e-08)
An irrecoverable exception occurred. R is aborting now ...
Flavor: r-devel-linux-x86_64-fedora-gcc