influence.ME: Tools for Detecting Influential Data in Mixed Effects Models

Provides a collection of tools for detecting influential cases in generalized mixed effects models. It analyses models that were estimated using lme4. The basic rationale behind identifying influential data is that when iteratively single units are omitted from the data, models based on these data should not produce substantially different estimates. To standardize the assessment of how influential a (single group of) observation(s) is, several measures of influence are common practice, such as DFBETAS and Cook's Distance. In addition, we provide a measure of percentage change of the fixed point estimates and a simple procedure to detect changing levels of significance.

Version: 0.9-6
Depends: R (≥ 2.15.0), lme4 (≥ 1.0)
Imports: Matrix (≥ 1.0), lattice
Published: 2015-07-24
Author: Rense Nieuwenhuis, Ben Pelzer, Manfred te Grotenhuis
Maintainer: Rense Nieuwenhuis <rense.nieuwenhuis at sofi.su.se>
License: GPL-3
URL: http://www.rensenieuwenhuis.nl/r-project/influenceme/
NeedsCompilation: no
Citation: influence.ME citation info
In views: SocialSciences
CRAN checks: influence.ME results

Downloads:

Reference manual: influence.ME.pdf
Package source: influence.ME_0.9-6.tar.gz
Windows binaries: r-devel: influence.ME_0.9-6.zip, r-release: influence.ME_0.9-6.zip, r-oldrel: influence.ME_0.9-6.zip
OS X Snow Leopard binaries: r-release: influence.ME_0.9-6.tgz, r-oldrel: influence.ME_0.9-5.tgz
OS X Mavericks binaries: r-release: influence.ME_0.9-6.tgz
Old sources: influence.ME archive