Extending `lsmeans`

Russell V. Lenth

October 9, 2015

1 Introduction

Suppose you want to use `lsmeans` for some type of model that it doesn’t (yet) support. Or, suppose you have developed a new package with a fancy model-fitting function, and you’d like it to work with `lsmeans`. What can you do? Well, there is hope because `lsmeans` is designed to be extended.

The first thing to do is to look at the help page for extending the package:

```R
R> help("extending-lsmeans", package="lsmeans")
```

It gives details about the fact that you need to write two S3 methods, `recover.data` and `lsm.basis`, for the class of object that your model-fitting function returns. The `recover.data` method is needed to recreate the dataset so that the reference grid can be identified. The `lsm.basis` method then determines the linear functions needed to evaluate each point in the reference grid and to obtain associated information—such as the variance-covariance matrix—needed to do estimation and testing.

This vignette presents an example where suitable methods are developed, and discusses a few issues that arise.

2 Data example

The `MASS` package contains various functions that do robust or outlier-resistant model fitting. We will cobble together some `lsmeans` support for these. But first, let’s create a suitable dataset (a simulated two-factor experiment) for testing.

```R
R> fake = expand.grid(rep = 1:5, A = c("a1","a2"), B = c("b1","b2","b3"))
R> fake$y = c(11.46,12.93,11.87,11.01,11.92,17.80,13.41,13.96,14.27,15.82,
23.14,23.75,-2.09,28.43,23.01,24.11,25.51,24.11,23.95,30.37,
17.75,18.28,17.82,18.52,16.33,20.58,20.55,20.77,21.21,20.10)
```

The `y` values were generated using predetermined means and Cauchy-distributed errors. There are some serious outliers in these data.

3 Supporting `rlm`

The `MASS` package provides an `rlm` function that fits robust-regression models using M estimation. We’ll fit a model using the default settings for all tuning parameters:

1I unapologetically use `=` as the assignment operator. It is good enough for C and Java, and supported by R.
R> library(MASS)
R> fake.rlm = rlm(y ~ A * B, data = fake)
R> library(lsmeans)
R> lsmeans(fake.rlm, ~B | A)

A = a1:
 B lsmean SE df asymp.LCL asymp.UCL
b1 11.83800 0.4774474 NA 10.90222 12.77378
b2 23.30000 0.4774474 NA 22.36422 24.23578
b3 17.80078 0.4774474 NA 16.86500 18.73656

A = a2:
 B lsmean SE df asymp.LCL asymp.UCL
b1 14.68344 0.4774474 NA 13.74766 15.61922
b2 24.71164 0.4774474 NA 23.77586 25.64742
b3 20.64200 0.4774474 NA 19.70622 21.57778

Confidence level used: 0.95

The first lesson to learn about extending \texttt{lsmeans} is that sometimes, it already works! It works here because \texttt{rlm} objects inherit from \texttt{lm}, which is supported by the \texttt{lsmeans} package, and \texttt{rlm} objects aren’t enough different to create any problems.

4 Supporting \texttt{lqs} objects

The \texttt{MASS} resistant-regression functions \texttt{lqs}, \texttt{lmsreg}, and \texttt{ltsreg} are another story, however. They create \texttt{lqs} objects that are not extensions of any other class, and have other issues, including not even having a \texttt{vcov} method. So for these, we really do need to write new methods for \texttt{lqs} objects. First, let’s fit a model.

R> fake.lts = ltsreg(y ~ A * B, data = fake)

4.1 The \texttt{recover.data} method

It is usually an easy matter to write a \texttt{recover.data} method. Look at the one for \texttt{lm} objects:

R> lsmeans:::recover.data.lm

function (object, ...) {
 fcall = object$call
 recover.data(fcall, delete.response(terms(object)), object$na.action, ...)
}

<bytecode: 0x0000000013f6ee58>
<environment: namespace:lsmeans>

Note that all it does is obtain the \texttt{call} component and call the method for class "\texttt{call}", with additional arguments for its \texttt{terms} component and \texttt{na.action}. It happens that we can access these attributes in exactly the same way as for \texttt{lm} objects; so, ...
R> recover.data.lqs = lsmeans:::recover.data.lm

Let’s test it:

R> rec.fake = recover.data(fake.lts)
R> head(rec.fake)

 A B
1 a1 b1
2 a1 b1
3 a1 b1
4 a1 b1
5 a1 b1
6 a2 b1

Our recovered data excludes the response variable y (owing to the delete.response call), and this is fine.

Special arguments By the way, there are two special arguments data and params that may be handed to recover.data via ref.grid or lsmeans or a related function; and you may need to provide for if you don’t use the recover.data.call function. The data argument is needed to cover a desperate situation that occurs with certain kinds of models where the underlying data information is not saved with the object—e.g., models that are fitted by iteratively modifying the data. In those cases, the only way to recover the data is to for the user to give it explicitly, and recover.data just adds a few needed attributes to it.

The params argument is needed when the model formula refers to variables besides predictors. For example, a model may include a spline term, and the knots are saved in the user’s environment as a vector and referred to in the call to fit the model. In trying to recover the data, we try to construct a data frame containing all the variables present on the right-hand side of the model, but if some of those are scalars or of different lengths than the number of observations, an error occurs. So you need to exclude any names in params when reconstructing the data.

Error handling If you check for any error conditions in recover.data, simply have it return a character string with the desired message, rather than invoking stop. This provides a cleaner exit. The reason is that whenever recover.data throws an error, an informative message suggesting that data or params be provided is displayed. But a character return value is tested for and throws a different error with your string as the message.

4.2 The lsm.basis method

The lsm.basis method has four required arguments:

R> args(lsmeans:::lsm.basis.lm)

function (object, trms, xlev, grid, ...)
NULL

These are, respectively, the model object, its terms component (at least for the right-hand side of the model), a list of levels of the factors, and the grid of predictor combinations that specify the reference grid.
The function must obtain six things and return them in a named list. They are the matrix X of linear functions for each point in the reference grid, the regression coefficients \hat{b}; the variance-covariance matrix V; a matrix nbasis for non-estimable functions; a function $\text{dffun}(k, \text{dfargs})$ for computing degrees of freedom for the linear function $\text{sum}(k \times \hat{b})$; and a list dfargs of arguments to pass to dffun.

To write your own lsm.basis function, examining some of the existing methods can help; but the best resource is the predict method for the object in question, looking carefully to see what it does to predict values for a new set of predictors (e.g., newdata in predict.lm). Following this advice, let’s take a look at it:

```r
R> MASS:::predict.lqs

function (object, newdata, na.action = na.pass, ...) {
  if (missing(newdata))
    return(fitted(object))
  Terms <- delete.response(terms(object))
  m <- model.frame(Terms, newdata, na.action = na.action, xlev = object$xlevels)
  if (!is.null(cl <- attr(Terms, "dataClasses")))
    .checkMFClasses(cl, m)
  X <- model.matrix(Terms, m, contrasts.arg = object$contrasts)
  drop(X %*% object$coefficients)
}
<bytecode: 0x000000001307f540>
<environment: namespace:MASS>
```

Based on this, here is a listing of an lsm.basis method for lqs objects:

```r
R> lsm.basis.lqs = function(object, trms, xlev, grid, ...) {
  m = model.frame(trms, grid, na.action = na.pass, xlev = xlev)
  X = model.matrix(trms, m, contrasts.arg = object$contrasts)
  bhat = coef(object)
  Xmat = model.matrix(trms, data=object$model)
  V = rev(object$scale)[1]^2 * solve(t(Xmat) %*% Xmat)
  nbasis = matrix(NA)
  dfargs = list(df = nrow(Xmat) - ncol(Xmat))
  dffun = function(k, dfargs) dfargs$df
  list(X=X, bhat=bhat, nbasis=nbasis, V=V, dffun=dffun, dfargs=dfargs)
}
```

Before explaining it, let’s verify that it works:

```r
R> lsmeans(fake.lts, ~ B | A)

A = a1:
  B   lsmean    SE df lower.CL upper.CL
b1 11.87278  0.2284451 24  11.40129  12.34427
b2 23.09278  0.2284451 24  22.62129  23.56427
b3 17.77278  0.2284451 24  17.30129  18.24427
```
A = a2:

<table>
<thead>
<tr>
<th>B</th>
<th>lsmean</th>
<th>SE</th>
<th>df</th>
<th>lower.CL</th>
<th>upper.CL</th>
</tr>
</thead>
<tbody>
<tr>
<td>b1</td>
<td>13.91278</td>
<td>0.2284451</td>
<td>24</td>
<td>13.44129</td>
<td>14.38427</td>
</tr>
<tr>
<td>b2</td>
<td>24.06278</td>
<td>0.2284451</td>
<td>24</td>
<td>23.59129</td>
<td>24.53427</td>
</tr>
<tr>
<td>b3</td>
<td>20.50278</td>
<td>0.2284451</td>
<td>24</td>
<td>20.03129</td>
<td>20.97427</td>
</tr>
</tbody>
</table>

Confidence level used: 0.95

Hooray! Note the results are comparable to those we had for `fake.rlm`, albeit the standard errors are quite a bit smaller.

4.3 Dissecting `lsm.basis.lqs`

Let’s go through the listing of this method, by line numbers.

2–3: Construct the linear functions, X. This is a pretty standard standard two-step process: First obtain a model frame, m, for the grid of predictors, then pass it as data to `model.data` to create the associated design matrix. As promised, this code is essentially identical to what you find in `predict.lqs`.

4: Obtain the coefficients, $bhat$. Most model objects have a `coef` method.

5–6: Obtain the covariance matrix, V, of $bhat$. In many models, this can be obtained using the object’s `vcov` method. But not in this case. Instead, I cobbled one together using what it would be for ordinary regression: $\hat{\sigma}^2 (X'X)^{-1}$, where X is the design matrix for the whole dataset (not the reference grid). Here, $\hat{\sigma}$ is obtained using the last element of the `scale` element of the object (depending on the method, there are one or two scale estimates). This probably under-estimates the variances and distorts the covariances, because robust estimators have some efficiency loss.

7: Compute the basis for non-estimable functions. This applies only when there is a possibility of rank deficiency in the model, and `lqs` methods cannot handle that. All linear functions are estimable, and we signal that by setting `nbasis` equal to a 1×1 matrix of NA. If rank deficiency were possible, the `estimability` package (which is required by `lsmeans`) provides a `nonest.basis` function that makes this fairly painless—I would have coded:

```R
R> nbasis = estimability::nonest.basis(Xmat)
```

On the other hand, if rank-deficient cases are not possible, set `nbasis` equal to `all.estble`, a constant in the `estimability` package.

There is a subtlety you need to know regarding estimability. Suppose the model is rank-deficient, so that the design matrix X has p columns but rank $r < p$. In that case, $bhat$ should be of length p (not r), and there should be $p - r$ elements equal to NA, corresponding to columns of X that were excluded from the fit. Also, X should have all p columns. In other words, do not alter or throw-out columns of X or their corresponding elements of $bhat$—even those with NA coefficients—as they are essential for assessing estimability. V should be $r \times r$, however: the covariance matrix for the non-excluded predictors.

8-9: Obtain `dffun` and `dfargs`. This is a little awkward because it is designed to allow support for mixed models, where approximate methods may be used to obtain degrees of freedom. The
function `dffun` is expected to have two arguments: `k`, the vector of coefficients of `bhat`, and `dfargs`, a list containing any additional arguments. In this case (and in many other models), the degrees of freedom are the same regardless of `k`. We put the required degrees of freedom in `dfargs` and write `dffun` so that it simply returns that value.

10: Return these results in a named list.

4.4 The “honest” version

Because of the inadequacies mentioned above for estimating the covariance matrix, then—lacking any better estimate—I think it’s probably better to set it and the degrees of freedom to NAs. We will still be able to get the LS means and contrasts thereof, but no standard errors or tests. With that in mind, here’s a replacement version:

```r
R> lsm.basis.lqs = function(object, trms, xlev, grid, ...) {
  m = model.frame(trms, grid, na.action = na.pass, xlev = xlev)
  X = model.matrix(trms, m, contrasts.arg = object$contrasts)
  bhat = coef(object)
  V = diag(rep(NA, length(bhat)))
  nbasis = matrix(NA)
  dffun = function(k, dfargs) NA
  list(X=X, bhat=bhat, nbasis=nbasis, V=V, dffun=dffun, dfargs=list())
}
```

And here is a test:

```r
R> lsmeans(fake.lts, pairwise ~ B)
```

lsmeans

<table>
<thead>
<tr>
<th>B</th>
<th>lsmean</th>
<th>SE</th>
<th>df</th>
<th>asymp.LCL</th>
<th>asymp.UCL</th>
</tr>
</thead>
<tbody>
<tr>
<td>b1</td>
<td>12.89278</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>b2</td>
<td>23.57778</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>b3</td>
<td>19.13778</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>

Results are averaged over the levels of: A
Confidence level used: 0.95

contrasts

<table>
<thead>
<tr>
<th>contrast</th>
<th>estimate</th>
<th>SE</th>
<th>df</th>
<th>z.ratio</th>
<th>p.value</th>
</tr>
</thead>
<tbody>
<tr>
<td>b1 - b2</td>
<td>-10.685</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>b1 - b3</td>
<td>-6.245</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>b2 - b3</td>
<td>4.440</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>

Results are averaged over the levels of: A
P value adjustment: tukey method for comparing a family of 3 estimates

5 Hook functions

Most linear models supported by `lsmeans` have straightforward structure: Regression coefficients, their covariance matrix, and a set of linear functions that define the reference grid. However, a
few are more complex. An example is the "clm" class in the ordinal package, which allows a scale model in addition to the location model. When a scale model is used, the scale parameters are included in the model matrix, regression coefficients, and covariance matrix, and we can’t just use the usual matrix operations to obtain estimates and standard errors. To facilitate using custom routines for these tasks, the lsm.basis.clm function includes, in its misc part, the names (as character constants) of two “hook” functions: misc$estHook has the name of the function to call when computing estimates, standard errors, and degrees of freedom (for the summary method); and misc$vcovHook has the name of the function to call to obtain the covariance matrix of the grid values (used by the vcov method). These functions are called in lieu of the usual built-in routines for these purposes, and return the appropriately sized matrices.

In addition, you may want to apply some form of special post-processing after the reference grid is constructed. To provide for this, give the name of your function to post-process the object in misc$postGridHook. Again, "clm" objects (as well as "polr" in the MASS package) serve as an example. They allow a mode specification that in two cases, calls for post-processing. The "cum.prob" mode uses the regrid function to transform the linear predictor to the cumulative-probability scale. And the "prob" mode performs this, as well as applying the contrasts necessary to difference the cumulative probabilities into the class probabilities.

6 Exported methods

For package developers' convenience, lsmeans exports some of its S3 methods for recover.data and/or lsm.basis—use methods("recover.data") and methods("lsm.basis") to discover which ones. It may be that all you need is to invoke one of those methods and perhaps make some small changes—especially if your model-fitting algorithm makes heavy use of an existing model type supported by lsmeans. Contact me if you need lsmeans to export some additional methods for your use.

7 Conclusions

It is relatively simple to write appropriate methods that work with lsmeans for model objects it does not support. I hope this vignette is helpful for understanding how. Furthermore, if you are the developer of a package that fits linear models, I encourage you to include recover.data and lsm.basis methods for those classes of objects, and to remember to export them in your NAMESPACE file as follows:

S3method(myobject, recover.data)
S3method(myobject, lsm.basis)