preprosim: Lightweight Data Quality Simulation for Classification
Data quality simulation can be used to check the robustness of data
analysis findings and learn about the impact of data quality contaminations on
classification. This package helps to add contaminations (noise, missing values,
outliers, low variance, irrelevant features, class swap (inconsistency), class
imbalance and decrease in data volume) to data and then evaluate the simulated
data sets for classification accuracy. As a lightweight solution simulation runs
can be set up with no or minimal up-front effort.
Version: |
0.2.0 |
Imports: |
DMwR, reshape2, ggplot2, methods, stats, caret, doParallel, foreach, e1071 |
Suggests: |
gbm, preprocomb, preproviz, knitr, rmarkdown |
Published: |
2016-07-26 |
Author: |
Markus Vattulainen [aut, cre] |
Maintainer: |
Markus Vattulainen <markus.vattulainen at gmail.com> |
BugReports: |
https://github.com/mvattulainen/preprosim/issues |
License: |
GPL-2 |
URL: |
https://github.com/mvattulainen/preprosim |
NeedsCompilation: |
no |
CRAN checks: |
preprosim results |
Downloads: