Package ‘yarrr’

October 25, 2016

Title A Companion to the e-Book ‘YaRrr!: The Pirate’s Guide to R'
Version 0.1.2
Date 2016-10-18

Depends jpeg, BayesFactor
License GPL-2
LazyData true
URL www.thepiratesguidetor.com

BugReports https://github.com/ndphillips/yarrr/issues
RoxygenNote 5.0.1
Suggests knitr, rmarkdown
VignetteBuilder knitr
NeedsCompilation no
Author Nathaniel Phillips [aut, cre]
Maintainer Nathaniel Phillips <yarrr.book@gmail.com>
Repository CRAN
Date/Publication 2016-10-25 07:14:23

R topics documented:

apa ... 2
auction ... 3
BeardLengths .. 3
capture ... 4
diamonds ... 5
examscores .. 5
movies .. 6
piratepal .. 7
Description

This function takes a hypothesis test object (e.g., t.test(), cor.test(), chisq.test()) as an input, and returns a string with the test result in APA format.

Usage

apa(test.object, tails = 2, sig.digits = 2, p.lb = 0.01)

Arguments

test.object A hypothesis test object generated by functions such as t.test(), cor.test, chisq.test()
tails The number of tails in the test (1 or 2)
sig.digits The number of digits results are rounded to
p.lb The lower bound of the p-value display. If the p-value is less than p.lb, the exact value will not be displayed.

Examples

```r
x <- rnorm(100)
y <- x + rnorm(100)
a <- sample(1:3, size = 200, prob = c(.3, .2, .5), replace = TRUE)
b <- sample(1:3, size = 200, prob = c(.3, .2, .5), replace = TRUE)
apa(t.test(x, y))
apa(cor.test(x, y))
apa(chisq.test(table(a, b)))
```
Description
A dataframe containing data from 1000 ships sold at a pirate auction.

Usage

Format
A data frame containing 1000 rows and 8 columns

- **cannons** (integer) The number of cannons on the ship
- **rooms** (integer) The number of rooms on the ship
- **age** (numeric) The age of the ship in years
- **condition** (integer) The condition of the ship on a scale of 1 to 10
- **color** (string) The color of the ship
- **style** (string) The style of the ship - either modern or classic
- **jbb** (numeric) The pre-sale predicted value of the ship according to Jack’s Blue Book (JBB)
- **price** (numeric) The actual selling price of the ship (in gold pieces, obviously)

Source
2015 annual pirate auction in Portland Oregon

Description
A dataframe containing the lengths of beards on 3 different pirate ships

Usage

Format
A data frame containing 150 rows and 2 columns

- **Ship** (character) - The pirate’s ship
- **Beard** (numeric) - The length of the pirate’s beard in cm
Source

2015 annual international pirate meeting at the Bodensee in Konstanz, Germany

Description

A dataframe containing a historical record of every ship the Perilous Pigeon captured on the Bodensee in the years 2014 and 2015

Usage

capture

Format

A data frame containing 1000 rows and 10 columns

- **size** (integer) - The size (length) of the ship (maybe in meters?)
- **cannons** (integer) - The number of cannons on the ship
- **style** (string) - The style of the ship (either modern or classic)
- **warnshot** (binary) - Did the ship fire a warning shot at the Perilous Pigeon when it got close?
- **date** (integer) - The date of the capture (1 = January 1, 365 = December 31)
- **heardof** (binary) - Was the target ship recognized by the captain’s first mate?
- **decorations** (integer) - An integer between 1 and 10 indicating how decorated the ship was. 1 means it looks totally common and shabby, 10 means it is among the finest looking ship you’ve ever seen!
- **daysfromshore** (integer) - How many days from the nearest land was the ship when it was found?
- **speed** (integer) - How fast was the ship going when it was caught?
- **treasure** (numeric) - How much treasure was found on the ship when it was captured?

Source

2015 annual international pirate meeting at the Bodensee in Konstanz, Germany
Description
A dataframe containing information about 150 diamonds sold at auction.

Usage
diamonds

Format
A data frame containing 300 rows and 4 columns
- weight (numeric) - The weight of the diamond
- clarity (numeric) - The clarity of the diamond
- color (numeric) - The color shading of the diamond
- value The value of the diamond

Source
2015 annual international pirate meeting at the Bodensee in Konstanz, Germany

Description
A dataframe containing the results of 4 exams given to 100 students. Each row represents a student, each column is a score on an exam.

Usage
examscores

Format
A data frame containing 100 rows and 4 columns
- a (numeric) - Score on exam a
- b (numeric) - ...exam b
- c (numeric) - ...exam c
- d (numeric) - ...exam d

Source
2015 annual international pirate meeting at the Bodensee in Konstanz, Germany
Description

A dataframe containing information about the top 5000 grossing movies of all time.

Usage

movies

Format

A data frame containing 5000 rows and 13 columns

- **name**: Movie name
- **rating**: MPAA rating
- **genre**: Movie genre
- **creative.type**: Creative type
- **time**: Running time in minutes
- **year**: Year of release
- **production.method**: Production method
- **sequel**: Was the movie a sequel? 1 = yes, 0 = no
- **budget**: Movie budget (in $USD millions)
- **revenue.all**: Gross worldwide revenue in $USD millions
- **revenue.dom**: Domestic revenue in $USD millions
- **revenue.int**: International revenue in $USD millions
- **revenue.inf**: Inflation adjusted worldwide revenue in $USD millions

Source

www.the-numbers.com
piratepal

Description

This function provides a number of color palettes

Usage

piratepal(palette = "all", trans = 0, plot.result = FALSE, length.out = NULL)

Arguments

- **palette**: A string defining the color palette to use (see examples). To use a random palette, use "random". To plot all palettes, use "all". To see all palette names, use "names"
- **trans**: A number in the interval [0, 1] indicating how transparent to make the colors. A value of 0 means no transparency and a value of 1 means completely transparency.
- **plot.result**: A logical value indicating whether or not to display the colors.
- **length.out**: An integer indicating how many colors to return. If length.out is larger than the number of colors in the palette, colors will be repeated.

Examples

```r
# Check out the vignette for a full guide
vignette("piratepal", package = "yarrr")

# Show all palettes
piratepal(palette = "all")

# Show some palettes
piratepal(palette = "basel", trans = .5, plot.result = TRUE)

# Using a palette in a scatterplot
nemo.cols <- piratepal(palette = "nemo", trans = .5)

set.seed(100) # For reproducibility
x <- rnorm(100)
y <- x + rnorm(100)
```
The pirateplot function creates an RDI (Raw data, Descriptive and Inferential statistic) plot showing the relationship between 1 to 3 categorical independent variables and 1 continuous dependent variable.

Usage

```r
pirateplot(formula = NULL, data = NULL, plot = TRUE,
  avg.line.fun = mean, pal = "basel", back.col = NULL, point.cex = NULL,
  point.pch = NULL, point.lwd = 1, jitter.val = 0.03, theme = 1,
  bean.b.o = NULL, bean.f.o = NULL, point.o = NULL, bar.f.o = NULL,
  bar.b.o = NULL, inf.f.o = NULL, inf.b.o = NULL, avg.line.o = NULL,
  gl.col = NULL, point.col = NULL, point.bg = NULL, bar.f.col = NULL,
  bean.b.col = NULL, bean.f.col = NULL, inf.f.col = NULL,
  inf.b.col = NULL, avg.line.col = NULL, bar.b.col = NULL,
  quant.col = NULL, avg.line.lwd = 4, bean.lwd = 1, bean.lty = 1,
  inf.lwd = 1, bar.lwd = 1, at = NULL, bw = "nrd0", adjust = 1,
  add = FALSE, sortx = "alphabetical", cex.lab = 1, cex.axis = 1,
  quant = NULL, quant.length = NULL, quant.lwd = NULL, bty = "o",
  evidence = FALSE, family = NULL, inf = "hdi", inf.p = 0.95,
  hdi.iter = 1000, inf.band = "wide", cut.min = NULL, cut.max = NULL,
  width.min = 0.3, width.max = NA, ylim = NULL, xlim = NULL,
  xlab = NULL, ylab = NULL, main = NULL, yaxt = NULL, xaxt = NULL,
  gl.lwd = NULL, gl.lty = NULL, bar.b.lwd = NULL, line.fun = NULL,
  inf.o = NULL, bean.o = NULL, inf.col = NULL, theme.o = NULL, ...)
```

Arguments

- `formula`: formula. A formula in the form `y ~ x1 + x2 + x3` indicating the vertical response variable (`y`) and up to three independent variables.
- `data`: dataframe. A dataframe containing the variables specified in formula.
- `plot`: logical. If `TRUE` (the default), then the pirateplot is produced. If `FALSE`, the data summaries created in the plot are returned as a list.
- `avg.line.fun`: function. A function that determines how average lines and bar heights are determined (default is `mean`).
pirateplot

pal
string. The color palette of the plot. Can be a single color, a vector of colors, or the name of a palette in the piratepal() function (e.g.; "basel", "google", "south-park"). To see all the palettes, run piratepal(palette = "all", action = "show")

point.cex, point.pch, point.lwd
numeric. The size, pch type, and line width of raw data points.

jitter.val
numeric. Amount of jitter added to points horizontally. Defaults to 0.05.

theme
integer. An integer in the set 0, 1, 2 specifying a theme (that is, new default values for opacities and colors). theme = 0 turns off all opacities which can then be individually specified individually.

bar.f.o, point.o, inf.f.o, inf.b.o, avg.line.o, bean.b.o, bean.f.o, bar.b.o
numeric. A number between 0 and 1 indicating how opaque to make the bars, points, inference band, average line, and beans respectively. These values override whatever is in the specified theme

gl.col, back.col
string. The color of the horizontal gridlines and plotting background.

point.col, bar.f.col, bean.b.col, bean.f.col, inf.f.col, inf.b.col, avg.line.col, bar.b.col, quant.col
string. Vectors of colors specifying the colors of the plotting elements. This will override values in the palette. f stands for filling, b stands for border.

bean.lwd, bean.lty, inf.lwd, avg.line.lwd, bar.lwd
numeric. Vectors of numbers customizing the look of beans and lines.

at
integer. Locations of the beans. Especially helpful when adding beans to an existing plot with add = T

bw, adjust
Arguments passed to density calculations for beans (see ?density)

add
logical. Whether to add the pirateplot to an existing plotting space or not.

sortx
string. How to sort the x values. Can be "sequential" (as they are found in the original dataframe), "alphabetical", or a string indicating a function (i.e.; "mean")

cex.lab, cex.axis
Size of the labels and axes.

quant
numeric. Adds horizontal lines representing custom quantiles.

quant.length, quant.lwd
numeric. Specifies line lengths/widths of quant.

bty, xlim, ylim, xlab, ylab, main, yaxt, xaxt
General plotting arguments

evidence
logical. Should Bayesian evidence be shown? (currently ignored)

family
a font family (Not currently in use)

inf
string. A string indicating what types of inference bands to calculate. "ci" means frequentist confidence intervals, "hdi" means Bayesian Highest Density Intervals (HDI), "iqr" means interquartile range.

inf.p
numeric. A number between 0 and 1 indicating the level of confidence to use in calculating inferences for either confidence intervals or HDIs. The default is 0.95

hdi.iter
integer. Number of iterations to run when calculating the HDI. Larger values lead to better estimates, but can be more time consuming.
inf.band string. Either "wide" to indicate a fixed width band, or "tight" to indicate a band constrained by the bean

`cut.min`, `cut.max` numeric. Optional minimum and maximum values of the beans.

`width.min`, `width.max` numeric. The minimum/maximum width of the beans.

gl.lwd, gl.lty Customization for grid lines.

`bar.b.lwd`, `line.fun`, `inf.o`, `bean.o`, `inf.col`, `theme.o` deprecation arguments

... other arguments passed on to the plot function (e.g.; `main`, `xlab`, `ylab`, `ylim`, `cex.axis`, `cex.main`, `cex.lab`)

Examples

```r
# Default pirateplot of weight by time
pirateplot(formula = weight ~ time,
           data = ChickWeight)

# Same but in grayscale
pirateplot(formula = weight ~ time,
           data = ChickWeight,
           pal = "gray")

# Now using theme R
pirateplot(formula = weight ~ time,
           data = ChickWeight,
           main = "Chicken weight by time",
           theme = R) # theme R

# Start with theme R, but then customise!
pirateplot(formula = weight ~ time,
           data = ChickWeight,
           theme = R, # theme R
           pal = "xmen", # xmen palette
           main = "Chicken weights by Time",
           point.o = .4, # Add points
           point.col = "black",
           point.bg = "white",
           point.pch = 21,
           bean.f.o = .2, # Turn down bean filling
           inf.f.o = .8, # Turn up inf filling
           gl.col = "gray", # gridlines
           gl.lwd = c(.5, 0)) # turn off minor grid lines

# 2 IVs
pirateplot(formula = len ~ dose + supp,
           data = ToothGrowth,
           main = "Guinea pig tooth length by supplement",
           theme = R) # theme R
```
Description

A dataset containing the results of a survey of 1,000 pirates.

Usage

pirates

Format

A data frame containing 1,000 rows and 14 columns

- **id** An integer giving the pirate’s id number
- **sex** A string with the pirate’s self reported sex
- **age** An integer giving the age of the pirate in years
- **height** Height in cm
- **weight** Weight in kg
- **headband** A binary variable indicating whether the pirate wears a headband
college A string indicating the college the pirate went to. JSSFP stands for Jack Sparro’s School of Fashion and Piratery, while CCCC stands for Captain Chunk’s Cannon Crew
tattoos An integer indicating the number of tattoos the pirate has
tchests An integer indicating the number of treasure chests found by the pirate
parrots An integer indicating the number of parrots owned by the pirate in his/her lifetime
favorite.pirate A string indicating The pirate’s favorite pirate
sword.type A string indicating the type of sword the pirate uses
eyepatch An integer indicating the number of eyepatches worn by the pirate
sword.time A number indicating how long it takes (in seconds) for the pirate to draw his/her sword. Smaller times are better!
beard.length A number indicating length of the pirate’s beard in centimeters
fav.pixar A string indicating Pirate’s favorite pixar movie
grog How many mugs of grogg the pirate drinks a day on average.

Source
2015 annual international pirate meeting at the Bodensee in Konstanz, Germany

Description
A dataset containing the results of a survey of 1,000 pirates. This dataset is identical to the pirates dataset - except that it has many errors!

Usage
pirateserrors

Format
A data frame containing 1,000 rows and 14 columns

- id An integer giving the pirate’s id number
- sex A string with the pirate’s self reported sex
- headband A binary variable indicating whether the pirate wears a headband
- age An integer giving the age of the pirate in years
- college A string indicating the college the pirate went to. JSSFP stands for Jack Sparro’s School of Fashion and Piratery, while CCCC stands for Captain Chunk’s Cannon Crew
- tattoos An integer indicating the number of tattoos the pirate has
- tchests An integer indicating the number of treasure chests found by the pirate
- parrots An integer indicating the number of parrots owned by the pirate in his/her lifetime
favorite.pirate A string indicating The pirate’s favorite pirate

sword.type A string indicating the type of sword the pirate uses

sword.time A number indicating how long it takes (in seconds) for the pirate to draw his/her sword. Smaller times are better!

eyepatch An integer indicating the number of eyepatches worn by the pirate

beard.length A number indicating length of the pirate’s beard in centimeters

fav.pixar A string indicating Pirate’s favorite pixar movie

Source

2015 annual international pirate meeting at the Bodensee in Konstanz, Germany

Description

A dataframe containing travel times of chartered ships from three pirate companies to three different destinations.

Usage

pircharter

Format

A data frame containing 1000 rows and 10 columns

- **company** (string) - The charter company: JoRo = Jolly Roger, BmcB = Boaty McBoat, MiPa = Millenium Parrot
- **destination** (string) - The destination of the charter
- **time** (numeric) - The travel time of the ship in hours

Source

2015 annual international pirate meeting at the Bodensee in Konstanz, Germany
Description

A dataframe containing the amount of time it took to clean both pirate and shark poop from the poop deck using one of three different cleaning solutions

Usage

poopdeck

Format

A data frame containing 300 rows and 4 columns

day (factor) - The day that the poop deck was cleaned (1 through 10000)
cleaner (string) - The cleaning solution used
type (string) - The type of poop being cleaned
time (numeric) - The amount of time (in minutes) the cleaning took.

Source

2015 annual international pirate meeting at the Bodensee in Konstanz, Germany

Description

This function takes a vector original.vector, and converts all values in a vector old.values to the values in a new vector new.values.

Usage

recodev(original.vector, old.values, new.values, others = NULL)

Arguments

original.vector
A vector you want to recode

old.values
A vector of length M.

new.values
A vector of length M.

others
An optional value indicating what to convert all values in original.vector that are not found in old.values.
transparent function

Description

This function takes a standard color as an argument and returns a transparent version of that color.

Usage

```r
transparent(orig.col = "red", trans.val = 1, maxColorValue = 255)
```

Arguments

- `orig.col` The original color to be made transparent. Can be specified as a string or a vector of rgb values.
- `trans.val` A number in the interval [0, 1] indicating how transparent to make the color.
- `maxColorValue` The maximum color value (only used when `orig.col` is an rgb vector).

Examples

```r
# Diagram of some examples
plot(1, ylim = c(0, 1), xlim = c(0, 12), bty = "n",
xaxt = "n", yaxt = "n", ylab = "", xlab = "", type = "n")

text(.6, .9, "transparent('red', trans.val = x)")
points(x = 1:11, y = rep(.8, 11), pch = 16,
col = transparent("red", seq(.4, .6)), cex = 3)
text(x = 1:11, y = rep(.85, 11), seq(.4, .6))
```
Scatterplot with transparent colors

```r
a.x <- rnorm(100, mean = 0, sd = 1)
a.y <- a.x + rnorm(100, mean = 0, sd = 1)

par(mfrow = c(3, 3))

for (trans.val.i in seq(0, .1, length.out = 9)) {
  plot(a.x, a.y, pch = 16, col = transparent('blue', trans.val = trans.val.i), cex = 1.5,
       xlim = c(-5, 5), ylim = c(-5, 5), xlab = "x", ylab = "y",
       main = paste("trans.val = ", round(trans.val.i, 2), sep = ""))
}
```

yarrr.guide
Opens the HTML manual for the yarrr package

Description

Opens the HTML manual for the yarrr package

Usage

`yarrr.guide()`
Index

*Topic apa
apa, 2

*Topic colors
piratepal, 7
transparent, 15

*Topic datasets
auction, 3
BeardLengths, 3
capture, 4
diamonds, 5
examscores, 5
movies, 6
pirates, 11
pirateserrors, 12
pircharter, 13
poopdeck, 14

*Topic misc
yarrrguide, 16

*Topic plot
pirateplot, 8

apa, 2
auction, 3
BeardLengths, 3
capture, 4
diamonds, 5
examscores, 5
movies, 6
piratepal, 7
pirateplot, 8
pirates, 11
pirateserrors, 12
pircharter, 13
poopdeck, 14
recode, 14
transparent, 15
yarrrguide, 16