Package ‘onewaytests’

August 24, 2015

Type Package

Title One Way Independent Groups Design

Version 1.0

Date 2015-8-24

Depends R (>= 3.1.1)

Imports stats

Author Osman Dag, Anil Dolgun, N. Meric Konar

Maintainer Osman Dag <osman.dag@hacettepe.edu.tr>

Description

Two or more samples in one-way independent groups design are compared via different tests.

License GPL (>= 2)

NeedsCompilation no

Repository CRAN

Date/Publication 2015-08-24 16:21:47

R topics documented:

onewaytests-package .. 2
ag.test ... 2
aov.test ... 3
bf.test ... 4
james.test ... 5
kw.test ... 6
mood.test .. 7
welch.test ... 8

Index 10
Description

Two or more samples in one-way independent groups design are compared via different tests.

Details

Package: onewaytests
Type: Package
Version: 1.0
Date: 2015-08-24
License: GPL (>=2)

ag.test

A Function to Perform Alexander-Govern Test

Description

ag.test performs Alexander-Govern test.

Usage

ag.test(y, group)

Arguments

y a numeric vector of data values.

group a vector or factor object giving the group for the corresponding elements of y.

Value

Returns a list containing following elements:

statistic the Alexander-Govern statistic.

df the degrees of freedom of the approximate chi-squared distribution of the test statistic.

p.value the p-value of the test.
Author(s)
Osman Dag, Anil Dolgun, N. Meric Konar

References

Examples

```r
ag.test(iris$Sepal.Width, iris$Species)
```

aov.test

A Function to Perform One-Way Analysis of Variance.

Description

aov.test performs one-way analysis of variance.

Usage

```r
aov.test(y, group)
```

Arguments

- `y` a numeric vector of data values.
- `group` a vector or factor object giving the group for the corresponding elements of `y`.

Value

Returns a list containing following elements:

- `statistic` the analysis of variance test statistic.
- `df1` the first degrees of freedom of the approximate F distribution of the test statistic.
- `df2` the second degrees of freedom of the approximate F distribution of the test statistic.
- `p.value` the p-value of the test.

Author(s)
Osman Dag, Anil Dolgun, N. Meric Konar
References

Examples

```r
aov.test(iris$Sepal.Length, iris$Species)
```

Description

`bf.test` performs Brown-Forsythe test.

Usage

```r
bf.test(y, group)
```

Arguments

- `y` a numeric vector of data values.
- `group` a vector or factor object giving the group for the corresponding elements of `y`.

Value

Returns a list containing following elements:

- `statistic` the Brown-Forsythe test statistic.
- `df1` the first degrees of freedom of the approximate F distribution of the test statistic.
- `df2` the second degrees of freedom of the approximate F distribution of the test statistic.
- `p.value` the p-value of the test.

Author(s)

Osman Dag, Anil Dolgun, N. Meric Konar

References

Examples

```r
bf.test(iris$Sepal.Width, iris$Species)

y = rnorm(10, 5, 2)
group = c(rep(1, times = 3), rep("two", times = 3), rep(8, times = 4))
bf.test(y, group)
```

Description

`james.test` performs James’s second-order test.

Usage

```r
james.test(y, group, alpha = 0.05)
```

Arguments

- **y**
 - a numeric vector of data values.
- **group**
 - a vector or factor object giving the group for the corresponding elements of `y`.
- **alpha**
 - a significance level. Defaults `alpha = 0.05`.

Value

Returns a list containing following elements:

- **statistic**
 - the James’s Second-Order Test statistic.
- **criticalvalue**
 - the critical value of the James’s Second-Order Test statistic.
- **result**
 - the result of the test.

Author(s)

Anil Dolgun, Osman Dag, N. Meric Konar

References

Examples

```r
james.test(iris$Sepal.Width, iris$Species, alpha=0.05)

y=rnorm(10,5,2)
group=c(rep(1, times=3), rep("two", times=3), rep(8, times=4))
james.test(y, group, alpha=0.10)
```

Description

`kw.test` performs Kruskal-Wallis rank sum test.

Usage

```r
kw.test(y, group)
```

Arguments

- `y` : A numeric vector of data values.
- `group` : A vector or factor object giving the group for the corresponding elements of `y`.

Value

Returns a list containing following elements:

- `statistic` : The Kruskal-Wallis rank sum statistic.
- `df` : The degrees of freedom of the approximate chi-squared distribution of the test statistic.
- `p.value` : The p-value of the test.

Author(s)

Anil Dolgun, Osman Dag, N. Meric Konar

References

Examples

```r
kw.test(iris$Sepal.Length, iris$Species)
```
mood.test

A Function to Perform Mood’s Median Test

Description

mood.test performs Mood’s median test.

Usage

mood.test(y, group)

Arguments

y
 a numeric vector of data values.

group
 a vector or factor object giving the group for the corresponding elements of y.

Value

Returns a list containing following elements:

statistic the Mood’s Median test statistic.
df the degrees of freedom of the approximate chi-squared distribution of the test statistic.
p.value the p-value of the test.

Author(s)

Anil Dolgun, Osman Dag, N. Meric Konar

References

Examples

mood.test(iris$Sepal.Width, iris$Species)
Description

welch.test performs Welch’s Heteroscedastic F test and Welch’s Heteroscedastic F Test with trimmed mean and winsorized variance.

Usage

welch.test(y, group, rate = 0)

Arguments

y a numeric vector of data values.
group a vector or factor object giving the group for the corresponding elements of y.
rate the rate of observations trimmed and winsorized from each tail of the distribution. If rate = 0, it performs Welch’s Heteroscedastic F test. Otherwise, Welch’s Heteroscedastic F Test with trimmed mean and winsorized variance is performed. Default is set to rate = 0.

Value

Returns a list containing following elements:

statistic the corresponding test statistic.
df1 the first degrees of freedom of the approximate F distribution of the test statistic.
df2 the second degrees of freedom of the approximate F distribution of the test statistic.
p.value the p-value of the test.

Author(s)

Osman Dag, Anil Dolgun, N. Meric Konar

References

Examples

welch.test(iris$Sepal.Length, iris$Species, rate=0.1)

y=rnorm(10, 5, 2)
group=c(rep(1, times=3), rep("two", times=3), rep(8, times=4))
welch.test(y, group)
Index

*Topic **functions**
 ag.test, 2
 aov.test, 3
 bf.test, 4
 james.test, 5
 kw.test, 6
 mood.test, 7
 welch.test, 8

ag.test, 2
aov.test, 3
bf.test, 4
james.test, 5
kw.test, 6
mood.test, 7
onewaytests-package, 2
welch.test, 8