Package ‘emil’

July 9, 2015

Encoding UTF-8
Type Package
Title Evaluation of Modeling without Information Leakage
Version 2.1.1
Date 2015-07-09
Author Christofer Backlin [aut, cre], Mats Gustafsson [aut]
Maintainer Christofer Backlin <emil@christofer.backlin.se>
Description A toolbox for designing and evaluating predictive models with resampling methods. The aim of this package is to provide a simple and efficient general framework for working with any type of prediction problem, be it classification, regression or survival analysis, that is easy to extend and adapt to your specific setting. Some commonly used methods for classification, regression and survival analysis are included.
Depends dplyr
Imports data.table, ggplot2, graphics, grDevices, lazyeval, magrittr, methods, stats, tidyr, utils
Suggests caret, cmprsk, glmnet, Hmisc, MASS, parallel, party, pamr, randomForest, RColorBrewer, rpart, survival, testthat (>= 0.9.1)
License GPL (>= 2)
LazyLoad yes
LazyData yes
URL http://molmed.github.io/emil

BugReports https://github.com/Molmed/emil/issues

NeedsCompilation no
Repository CRAN
Date/Publication 2015-07-09 14:47:42
R topics documented:

as.modeling_procedure .. 3
dichotomize ... 4
omeil ... 5
error_fun ... 7
evaluate .. 8
extension .. 10
fill ... 12
fit .. 13
fit_caret .. 14
fit_cforest ... 14
fit_coxph .. 15
fit_glmnet .. 16
fit_lda ... 17
fit_lm .. 18
fit_pamr .. 18
fit_qda ... 19
fit_randomForest ... 20
fit_rpart .. 21
get_color .. 21
get_importance .. 22
get_performance .. 23
get_prediction .. 24
get_response .. 24
get_tuning .. 25
image.resample .. 26
importance_glmnet .. 27
importance_pamr .. 27
importance_randomForest .. 28
impute ... 29
indent .. 30
index_fit .. 30
is_blank .. 31
is_multi_procedure .. 32
learning_curve ... 32
list_method ... 33
log_message .. 34
modeling_procedure .. 35
name_procedure ... 36
na_index .. 37
neg_gmpa .. 37
nice_axis .. 38
nice_box .. 39
nice_require ... 39
notify_once .. 40
plot.learning_curve .. 40
plot.Surv .. 41
as.modeling_procedure

Coerce to modeling procedure

Description

Coerce to modeling procedure

Usage

as.modeling_procedure(x, ...)

Arguments

x modeling procedure.

... Ignored (kept for S3 consistency).
dichotomize

Value
Modeling procedure

Author(s)
Christofer Bäcklin

Examples
as.modeling_procedure("lda")

dichotomize
Dichotomize time-to-event data

Description
Convert time-to-event data (typically created with the `Surv` function) to factor or integer.

Usage
dichotomize(x, time, to_factor)

Arguments
- **x**
 `Surv` vector.
- **time**
 Time point to dichotomize at.
- **to_factor**
 Depending on the type of `x` the return value may be integer or factor. Set this argument to explicitly state the return type.

Details
If no time point is given the observation times will be stripped, leaving only the event types. If a time point is given observations with events occurring before `time` will be labelled by their event type, observations with events occurring after `time` will be labelled as “no event”, and observations censored before `time` will be considered as missing information.

Value
Integer vector or factor.

Author(s)
Christofer Bäcklin

See Also
Surv
Introduction to the emil package

Description

The emil package implements a framework for working with predictive modeling problems without information leakage. For an overview of its functionality please read the original publication included as the package’s vignette (to be added).

Central topics and functions

Setting up modeling problems:
- resample Functions for generating and resampling schemes and information on how to implement custom resampling methods.
- pre_process Data pre-processing functions.
- modeling_procedure Manages algorithms used for fitting models, making predictions, and extracting feature importance scores.
- error_fun Performance estimation functions used to tune parameters and evaluate performance of modeling procedures.

Solving modeling problems:
- fit Fit a model (according to a procedure).
- tune Tune parameters of a procedure.
- predict Use a fitted model to predict the response of observations.
- evaluate Evaluate the performance of a procedure using resampling.
- learning_curve Learning curve analysis.

Managing the results of modeling problems:
- get_prediction Extract predictions from resampled modeling results.
- get_tuning Extract feature importance scores of a fitted model or resampled modeling results.
- get_importance Extract feature importance scores of a fitted model or resampled modeling results.
- subtree Extracts results from the output of evaluate. It is essentially a recursive version of lapply and sapply.
- select Interface between emil and the dplyr package for data manipulation. Can be used to subset modeling results, reorganize or summarize to help interpretation or prepare for plotting.

Methods included in the package

Resampling methods: See resample for information on usage and implementation of custom methods.
- resample_holdout Repeated holdout.
- resample_crossvalidation Cross validation.
Data pre-processing methods: See `pre_process` for information on usage and implementation of custom methods. The imputation functions can also be used outside of the resampling scheme, see `impute`.

- **pre_split** Only split, no transformation.
- **pre_center** Center data to have mean 0 of each feature.
- **pre_scale** Center and scale data to have mean 0 and standard deviation 1.
- **pre_impute_median** Impute missing values with feature medians.
- **pre_impute_knn** Impute missing values with k-NN, see `pre_impute_knn` for details on how to set parameters.

Modeling methods: The following modeling methods are included in the emil package. For a complete list of available methods in both the emil package and other loaded packages, please use `list_method`. See `modeling_procedure` for information on usage and extension for information on implementation of custom methods.

- **cforest** Conditional inference forest.
- **coxph** Cox proportional hazards model.
- **glmnet** Elastic net.
- **lasso** LASSO.
- **lda** Linear discriminant.
- **lm** Linear model.
- **pamr** Nearest shrunken centroids.
- **qda** Quadratic discriminant.
- **randomForest** Random forest.
- **ridge_regression** Ridge regression.
- **rpart** Decision trees.

It is also possible to incorporate any method from the ‘caret’ package by using the function `fit_caret`.

To search for emil compatible methods in all attached packages use the `list_method` function.

Performance estimation methods: See `error_fun` for information on usage and implementation of custom methods. Since the framework is designed to minimize the error when tuning parameters, some measures are negated, e.g. `neg_auc`.

For classification problems:

- **error_rate** Fraction of predictions that were incorrect.
- **weighted_error_rate** See its own documentation.
- **neg_auc** Negative area under ROC curve. To plot the ROC curves see `roc_curve`.
- **neg_gmpa** Negative geometric mean of class-specific prediction accuracy. Good for problems with imbalanced class sizes.

For regression problems:

- **mse** Mean square error.
- **rmse** Root mean square error.

For survival analysis problem:

- **neg_harrell_c** Negative Harrell’s concordance index.
Plotting:
Plotting is not one of the main aims of the package and the methods that do exist mainly serves as examples for how to write your own. These exists for:

- Learning curve analyses.
- Resampling schemes.
- ROC-curves.

Author(s)
Christofer Bäcklin

error_fun
Performance estimation functions

Description
These functions determine the performance of fitted model based on its predictions. They are used both for evaluating whole modeling procedures and to tune model parameters, i.e. find the parameter values with the best performance. The parameter tuning routine is designed to minimize its error function (or optimization criteria), which is why functions that are to be maximized must have their sign changed, like `neg_auc`.

Usage

```r
error_rate(truth, prediction, allow_rejection = !missing(rejection_cost), rejection_cost)

neg_auc(truth, prediction)

rmse(truth, prediction, na.rm = FALSE)

mse(truth, prediction, na.rm = FALSE)

neg_harrell_c(truth, prediction, na.rm = FALSE)
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>truth</td>
<td>The true response values, be it class labels, numeric values or survival outcomes.</td>
</tr>
<tr>
<td>prediction</td>
<td>A prediction object.</td>
</tr>
<tr>
<td>allow_rejection</td>
<td>If FALSE missing prediction values will produce an error. If TRUE missing values will be given a cost specified by the rejection_cost argument.</td>
</tr>
<tr>
<td>rejection_cost</td>
<td>See the argument allow_rejection. If missing a rejection cost equivalent to the error rate obtained when assigning all test observations to the most common class will be used.</td>
</tr>
<tr>
<td>na.rm</td>
<td>Whether to remove missing values or not.</td>
</tr>
</tbody>
</table>
Details

Custom performance estimation functions should be implemented as follows:

```r
function(truth, prediction)

truth  A vector of true responses.
prediction  Prediction returned from the prediction function.
```

In most cases the true response and the predictions are of the same type, e.g. true and fitted values in a regression or class labels in a classification problem, but it is not a requirement. An example of different types could be if the prediction function produce class probabilities for all classes rather than one label, or the risks that the observations will experience the event of interest, to be compared to the actual outcome that it did occur or has not yet occurred at a specific time point. See `neg_harrell_c` for an example of the latter.

Author(s)

Christofer Bäcklin

See Also

`emil`, `neg_gmpa`, `modeling_procedure`, `extension`

evaluate

Evaluate a modeling procedure

Description

This function performs the important task of evaluating the performance of a modeling procedure with resampling, including tuning and pre-processing to not bias the results by information leakage.

Usage

```r
evaluate(procedure, x, y, resample = pre_split, .save = c(model = TRUE, prediction = TRUE, error = TRUE, importance = FALSE), .cores = 1, .checkpoint_dir = NULL, .return_error = .cores > 1, .verbose = getOption("emil_verbose", TRUE))
```

Arguments

- `procedure`: Modeling procedure, or list of modeling procedures, as produced by `modeling_procedure`
- `x`: Dataset, observations as rows and descriptors as columns.
- `y`: Response vector.
- `resample`: The test subsets used for parameter tuning. Leave blank to randomly generate a resampling scheme of the same kind as is used by `evaluate` to assess the performance of the whole modeling_procedure.
evaluate

pre_process Function that performs pre-processing and splits dataset into fitting and test subsets.

.save What parts of the modeling results to return to the user. If importance is FALSE variable importance calculation will be skipped.

.cores Number of CPU-cores to use for parallel computation. The current implementation is based on mcMap, which unfortunately do not work on Windows systems. It can however be re-implemented by the user fairly easily by setting up a PSOCK cluster and calling `parLapply` as in the example below. This solution might be included in future versions of the package, after further investigation.

.checkpoint_dir Directory to save intermediate results to, after every completed fold. The directory will be created if it doesn’t exist, but not recursively.

.return_error If FALSE the entire modeling is aborted upon an error. If TRUE the modeling of the particular fold is aborted and the error message is returned instead of its results.

.verbose Whether to print an activity log.

Value

A list tree where the top level corresponds to folds (in case of multiple folds), the next level corresponds to the modeling procedures (in case of multiple procedures), and the final level is specified by the .save parameter. It typically contains a subset of the following elements:

.error Performance estimate of the fitted model. See error_fun for more information.

.fit Fitted model.

.prediction Predictions given by the model.

.importance Feature importance scores.

.tune Results from the parameter tuning. See tune for details.

Author(s)

Christofer Bäcklin

See Also

emil, modeling_procedure

Examples

```r
x <- iris[-5]
y <- iris$Species
cv <- resample("crossvalidation", y, nfold = 4, nrepeat = 4)
x <- evaluate("lda", x, y, resample=cv)
```

Multiple procedures fitted and tested simultaneously.
This is useful when the dataset is large and the splitting takes a long time.
If you name the elements of the list emil will also name the elements of the results object in the same way.
result <- evaluate(c(Linear = "lda", Quadratic = "qda"), x, y, resample=cv)

Multicore parallelization (on a single computer)
result <- evaluate("lda", x, y, resample=cv, .cores=2)

Parallelization using a cluster (not limited to a single computer)
PSOCK is supported on windows too!
require(parallel)
c1 <- makePSOCKcluster(2)
clusterEvalQ(cl, library(emil))
clusterExport(cl, c("x", "y"))
result <- parLapply(cl, cv, function(fold)
 evaluate("lda", x, y, resample=fold))

extension

Extending the emil framework with user-defined methods

Description

This page describes how to implement custom methods compatible with the functions of the emil framework, most notably fit, tune, and evaluate. Pre-processing and resampling is not covered here, but in the entries pre_process and resample.

Fitting models

To write and use custom model fitting functions with the emil framework, it must take the following inputs. Optional

function(x, y, p1, p2, p3, ..., .verbose)

x The features (or variables) of the observations you want to train the model on. This is typically a matrix or a data frame where each row corresponds to an observation. In case it is more natural to characterize your observations some other way, maybe as character vectors of varying length for some document classification method, x can be of any form you like as long as the fitting function knows how to handle it. In that case you will also need supply you own pre-processing function (see pre_process that can extract training and test sets from the entire data set.

See the functions pre_pamr and fit_pamr for an example of a function that does not take its data in the default way.

y A response vector. This is the outcome you want to model, e.g. the feature of interest in a regression, class label in a classification problem, or anything else that a fitted model will produce when given data to make predictions from.

p1, p2, p3, ... (Optional) Method-specific model parameters. These will all be tunable with the tune and evaluate functions. Note that you can give them any name you want, the names used here are just an example.

 verbose (Optional) Indentation level of log messages. Feed this to log_message.
The function must return everything necessary to make future predictions, but it can take any form you like. In the simplest case it is just a number of fitted parameter values, like in a least squares regression, but it could also be some big and complex structure holding an ensemble of multiple sub-models.

Making predictions

Once a model is fitted it can be used to make predictions with a prediction function, defined as such

```r
function(object, x, ...) 
```

- `object` A fitted model produced by the model fitting function described above.
- `x` Observations to make predictions on (describing features only).
- `...` Parameters to the prediction functions. These are ignored by `tune` and `evaluate`, but could be convenient if the user wants to work with it manually.

The output of the prediction function must be an object that can be compared to the true response, by an error function (see below). It is typically a list with elements named "pred" for "predictions" or "risk" for estimated risks. It can also be on an arbitrary form as long as a compatible error function is used.

Calculating feature importance scores

Estimating the importance of each feature (or variable) can often be as important as making predictions. Functions for calculating or extracting feature importance scores from fitted models should be defined as follows:

```r
function(object, ...) 
```

- `object` A fitted model produced by the model fitting function described above.
- `...` Parameters to the prediction functions. These are ignored by `tune` and `evaluate`, but could be convenient if the user wants to work with it manually.

The function should return a vector of length `p` or a `p`-by-`c` data frame where `p` is the number of features in the data set and `c` is the number of classes.

Calculating performance

See `error_fun`.

Resampling schemes

See `resample`.

Pre-processing functions

See `pre_process`.

extension
Code style guidelines

Names of functions, arguments and variables should be written in underscore separated lower case, singular form, unabbreviated, and American English. Users are encouraged to also follow use this style when writing extensions. However, the guidelines may be violated in cases where they break the consistency with an incorporated well established package, see for example `fit_randomForest` which according to the guidelines should be `fit_randomforest` or `fit_random_forest`.

A few exceptions to the rule against abbreviations exists, namely ‘fun’ and ‘function’ and ‘dir’ for ‘directory’. These are only used for arguments to indicate the type of value that is accepted.

Author(s)

Christofer Bäcklin

See Also

`emil`, `error_fun`, `pre_process`, `resample`

fill Replace values with something else

Description

Replace values with something else

Usage

`fill(x, pattern, replacement, invert = FALSE)`

`na_fill(x, replacement)`

Arguments

- `x` Variable containing NAs.
- `pattern` The values in `x` to be replaced. Can also be a function.
- `replacement` The value which is to replace the values matching `pattern`.
- `invert` Whether to fill all values except the ones matching `pattern`.

Value

An imputed version of `x`.

Author(s)

Christofer Bäcklin
fit

Description

Fits a model according to a modeling procedure. If the procedure contains untuned parameters they will automatically be tuned prior to fitting.

Usage

```r
fit(procedure, x, y, ..., .verbose =getOption("emil_verbose", FALSE))
```

Arguments

- `procedure` Modeling procedure, or list of modeling procedures, as produced by `modeling_procedure`.
- `x` Dataset, observations as rows and descriptors as columns.
- `y` Response vector.
- `...` Sent to `tune`, in case tuning is required, which will pass them on to `evaluate`.
- `.verbose` Whether to print an activity log. Set to -1 to suppress all messages.

Value

A list of fitted models.

Author(s)

Christofer Bäcklin

See Also

`emil, modeling_procedure, evaluate, tune, predict, get_importance`

Examples

```r
mod <- fit("lda", x=iris[-5], y=iris$Species)
```
fit_caret
*Fit a model using the *caret* package*

Description
Fit a model using the *caret* package

Usage
```r
fit_caret(x, y, ...)  
```

Arguments
- `x`: Descriptors.
- `y`: Response.
- `...`: Sent to *train*.

Author(s)
Christofer Bäcklin

fit_cforest
Fit conditional inference forest

Description
A *cforest* is a random forest based on conditional inference trees, using the implementation in the *party* package. These trees can be used for classification, regression or survival analysis, but only the survival part has been properly tested so far.

Usage
```r
fit_cforest(x, y, formula = y ~ ., ctrl_fun = party::cforest_unbiased, ...)  
```

Arguments
- `x`: Dataset, observations as rows and descriptors as columns.
- `y`: Responses.
- `formula`: Formula linking response to descriptors.
- `ctrl_fun`: Which control function to use, see *cforest_control*.
- `...`: Sent to the function specified by `ctrl_fun`.
Details
The parameters to `cforest` are set using a `cforest_control` object. You should read the documentation as the default values are chosen for technical reasons, not predictive performance! Pay special attention to `mtry` which is set very low by default.

Value
A fitted `cforest` model.

Author(s)
Christofer Bäcklin

See Also
`emil`, `predict_cforest`, `modeling_procedure`

fit_coxph

Fit Cox proportional hazards model

Usage

```r
fit_coxph(x, y, formula = y ~ ., ...)
```

Arguments

- `x`
 Dataset.
- `y`
 Response. Required if formula is missing.
- `formula`
 See `coxph`.
- `...`
 Sent to `coxph`.

Value
Fitted Cox proportional hazards model.

Author(s)
Christofer Bäcklin

See Also
`predict_coxph`
Examples

require(survival)
data(ovarian)
model <- fit(
 modeling_procedure(
 method = "coxph",
 parameter = list(formula = list(Surv(futime, fustat) ~ age)),
 x = ovarian, y = NULL
)
)
predict(model, ovarian[11:16])

fit_glmnet Fit elastic net, LASSO or ridge regression model

Description

Using the glmnet package implementation.

Usage

fit_glmnet(x, y, family, nfolds, foldid, alpha = 1, lambda = NULL, ...)

fit_ridge_regression(...)

fit_lasso(...)

Arguments

x Dataset.

y Response vector. Can be of many different types for solving different problems, see glmnet.

family Determines the the type of problem to solve. Auto detected if y is numeric or survival. See family for details.

nfolds See cv.glmnet.

foldid See cv.glmnet.

alpha Regularization parameter, see glmnet.

lambda Regularization parameter, see glmnet.

... Sent to fit_glmnet or cv.glmnet.

Details

The alpha parameter of glmnet controls the type of penalty. Use 0 (default) for lasso only, 1 for ridge only, or an intermediate for a combination. This is typically the parameter to tune on. The shrinkage, controlled by the lambda parameter, can be left unspecified for internal tuning (works the same way as fit_glmnet).
Value
Fitted elastic net model.

Author(s)
Christofer Bäcklin

See Also
emil, predict_glmnet, importance_glmnet, modeling_procedure

fit_ldap

Fit linear discriminant

Description
Wrapper for the MASS package implementation.

Usage

`fit_lda(x, y, ...)`

Arguments

- `x` Dataset, numerical matrix with observations as rows.
- `y` Class labels, factor.
- `...` Sent to `lda`.

Value
Fitted linear discriminant.

Author(s)
Christofer Bäcklin

See Also
emil, predict_lda, modeling_procedure
fit_lm

Fit a linear model fitted with ordinary least squares

Description

Based on \texttt{lm}.

Usage

\texttt{fit_lm(x, y, formula = y \sim ., \ldots)}

Arguments

- \texttt{x} Descriptors.
- \texttt{y} Response, numeric.
- \texttt{formula} See \texttt{lm}.
- \texttt{...} Sent to \texttt{lm}.

Value

Fitted linear model.

Author(s)

Christofer Bäcklin

See Also

\texttt{emil, predict_lm, modeling_procedure}

fit_pamr

Fit nearest shrunken centroids model.

Description

Wrapped version of the \texttt{pamr} package implementation. Note that this function uses internal cross-validation for determining the value of the shrinkage threshold.

Usage

\texttt{fit_pamr(x, y, error_fun, cv, nfold, threshold = NULL, \ldots, thres_fun = function(thr, err) median(thr[err == min(err)]), slim = FALSE)}
Arguments

- **x**: Dataset, numerical matrix with observations as rows.
- **y**: Class labels, factor.
- **error_fun**: Error function for tuning.
- **cv**: Cross-validation scheme for shrinkage tuning. It should be supplied on one of the following forms:
 - Resampling scheme produced with `resample` or `resample_holdout`.
 - List with elements named `nrepeat` and `nfold`.
 - NA, NULL or FALSE to suppress shrinkage tuning.
- **nfold**: Sent to `pamr.cv`. Only used if `cv` is missing.
- **threshold**: Shrinkage thresholds to try (referred to as 'lambda' in the literature). Chosen and tuned automatically by default, but must be given by the user if not tuned (see the `cv` argument) if you wish to use it with `evaluate`.
- **...**: Sent to `pamr.train`.
- **thres_fun**: Threshold selection function. Note that it is not uncommon that several thresholds will result in the same tuning error.
- **slim**: Set to TRUE if you want to return the fitted classifier but discard pamr's `cv.objects`, which can be large. memory efficient. This means that the element `cv$cv.objects` containing the cross-validated fits will be dropped from the returned classifier.

Value

Fitted pamr classifier.

Author(s)

Christofer Bäcklin

See Also

- `emil`
- `predict_pamr`
- `importance_pamr`
- `modeling_procedure`

Description

Wrapper for the MASS package implementation.

Usage

```r
fit_qda(x, y, ...)
```
Arguments

x Dataset, numerical matrix with observations as rows.
y Class labels, factor.
... Sent to qda.

Value

Fitted QDA.

Author(s)

Christofer Bäcklin

See Also

emil, predict_qda, modeling_procedure

Description

Directly calling the randomForest package implementation. See randomForest for parameter specification.

Usage

fit_randomForest(x, y, ...)

Arguments

x Dataset, numerical matrix with observations as rows.
y Class labels, factor.
... Sent to randomForest.

Value

Fitted random forest.

Author(s)

Christofer Bäcklin

See Also

emil, predict_randomForest, importance_randomForest, modeling_procedure
fit_rpart

Fit a decision tree

Description
Fit a decision tree

Usage
fit_rpart(x, y, ...)

Arguments
- x: Data set (features).
- y: Response.
- ...: Sent to rpart.

Value
A fitted decision tree.

Author(s)
Christofer Bäcklin

get_color
Get color palettes

Description
Can be used to modify an existing palette, e.g. change brightness, or to generate a palette for a response vector.

Usage
get_color(x, ...)

Default S3 method:
get_color(x, s, v, alpha, ...)

S3 method for class 'factor'
get_color(x, levels = FALSE, col = "Set1", ...)
Arguments

- **x**: Character vector of colors or factor of class memberships to generate colors for. Sent to `get_color.default`.
- **s**: Saturation. $s = 0$ leaves it unchanged, $0 < s \leq 1$ increases, and $-1 \leq s < 0$ decreases.
- **v**: Value. $s = 0$ leaves it unchanged, $0 < s \leq 1$ increases, and $-1 \leq s < 0$ decreases.
- **alpha**: Transparency.
- **levels**: If TRUE a palette with one color per level of x is returned. If FALSE one color per element in x is returned.
- **col**: Color palette with one color per class or the name of the color brewer palette to use, see name argument of `brewer_pal` for a list of possible values.

Value

A character vector of hex colors.

Author(s)

Christofer Bäcklin

get_importance
Feature (variable) importance of a fitted model

Description

Note that different methods calculates feature importance in different ways and that they are not directly comparable.

Usage

get_importance(object, format, ...)

Arguments

- **object**: Fitted model.
- **format**: Table format of the output. See http://en.wikipedia.org/wiki/Wide_and_narrow_data for more info.
- **...**: Sent on to the procedure’s feature importance scoring function.

Details

When extending the `emil` framework with your own method, the importance function should return a data frame where one column is called "feature" and the remaining columns are named after the classes.
get_performance

Value
A vector of length p or an p-x-c matrix of feature importance scores where p is the number of descriptors and c is the number of classes.

Author(s)
Christofer Bäcklin

See Also
emil

Examples

```r
# Procedure
procedure <- modeling_procedure("pamr")
model <- fit("pamr", x=iris[-5], y=iris$Species)
get_importance(model)

cv <- resample("crossvalidation", iris$Species, nrepeat=2, nfold=3)
result <- evaluate("pamr", iris[-5], iris$Species, resample=cv,
                   .save=c(importance=TRUE))
get_importance(result)
```

get_performance Extract prediction performance

Description
Extract prediction performance

Usage

```r
get_performance(result, format = c("wide", "long"))
```

Arguments

- **result**: Modeling result, as returned by `evaluate`.
- **format**: Table format of the output. See http://en.wikipedia.org/wiki/Wide_and_narrow_data for more info.

Value
Data frame.

Author(s)
Christofer Bäcklin
get_prediction Extract predictions from modeling results

Description
Extract predictions from modeling results

Usage
get_prediction(result, resample, type = "prediction", format = c("long", "wide"))

Arguments
result Modeling result, as returned by evaluate and evaluate.
resample Resampling scheme used to create the results.
type The type of prediction to return. The possible types vary between modeling procedure.
format Table format of the output. See http://en.wikipedia.org/wiki/Wide_and_narrow_data for more info.

Value
A data frame where the id column refers to the observations.

Author(s)
Christofer Bäcklin

g_response Extract the response from a data set

Description
Extract the response from a data set

Usage
g_response(x, y)

Arguments
x Data set features.
y Response vector or any other type of objects that describe how to extract the response vector from x.
Value

A response vector.

Author(s)

Christofer Bäcklin

Examples

```r
identical(iris$Species, get_response(iris, "Species"))
identical(iris$Sepal.Length, get_response(iris, Sepal.Length - .))
```

Description

Extract parameter tuning statistics

Usage

```r
get_tuning(object)
```

Arguments

- **object**

 Fitted model or modeling procedure

Value

A data frame of tuning statistics in long format.

Author(s)

Christofer Bäcklin

Examples

```r
procedure <- modeling_procedure("randomForest",
   parameter = list(mtry = c(1, 3),
                    nnode = c(4, 10)))
model <- fit(procedure, x=iris[-5], y=iris$Species)
get_tuning(model)

options(emil_max_indent=4)
ho <- resample("holdout", iris$Species, nfold=5)
result <- evaluate(procedure, iris[-5], iris$Species, resample=ho,
                    save=c(model=TRUE))
get_tuning(result)
```
image.resample

Visualize resampling scheme

Description

Class specific extension to `image`.

Usage

```r
## S3 method for class 'resample'
image(x, col, ...)

## S3 method for class 'crossvalidation'
image(x, col, ...)
```

Arguments

- `x` Resampling scheme, as returned by `resample`.
- `col` Color palette matching the values of `x`. Can also be the response vector used to create the scheme for automatic coloring.
- `...` Sent to `plot`.

Value

Nothing, produces a plot.

Author(s)

Christofer Bäcklin

See Also

`emil`, `resample`

Examples

```r
image(resample("holdout", 60, test_fraction=1/3, nfold=20))

y <- gl(2, 30)
image(resample("crossvalidation", y, nfold=3, nrepeat=8), col=y)
```
importance_glmnet
Feature importance extractor for elastic net models

Description
Feature importance extractor for elastic net models

Usage
importance_glmnet(object, s, ...)
importance_ridge_regression(object, s, ...)
importance_lasso(object, s, ...)

Arguments

 object Fitted elastic net model, as produced by fit_glmnet.
 s Regularization parameter lambda.
 ... Sent to predict_glmnet.

Value
A feature importance data frame.

Author(s)
Christofer Bäcklin

See Also
emil, fit_glmnet, predict_glmnet, modeling_procedure

importance_pamr
Feature importance of nearest shrunken centroids.

Description
Calculated as the absolute difference between the overall centroid and a class-wise shrunken centroid (which is the same for both classes except sign).

Usage
importance_pamr(object, threshold, thres_fun = max, ...)

importance_randomForest

Arguments

- **object**: Fitted pamr classifier
- **threshold**: Threshold to use for classification. This argument is only needed if you want to override the value set during model fitting.
- **thres_fun**: Threshold selection function. Only needed if you want to override the function set during model fitting.
- ... Sent to `pamr.predict`.

Details

In case multiple thresholds give the same error the largest one is chosen (i.e. the one keeping the fewest features).

Value

A data frame of feature importance scores.

Author(s)

Christofer Bäcklin

See Also

- `emil`, `fit_pamr`, `predict_pamr`, `modeling_procedure`

importance_randomForest

Feature importance of random forest.

Description

Feature importance of random forest.

Usage

```r
importance_randomForest(object, type = 1, ...)
```

Arguments

- **object**: Fitted randomForest classifier
- **type**: Importance can be assessed in two ways:
 1. Permuted out-of-bag prediction error (default). This can only be used if the classifier was fitted with argument `prediction=TRUE` which is default.
 2. Total decrease in node impurity.
- ... Ignored.
Value

An prediction vector with elements corresponding to variables.

Author(s)

Christofer Bäcklin

See Also

`emil`, `fit_randomForest`, `predict_randomForest`, `modeling_procedure`

| impute | Regular imputation |

Description

If you want to impute, build model and predict you should use `pre_impute_median` or `pre_impute_knn`. This function imputes using all observations without caring about cross-validation folds.

Usage

```r
impute_knn(x, k = 0.05, distance_matrix = "auto")
```

```r
impute_median(x)
```

Arguments

- `x`
 Dataset.
- `k`
 Number of nearest neighbors to use.
- `distance_matrix`
 Distance matrix.

Details

For additional information on the parameters see `pre_impute_knn` and `pre_impute`.

Value

An imputed matrix.

Author(s)

Christofer Bäcklin

See Also

`emil`, `pre_process`, `pre_impute_knn`, `pre_impute_median`
Examples

```r
x <- matrix(rnorm(36), 6, 6)
x[sample(length(x), 5)] <- NA
impute_knn(x)
impute_median(x)
```

indent

Increase indentation

Description

Increase indentation

Usage

```r
indent(base, indent)
```

Arguments

- `base` Base indentation level of the function printing the message.
- `indent` Extra indentation of this message.

Value

An integer that can be used to specify the indentation level of messages printed with `log_message`.

Author(s)

Christofer Bäcklin

index_fit

Convert a fold to row indexes of fitting or test set

Description

Convert a fold to row indexes of fitting or test set

Usage

```r
index_fit(fold, allow_oversample = TRUE)
index_test(fold)
```
Arguments

fold A fold of a resampling scheme.
allow_oversample Whether or not to allow individual observation to exist in multiple copies in the training set. This is typically not the case, but can be used when a class is underrepresented in the data set.

Value

An integer vector of row indexes.

Author(s)

Christofer Bäcklin

See Also

emil, resample

Description

This is mainly an internal function but as other dependent packages also use it sometimes and it generally is quite handy to have it is exported for public use.

Usage

is_blank(x, false_triggers = FALSE)

Arguments

x A variable.
false_triggers Whether FALSE should be considered as empty.

Value

Logical telling if variable is blank.

Author(s)

Christofer Bäcklin

Examples

is_blank(NULL)
is_multi_procedure
Detect if modeling results contains multiple procedures

Description
Detect if modeling results contains multiple procedures

Usage
is_multi_procedure(result)

Arguments
result Modeling results, as returned by evaluate.

Value
Logical scalar.

Author(s)
Christofer Bäcklin

learning_curve
Learning curve analysis

Description
This function studies the change in performance as the sizes of the training set is varied. In case the studied modeling procedures cannot produce models on the smallest training sets, please use return_error=TRUE (see evaluate).

Usage
learning_curve(procedure, x, y, test_fraction, nfold = 100, ..., .verbose = TRUE)

Arguments
procedure modeling_procedure.
x Dataset descriptors.
y Response.
test_fraction Fraction of dataset to hold out, i.e. use as test set. Defaults 20 logarithmically distributed values ranging from all but 5 observations per class in the largest test set to only 5 observations per class in the smallest test set.
list_method

nfold How many holdout folds that should be calculated.
...
verbose Whether to print an activity log. Set to -1 to also suppress output generated from the procedure’s functions.

Author(s)

Christofer Bäcklin

References

Examples

```r
options(emil_max_indent=3)
lc <- learning_curve(c(Linear="lda", Quadratic="qda"),
                    iris[-5], iris$Species, test_fraction=7:2/10)
plot(lc)
```

Description

This function searches all attached packages for methods compatible with the emil framework.

Usage

```r
list_method(pos = search())
```

Arguments

pos Location to search in, see ls.

Value

A data frame.

Author(s)

Christofer Bäcklin

Examples

```r
list_method()
```
log_message

Print a timestamped and indented log message

Description
To suppress messages below a given indentation level set the global option setting emil_max_indent, as in the example below.

Usage
log_message(indent = 1, ..., time = TRUE, domain = "R-emil",
appendLF = TRUE)

Arguments
indent Indentation level. Messages with indent=0 are suppressed.
... Sent to sprintf.
time Whether or not to print timestamp.
domain See message.
appendLF Whether to finish the message with a linebreak or not.

Author(s)
Christofer Bäcklin

Examples

```r
equipment <- c("flashlight", "snacks", "pick")
{
  log_message(1, "Begin descent")
  log_message(2, "Oh no, forgot the %s!", sample(equipment, 1))
  log_message(2, "Hello? Can you throw it down to me?", time=FALSE)
  log_message(1, "Aw shucks, I'm coming back up.")
}

for(verb in c(TRUE, FALSE)){
  cat("It's", verb, "\n")
  for(i in 0:3)
    log_message(indent(verb, i), "Down")
}

options(emil_max_indent = 2)
for(i in 1:3)
  log_message(i, "Down")
```
modeling_procedure

Setup a modeling procedure

Description

A modeling procedure is an object containing all information necessary to carry out and evaluate the performance of a predictive modeling task with `fit`, `tune`, or `evaluate`. To use an out-of-the-box algorithm with default values, only the `method` argument needs to be set. See `emil` for a list of available methods. To deviate from the defaults, e.g. by tuning parameters or using a custom function for model fitting, set the appropriate parameters as described below. For a guide on how to implement a custom method see the documentation page `extension`.

Usage

```r
modeling_procedure(method, parameter = list(), error_fun = NULL, fit_fun, predict_fun, importance_fun)
```

Arguments

- `method`: The name of the modeling method. Only needed to identify plug-in functions, i.e. if you supply them yourself there is no need to set `method`.
- `parameter`: A list of model parameters. These will be fed to the fitting function after the dataset (x and y parameters). To tune a parameter, supply the candidate values in a vector or list.
 - When tuning more than one parameter, all combinations of parameter values will be tested, if the elements of `parameter` are named. To manually specify which parameter value combinations to try, leave the the elements unnamed (see example 3 and 4).
 - Parameters that should have vectors or lists as values, e.g. `trControl` when using `fit_caret` to train `pkgcaret` models, must be wrapped in an additional list. That is, to set a parameter value to a list, but not tune it, make it a list of length 1 containing the list to be used (see example 6).
- `error_fun`: Performance measure used to evaluate procedures and to tune parameters. See `error_fun` for details.
- `fit_fun`: The function to be used for model fitting.
- `predict_fun`: The function to be used for model prediction.
- `importance_fun`: The function to be used for calculating or extracting feature importances. See `get_importance` for details.

Value

An object of class `modeling_procedure`.

Author(s)

Christofer Bäcklin
See Also

emil, evaluate, fit, tune, predict, get_importance

Examples

1: Fit linear discriminants without tuning any parameter,
since it has none
modeling_procedure("lda")

2: Tune random forest's 'mtry' parameter, with 3 possible values
modeling_procedure("randomForest", list(mtry = list(100, 250, 1000)))

3: Tune random forest's 'mtry' and 'maxnodes' parameters simultaneously,
with 3 values each, testing all 9 possible combinations
modeling_procedure("randomForest", list(mtry = list(100, 250, 1000),
 maxnodes = list(5, 10, 25)))

4: Tune random forest's 'mtry' and 'maxnodes' parameters simultaneously,
but only test 3 manually specified combinations of the two
modeling_procedure("randomForest", list(mtry = list(100, 250, 1000),
 maxnodes = list(5, 10, 25)))

5: Tune elastic net's 'alpha' and 'lambda' parameters. Since elastic net's
fitting function can tune 'lambda' internally in a more efficient way
than the general framework is able to do, only tune 'alpha' and pass all
'lambda' values as a single argument.
modeling_procedure("glmnet", list(alpha = seq(0, 1, length.out=6),
 lambda = list(seq(0, 5, length.out=30))))

6: Train elastic nets using the caret package's model fitting framework
library(caret)
modeling_procedure("caret", list(method = "glmnet",
 trControl = list(trainControl(verboseIter = TRUE, classProbs = TRUE))))

name_procedure Get names for modeling procedures

Description

Get names for modeling procedures

Usage

name_procedure(procedure)

Arguments

procedure List of modeling procedures.
na_index

Value

A character vector of suitable non-duplicate names.

Author(s)

Christofer Bäcklin

Description

Support function for identifying missing values

Usage

```r
na_index(data)
```

Arguments

- `data` Fitting and testing data sets, as returned by `pre_split`.

Value

Data frame containing row and column indices of missing values or NULL if the data doesn’t contain any.

Author(s)

Christofer Bäcklin

neg_gmpa

Negative geometric mean of class specific predictive accuracy

Description

When dealing with imbalanced classification problem, i.e. where the class sizes are very different, small classes tend to be overlooked when tuning parameters by optimizing error rate. Blagus and Lusa (2013) suggested to remedy the problem by using this performance measure instead.

Usage

```r
neg_gmpa(truth, prediction, na.rm = FALSE)
```
Arguments

- **truth**: See `error_fun`.
- **prediction**: See `error_fun`.
- **na.rm**: Whether to remove missing values or not.

Value

A numeric scalar.

Author(s)

Christofer Bäcklin

References

Blagus, R., & Lusa, L. (2013). Improved shrunken centroid classifiers for high-dimensional class-imbalanced data. BMC bioinformatics, 14, 64. doi:10.1186/1471-2105-14-64

See Also

- `error_fun`

nice_axis

Plots an axis the way an axis should be plotted.

Description

Plots an axis the way an axis should be plotted.

Usage

```r
nice_axis(..., las = 1, lwd = 0, lwd.ticks = par("lwd"), lend = 2)
```

Arguments

- **...**: Sent to `axis`.
- **las**: Rotation of axis labels. Always horizontal by default.
- **lwd**: Width of the line drawn along the plot area. Omitted by default since it overlaps with `box` and causes it to look thicker where the axis is.
- **lwd.ticks**: Width of the tick lines. These are kept by default.
- **lend**: Line endings, see `par`.

Author(s)

Christofer Bäcklin
nice_box

Plots a box around a plot

Description

Plots a box around a plot

Usage

nice_box(lend = 2, ljoin = 1, ...)

Arguments

lend Line ending style, see par. Defaults to square.
ljoin Line joint style, see par. Defaults to mitre, i.e. 90 degree corners in this case.
... Sent to box.

Author(s)

Christofer Bäcklin

nice_require

Load a package and offer to install if missing

Description

If running R in interactive mode, the user is prompted for installing missing packages. If running in batch mode an error is thrown.

Usage

nice_require(pkg, reason)

Arguments

pkg Package name.
reason A status message that informs the user why the package is needed.

Value

Nothing

Author(s)

Christofer Bäcklin
Examples

nice_require("base", "is required to do anything at all")

notify_once
Print a warning message if not printed earlier

Description

To avoid flooding the user with identical warning messages, this function keeps track of which have already been shown.

Usage

notify_once(id, ..., fun = log_message)

reset_notification(id, if_top_level = TRUE)

Arguments

id Warning message id. This is used internally to refer to the message.
... Sent to warning.
fun Function to display the notification with. Typical choices are message or warning.
if_top_level If TRUE the notifications will only be reset if reset_notification was called from a top-level function call. This behaviour prevents the notifications from being reset multiple times during nested calls to functions such as fit and evaluate.

Author(s)

Christofer Bäcklin

plot.learning_curve Plot results from learning curve analysis

Description

Plot results from learning curve analysis

Usage

S3 method for class 'learning_curve'
plot(x, ..., summaries = list(mean = mean,
 '95-percentile' = function(x) quantile(x, 0.95)))
Arguments

- **x**: Results from `learning_curve`.
- **...**: Ignored, kept for S3 consistency.
- **summaries**: Named list of summary functions that can reduce a vector of performance estimates to a single quantity.

Value

A `ggplot` object.

Author(s)

Christofer Bäcklin

plot.Surv

Description

Plot Surv vector

Usage

```r
## S3 method for class 'Surv'
plot(x, y, segments = TRUE, flip = FALSE,
     legendpos = "topright", ...)
```

Arguments

- **x**: `Surv` vector.
- **y**: Y-values.
- **segments**: Whether to draw horizontal segments.
- **flip**: Flip the plot to show time on y.
- **legendpos**: Position of legend, see `legend`. Set to NA or NULL to suppress legend.
- **...**: Sent to `plot`.

Author(s)

Christofer Bäcklin
predict.model

Predict the response of unknown observations

Description

Predict the response of unknown observations

Usage

```r
## S3 method for class 'model'
predict(object, x, ..., .verbose = FALSE)
```

Arguments

- `object`: Fitted model.
- `x`: Data set with observations whose response is to be predicted.
- `...`: Sent to the procedure’s prediction function.
- `.verbose`: Whether to print an activity log.

Value

See the documentation of procedure’s method.

Author(s)

Christofer Bäcklin

See Also

`emil`, `modeling_procedure`, `evaluate`, `fit`, `tune`, `get_importance`

Examples

```r
mod <- fit("lda", x=iris[-5], y=iris$Species)
prediction <- predict(mod, iris[-5])
```
predict_caret Predict using a caret method

Description
This is not guaranteed to work with all caret methods. If it doesn’t work for a particular method, the user will need to rewrite it.

Usage
predict_caret(object, x, ...)

Arguments
- object: Fitted caret model.
- x: New data to predict the response of.
- ...: Sent to predict that forwards it to the appropriate predict function in the caret package.

Author(s)
Christofer Bäcklin

predict_cforest Predict with conditional inference forest

Description
Prediction function for models fitted with fit_cforest.

Usage
predict_cforest(object, x, at, ...)

Arguments
- object: Fitted cforest classifier, as returned by fit_cforest.
- x: New data to be used for predictions.
- at: Time point to evaluate survival curves at. If omitted it is set to the last observed time point.
- ...: Sent to treeresponse.

Value
The predicted chance of survival.
predict_coxph

Predict using Cox proportional hazards model

Usage

predict_coxph(object, x, ...)

Arguments

- **object**: Fitted model, as returned by `fit_coxph`.
- **x**: Observations whose response is to be predicted.
- **...**: Sent to `predict_coxph`.

Author(s)

Christofer Bäcklin

See Also

`fit_coxph`

predict_glmnet

Predict using generalized linear model with elastic net regularization

Description

Due to the way `glmnet` is implemented, the regularization alpha can not be modified after the model is fitted.

Usage

- `predict_glmnet(object, x, s, ...)`
- `predict_ridge_regression(object, x, s, ...)`
- `predict_lasso(object, x, s, ...)`
predict_lda

Arguments

object Fitted model.
x New data to be predicted.
s Regularization parameter lambda.
... Sent to predict_glmnet.

Value

A list with a subset of the following elements:

- prediction The response of the modeling problem, i.e. a factor for classification, problems, a numeric for regressions, and a relative risk for survival analyses.
- probability Data frame of predicted class probabilities.
- link Link function values.

Author(s)

Christofer Bäcklin

See Also

emil, fit_glmnet, importance_glmnet, modeling_procedure

Description

Wrapper for the MASS package implementation.

Usage

predict_lda(object, x, ...)

Arguments

object Fitted classifier as produced by evaluate.
x Dataset of observations to be classified.
... Sent to predict.lda.

Value

A list with elements:

- prediction: Factor of predicted class memberships.
- probability: Data frame of predicted class probabilities.
predict_lm

Description
Prediction using linear model

Usage

```r
predict_lm(object, x, ...)
```

Arguments

- `object` Fitted classifier produced by `fit_lm`.
- `x` Dataset to be predicted upon.
- `...` Sent to `predict_lm`

Value
A list with elements:

- `prediction`: Vector of predicted response.

Author(s)
Christofer Bäcklin

See Also

`emil, fit_lm, modeling_procedure`
predict_pamr

Prediction using nearest shrunken centroids.

Description

In case multiple thresholds give the same error the largest one is chosen (i.e. the one keeping the fewest features).

Usage

predict_pamr(object, x, threshold, thres_fun, ...)

Arguments

object Fitted classifier.

x Dataset of observations to be classified.

threshold Threshold to use for classification. This argument is only needed if you want to override the value set during model fitting.

thres_fun Threshold selection function. Only needed if you want to override the function set during model fitting.

... Sent to pamr.predict.

Value

A list with elements:

- prediction: Factor of predicted class memberships.
- probability: Data frame of predicted class probabilities.

Author(s)

Christofer Bäcklin

See Also

emil, fit_pamr, importance_pamr, modeling_procedure
predict_qda

Prediction using already trained classifier.

Description
Wrapper for the MASS package implementation.

Usage
```
predict_qda(object, x, ...)  
```

Arguments
- `object`: Fitted classifier as produced by `evaluate`.
- `x`: Dataset of observations to be classified.
- `...`: Sent to `predict.qda`.

Value
A list with elements:

- `prediction`: Factor of predicted class memberships.
- `probability`: Data frame of predicted class probabilities.

Author(s)
Christofer Bäcklin

See Also
- `emil`, `fit_qda`, `modeling_procedure`

predict_randomForest

Prediction using random forest.

Description
Prediction using random forest.

Usage
```
predict_randomForest(object, x, ...)  
```
predict_rpart

Description
Predict using a fitted decision tree

Usage
predict_rpart(object, x)

Arguments
object Fitted decision tree.
x New data whose response is to be predicted.

Value
Predictions. The exact form depends on the type of application (classification or regression)

Author(s)
Christofer Bäcklin

See Also
emil, fit_randomForest, importance_randomForest, modeling_procedure
pre_impute

Basic imputation

Description

This solution is optimized for the scenario that the dataset is very large but only contains missing values in a small number of columns.

Usage

pre_impute(data, fun, ...)

pre_impute_median(data)

pre_impute_mean(data)

Arguments

- **data**: Fitting and test datasets, as returned by `pre_split` or any other standard pre-processing function.
- **fun**: Function for calculating imputation values. Should take a vector and return a scalar.
- **...**: Sent to `fun`.

Value

A pair of fitting and testing datasets.

Author(s)

Christofer Bäcklin

pre_impute_knn

Nearest neighbors imputation

Description

Nearest neighbor methods need to have a distance matrix of the dataset it works on. When doing repeated model fittings on subsets of the entire dataset it is unnecessary to recalculate it every time, therefore this function requires the user to manually calculate it prior to resampling and supply it in a wrapper function.

Usage

pre_impute_knn(data, k = 0.05, distance_matrix)
Arguments

- **data**: Fitting and testing data sets, as returned by `pre_split`.
- **k**: Number of nearest neighbors to calculate mean from. Set to < 1 to specify a fraction.
- **distance_matrix**: A matrix, `dist` object or "auto". Notice that "auto" will recalculate the distance matrix in each fold, which is only meaningful in case the features of `x` vary between folds. Otherwise you are just wasting time.

Details

Features with fewer than `k` non-missing values will be removed automatically.

Author(s)

Christofer Bäcklin

Examples

```r
x <- iris[-5]
x[sample(nrow(x), 30), 3] <- NA
my.dist <- dist(x)
evaluate(modeling_procedure("lda"), x = x, y = iris$Species,
pre_process = function(...){
  pre_split(...) %>% pre_impute_knn(k = 4, distance_matrix = my.dist)
})
```

Description

The predict framework is designed to work with dataset where rows correspond to observations and columns to descriptors. PAMR wants it the other way, and also to have the fitting set response vector supplied in a list with the descriptors. This function applies a standard pre-processing function and then reformats the result to satisfy PAMR.

Usage

```r
pre_pamr(data)
```

Arguments

- **data**: Fitting and testing data sets, as returned by `pre_split`.
Details

`pre_pamr` must be run last if chained with other pre-processing functions, since it substantially reshapes the data.

Value

A list with fitting and testing sets, formatted the way `pamr` wants them.

Author(s)

Christofer Bäcklin

See Also

`emil`, `pre_process`
Arguments

- **x**: Dataset.
- **y**: Response vector.
- **fold**: A logical or numeric vector with TRUE or positive numbers for fitting observations, FALSE or 0 for test observations, and NA for observations not to be included.
- **data**: Fitting and testing data sets, as returned by `pre_split`.
- **x_fun**: Function to apply to the descriptors of the datasets (e.g. x). This function will be applied independently to the fitting and testing sets.
- **y_fun**: Function to be applied to the response of the training and test sets (independently).
- **...**: Sent to internal methods, see the code of each function.
- **feature**: The features to be removed. Can be integer, logical or character.
- **na.rm**: A logical value indicating whether NA values should be ignored.
- **center**: Whether to center the data before scaling.
- **cutoff**: See `findCorrelation`.
- **ncomponent**: Number of PCA components to use. Missing all components are used.
- **scale**: Sent to `prcomp`.

Details

When supplied to `evaluate`, pre-processing functions can be chained (i.e. executed sequentially) after an initiating call to `pre_split`. This can either be done using the pipe operator defined in the `magrittr` package or by putting all pre-processing functions in a regular list (see the examples).

Note that all transformations are defined based on the fitting data only and then applied to both fitting set and test set. It is important to not let the test data in any way be part of the model fitting, including the preprocessing, to not risk information leakage and biased results!

The imputation functions can also be used outside of `evaluate` by not supplying a fold to `pre_split`. See the code of `impute_median` for an example.

Value

A list with the following components

- **fit**: Fitting set.
- **test**: Test set.
- **feature_selection**: Logical vector indicating which features were kept (TRUE) and discarded (FALSE).
- **fold**: The fold that was used to split the data.

Author(s)

Christofer Bäcklin
See Also

emil, pre.impute_knn

Examples

Setup an example to work on
x <- as.matrix(iris[-5])
x[sample(600, 6)] <- NA
y <- iris$Species
cv <- resample("crossvalidation", y, nrepea=3, nfold=4)
procedure <- modeling_procedure("lda")

Simple dataset splitting
sets <- pre_split(x, y, cv[[1]])

Chaining using the pipe operator
sets <- pre_split(x, y, cv[[1]]) |>%
 pre_impute_median |>%
 pre_scale

Integration with `evaluate`
result <- evaluate(procedure, x, y, resample=cv,
 pre_process = function(...){
 pre_split(...) |>%
 pre_impute_median |>%
 pre_scale
 }
)

or analogously with a list
result <- evaluate(procedure, x, y, resample=cv,
 pre_process = list(pre_split, pre_impute_median, pre_scale))

Imputing without splitting
x.imputed <- impute_knn(x)

Using a whole chain without splitting
x.processed <- pre_split(x, y=NULL) |>%
 pre_impute_median |>%
 pre_scale |>%
 (function(data) datafitx)

print.preprocessed_data

Print method for pre-processed data

Description

Print method for pre-processed data
pvalue

Usage

```r
## S3 method for class 'preprocessed_data'
print(x, ...)  
```

Arguments

- `x` Pre-processed data, as produced by `pre_split`.
- `...` Ignored, kept for S3 consistency.

Value

Nothing

Author(s)

Christofer Bäcklin

pvalue
Extraction of p-value from a statistical test

Description

These calculations are written in such a way that they avoid rounding off errors that plague the `survival` and `cmprsk` packages.

Usage

```r
pvalue(x, log_p = FALSE, ...)  
```

Arguments

- `x` Test, i.e. a fitted object of a supported type.
- `log_p` Whether to return the logarithm of the p-value.
- `...` Sent to class method.

Value

p-value.

Author(s)

Christofer Bäcklin

See Also

`pvalue.crr, pvalue.survdiff, pvalue.cuminc`
pvalue.coxph

Extract p-value from a Cox proportional hazards model

Description

Based on summary.coxph.

Usage

```r
## S3 method for class 'coxph'
pvalue(x, log_p = FALSE, test = c("logrank", "wald", "likelihood"), ...)
```

Arguments

- `x`: Fitted coxph model.
- `log_p`: Whether to return the logarithm of the p-value.
- `...`: Ignored. Kept for S3 consistency.

Value

p-value.

Author(s)

Christofer Bäcklin

See Also

`pvalue`

pvalue.crr

Extracts p-value from a competing risk model

Description

Extracts p-value from a competing risk model

Usage

```r
## S3 method for class 'crr'
pvalue(x, log_p = FALSE, ...)  
```
Arguments

- **x**: Fitted `crr` model, as returned by `crr`.
- **log_p**: Whether to return the logarithm of the p-value.
- **...**: Ignored. Kept for S3 consistency.

Value

Two-sided p-value.

Author(s)

Christofer Bäcklin

See Also

- `pvalue`

Examples

```r
library(cmprsk)
time <- 1:20
event <- c(rep(0, 9), rep(2, 3), rep(1, 8))
data <- rep(0:1, each=10)
x <- crr(time, event, data)

# Compare p-values of implementations
print(x)
pvalue(x)
```

Description

This is also known as Gray’s test.

Usage

```r
## S3 method for class 'cuminc'
pvalue(x, log_p = FALSE, ...)
```

Arguments

- **x**: Fitted `cuminc` estimate.
- **log_p**: Whether to return the logarithm of the p-value.
- **...**: Ignored. Kept for S3 consistency.
pvalue.survdiff

Description

Extracts p-value from a logrank test

Usage

```r
## S3 method for class 'survdiff'
pvalue(x, log_p = FALSE, ...)
```

Arguments

- `x` : Logrank test result, as returned by `survdiff`.
- `log_p` : Whether to return the logarithm of the p-value.
- `...` : Ignored. Kept for S3 consistency.

Value

p-value.

Author(s)

Christofer Bäcklin

See Also

- `pvalue`
Description

Performance evaluation and parameter tuning use resampling methods to estimate the performance of models. These are defined by resampling schemes, which are data frames where each column corresponds to a division of the data set into mutually exclusive training and test sets. Repeated hold out and cross-validation are two methods to create such schemes.

Usage

```r
resample(method, y, ..., subset = TRUE)

resample_holdout(y, test_fraction = 0.5, nfold = 5,
                 balanced = is.factor(y), subset)

resample_crossvalidation(y, nfold = 5, nrepeat = 5,
                          balanced = is.factor(y), subset)

resample_bootstrap(y, nfold = 10, fit_fraction = if (replace) 1 else 0.632,
                   replace = TRUE, balanced = is.factor(y), subset)
```

Arguments

- `method`: The resampling method to use, e.g. "holdout" or "crossvalidation".
- `y`: Observations to be divided.
- `...`: Sent to the method specific function, e.g. "resample_holdout".
- `subset`: Which objects in `y` that are to be divided and which that are not to be part of neither set. If `subset` is a resampling scheme, a list of inner cross-validation schemes will be returned.
- `test_fraction`: Fraction of objects to hold out (0 < test_fraction < 1).
- `nfold`: Number of folds.
- `balanced`: Whether the sets should be balanced or not, i.e. if the class ratio over the sets should be kept constant (as far as possible).
- `nrepeat`: Number of fold sets to generate.
- `fit_fraction`: The size of the training set relative to the entire data set.
- `replace`: Whether to sample with replacement.

Details

Note that when setting up analyzes, the user should not call `resample_holdout` or `resample_crossvalidation` directly, as `resample` performs additional necessary processing of the scheme.

Resampling scheme can be visualized in a human digestible form with the `image` function.
Functions for generating custom resampling schemes should be implemented as follows and then called by `resample("myMethod", ...)`:
`resample_myMethod <- function(y, ..., subset)`

`y` Response vector.
`...` Method specific attributes.
`subset` Indexes of observations to be excluded for the resampling.

The function should return a list of the following elements:

- `folds` A data frame with the folds of the scheme that conforms to the description in the 'Value' section below.
- `parameter` A list with the parameters necessary to generate such a resampling scheme. These are needed when creating subschemes needed for parameter tuning, see `subresample`.

Value

A data frame defining a resampling scheme. TRUE or a positive integer codes for training set and FALSE or 0 codes for test set. Positive integers > 1 code for multiple copies of an observation in the training set. NA codes for neither training nor test set and is used to exclude observations from the analysis altogether.

Author(s)

Christofer Bäcklin

See Also

`emil`, `subresample`, `image.resample`, `index_fit`

Examples

```r
resample("holdout", 1:50, test_fraction=1/3)
resample("holdout", factor(runif(60) >= .5))
y <- factor(runif(60) >= .5)
cv <- resample("crossvalidation", y)
image(cv, main="Cross-validation scheme")
```

roc_curve
Calculate ROC curves

Description

Calculate ROC curves
Usage
roc_curve(result, y, resample, class = levels(y), statistic = "probability")

S3 method for class 'roc_curve'
as.data.table(x, ...)

S3 method for class 'roc_curve'
as.data.frame(x, ...)

S3 method for class 'roc_curve'
plot(x, ...)

Arguments

result Modeling results, as returned by `evaluate`.
y True response vector used to create result.
resample Resampling scheme used to create result.
class The class of interest to create ROC-curves for.
statistic The name of the statistic (as returned by the prediction function of the modeling procedure).
x Roc curve object, as returned by `roc_curve`.
... Sent to `as.data.frame` or `as.data.table`.

Value
A data frame of class "roc".

Author(s)
Christofer Bäcklin

Examples

Generate some noisy data
my.data <- iris

Train and evaluate some classifiers
procedure <- list(lda = modeling.procedure("lda"),
 qda = modeling.procedure("qda"))
cv <- resample("crossvalidation", iris$Species, nrep=1, nfold=3)
result <- evaluate(procedure, my.data[-5], my.data$Species, resample=cv)

Study the performance
select(result, fold=TRUE, method=TRUE, error="error")
roc <- roc_curve(result, my.data$Species, cv)
plot(roc)
select_.list

emil and dplyr integration

Description

Modeling results can be converted to tabular format and manipulated using `dplyr` and other Hadley-verse packages. This is accomplished by a class specific `select_` function that differs somewhat in syntax from the default `select_`.

Usage

```r
## S3 method for class 'list'
select_(.data, ..., .dots)

## S3 method for class 'modeling_result'
select_(.data, ..., .dots)
```

Arguments

- `.data` Modeling results, as returned by `evaluate`.
- `...` Not used, kept for consistency with `dplyr`.
- `.dots` Indices to select on each level of `.data`, i.e. the first index specifies which top level elements of `.data` to select, the second specifies second-level-elements etc. The last index must select elements that can be converted to a data frame. In case the desired bottom-level element is related to the observations of a modeling task, e.g. the predictions of a test set, you must supply the resampling scheme used to produce `.data` at the appropriate level (see the examples). The names of the `...` arguments specifies the names of the resulting data frame. Non-named arguments will be used to traverse the data but not returned. In summary the `...` indices can be on the following forms:

 - **Simple indices** Anything that can be used to subset objects, e.g. integers, logicals, or characters.
 - **Functions** A function that produces a data frame, vector or factor.
 - **Resampling schemes** The same resampling scheme that was used to produce the modeling results.

Value

A `data.frame` in long format.

Author(s)

Christofer Bäcklin

See Also

`subtree`
Examples

```r
# Produce some results
x <- iris[-5]
y <- iris$Species
names(y) <- sprintf("orchid\%3i", seq_along(y))
cv <- resample("crossvalidation", y, nfold=3, nrepeat=2)
procedures <- list(nsc = modeling_procedure("pamr"),
                   rf = modeling_procedure("randomForest"))
result <- evaluate(procedures, x, y, resample=cv)

# Get the foldwise error for the NSC method
result %>% select(fold = TRUE, "nsc", error = "error")

# Compare both methods
require(tidyr)
result %>%
  select(fold = TRUE, method = TRUE, error = "error") %>%
  spread(method, error)
result %>%
  select(fold = TRUE, method = TRUE, error = "error") %>%
  group_by(method) %>%
  summarize(mean_error = mean(error))

# Investigate the variability in estimated class 2 probability across folds
result %>%
  select(fold = cv, "nsc", "prediction", probability = function(x) x$probability[,2]) %>%
  spread(fold, probability)
```

subresample

Generate resampling subschemes

Description

A subscheme is a resampling scheme that only includes observations in the training set of a fold. This function automatically fetches the type and parameters of the prototype fold and use them to generate the subscheme.

Usage

```r
subresample(fold, y)
```

Arguments

- `fold` A resampling scheme or fold to use to define the sub scheme(s).
- `y` The observations used to create the resampling scheme. See `resample` for details.

Value

A resampling scheme.
subtree

Author(s)

Christofer Bäcklin

See Also

emil, resample

Examples

```r
cv <- resample("holdout", y=1:12, test_fraction=1/4, nfold=3)
inner.cv <- subresample(cv, y=1:12)
```

Description

Modeling results produced by `evaluate` comes in the form of nested lists. This function can be used to subset or rearrange parts of the results into vectors, matrices or data frames. Also note the `select` function that provides an extension to the `dplyr` package for data manipulation.

Usage

```r
subtree(x, i, ..., error_value, warn, simplify = TRUE)
```

Arguments

- `x` List of lists.
- `i` Indexes to extract on the first level of the tree. Can also be a function that will be applied to the downstream result of the function.
- `...` Indexes to extract on subsequent levels.
- `error_value` A template for the return value in case it is missing or invalid. Note that `NA` is a `logical` by default, causing `subtree` to also convert existing results to logicals. To get around this, please specify it as `as.numeric(NA)`, `as.character(NA)`, or similar (see the example below).
- `warn` Specifies whether warnings should be displayed (0), ignored (-1), or break execution (1). Works like the `options` parameter `warn`.
- `simplify` Whether to collapse results into vectors or matrices when possible (TRUE) or to preserve the original tree structure as a list (FALSE).

Details

This function can only be used to extract data, not to assign.

Value

A subset of the list tree.
Author(s)
Christofer Bäcklin

See Also

select, get_prediction, get_importance, get_tuning.

Examples

```r
1 <- list(A=list(a=0:2, b=3:4, c=0:23-22030),
          B=list(a=5:7, b=8:9))
subtree(1, 1:2, "b")
subtree(1, TRUE, mean, "a")

# More practical examples
x <- iris[-5]
y <- iris$Species
cv <- resample("crossvalidation", y, nfold=5, nrep=3)
procedure <- modeling_procedure("pamr")

result <- evaluate(procedure, x, y, resample=cv,
                    .save=c(importance=TRUE), .return_error=TRUE,
                    pre_process = function(...){
                      pre_split(...) %>%
                      pre_error(risk=.3) %>%
                      pre_pamr
                    })

message(sum(sapply(result, inherits, "error")),
         " folds did not complete successfully!")

# Extract error rates. Since some folds fail it will be an ugly list with both
# numeric estimates and NULL values (for the failed folds).
subtree(result, TRUE, "error")

# To put it on a more consistent form we can impute the missing error rates
# with NA to allow automatic simplification into a vector (since it requires
# all values to be on the same form, i.e. numeric()) rather than a mix
# between numeric() and NULL as in the previous example.
subtree(result, TRUE, "error", error_value=as.numeric(NA), warn=-1)

# Sum up feature importance for all classes within each fold and extract.
# Note that the lengths (= 4) must match between the folds for the automatic
# simplification to work.
subtree(result, TRUE, "importance", function(x){
  if(is.null(x)){
    rep(NA, 3)
  } else {
    colMeans(x[2:4])
  }
})

# The equivalent 'select' command would be ...
require(tidyverse)
imp <- result %>% select(fold = TRUE, "importance", function(x){
  if(is.null(x)) return(NULL)
  x %>% gather(Species, Importance, -feature)
})
require(ggplot2)
ggplot(imp, aes(x=Species, y=Importance)) +
  geom_abline(yintercept=0, slope=0, color="hotpink") +
  geom_boxplot() + facet_wrap(~feature)

---

tune

Tune parameters of modeling procedures

**Description**

These functions are rarely needed to be called manually as they are automatically called by `fit` and `evaluate` when needed.

**Usage**

tune(procedure, ..., .verbose = getOption("emil_verbose", FALSE))

is_tuned(procedure)

is_tunable(procedure)

detune(procedure)

**Arguments**

- **procedure**: Modeling procedure, or list of modeling procedures, as produced by `modeling_procedure`.
- **...**: Sent to `evaluate`.
- **.verbose**: Whether to print an activity log. Set to -1 to suppress all messages.
Description

Add vertical or horizontal lines to a plot

Usage

vlines(x, lend = 1, ...)

hlines(y, lend = 1, ...)

Arguments

x Coordinates of vertical lines.
lend Line ending style, see par.
... Sent to segments.
y Coordinates of horizontal lines.

Author(s)

Christofer Bäcklin
weighted_error_rate

Examples

plot(0:10, 0:10, type="n")
  hlines(0:4*2.5, col="#dddddd")
  points(0:10, 0:10)

Description

If different types of errors are associated with different costs a weighted error function might be
two appropriate than the standard.

Usage

weighted_error_rate(x)

Arguments

  x  Cost matrix or factor response vector.

Details

This function is not in itself an error function, but used to generate error functions. Either supply a
predefined cost matrix or a response vector for a classification problem to define it automatically.
The automatically generated cost matrix will generate an error of 0 if all predictions are correct, 1
if all predictions are incorrect and 0.5 if all predictions are the same (regardless of class, i.e. if one
class is smaller it will be given a higher misclassification cost).

Value

An error function.

Author(s)

Christofer Bäcklin
Index

as.data.frame, 61
as.data.frame.roc_curve (roc_curve), 60
as.data.table, 61
as.data.table.roc_curve (roc_curve), 60
as.modeling_procedure, 3
axis, 38
box, 38, 39
brewer.pal, 22
cforest, 6, 14, 15
cforest_control, 14, 15
coxph, 6, 15, 56
crr, 57
cuminc, 57
cv glmnet, 16
data.frame, 62
detune (tune), 66
dichotomize, 4
dist, 51
dplyr, 5
emil, 5, 8, 9, 12, 13, 15, 17–20, 23, 26–29, 31,
35, 36, 42, 44–49, 52, 54, 60, 64, 67
error_fun, 5, 6, 7, 9, 11, 12, 35, 38
error_rate, 6
error_rate (error_fun), 7
evaluate, 5, 8, 8, 10, 11, 13, 19, 23, 24, 32,
33, 35, 36, 40, 42, 45, 48, 52, 53, 61,
62, 64, 66, 67
extension, 6, 8, 10, 35
family, 16
fill, 12
findCorrelation, 53
fit, 5, 10, 13, 35, 36, 40, 42, 66, 67
fit caret, 6, 14, 35
fit cforest, 14, 43, 44
fit coxph, 15, 44
fit glmnet, 16, 16, 27, 45
fit lasso (fit glmnet), 16
fit lda, 17, 46
fit lm, 18, 46
fit pamr, 10, 18, 28, 47
fit qda, 19, 48
fit randomForest, 12, 20, 29, 49
fit ridge_regression (fit glmnet), 16
fit rpart, 21
get_color, 21
get_color.default, 22
get_importance, 5, 13, 22, 35, 36, 42, 65, 67
get_performance, 23
get_prediction, 5, 24, 65
get_response, 24
get_tuning, 5, 25, 65
ggplot, 41
glmnet, 6, 16, 44
hlines (vlines), 67
image, 26, 59
image.crossvalidation (image.resample), 26
image.resample, 26, 60
importance_glmnet, 17, 27, 45
importance lasso (importance_glmnet), 27
importance pamr, 19, 27, 47
importance_randomForest, 20, 28, 49
importance ridge_regression
(importance_glmnet), 27
impute, 6, 29
impute_knn (impute), 29
impute_median, 53
impute_median (impute), 29
indent, 30
index_fit, 30, 60
index_test (index_fit), 30
is_blank, 31
is_multi_procedure, 32
is_tunable (tune), 66
is_tuned (tune), 66

lapply, 5
lasso, 6
lda, 6, 17
Learning curve analyses, 7
learning_curve, 5, 32, 41
legend, 41
list_method, 6, 33
lm, 6, 18
log_message, 10, 30, 34
logical, 64
ls, 33
mcMap, 9
message, 34, 40
modeling_procedure, 5, 6, 8, 9, 13, 15, 17–20, 27–29, 32, 35, 44–49, 66, 67
mse, 6
mse (error_fun), 7

na_fill (fill), 12
na_index, 37
name_procedure, 36
neg_auc, 6
neg_auc (error_fun), 7
neg_gmpa, 6, 8, 37
neg_harrell_c, 6, 8
neg_harrell_c (error_fun), 7
nice_axis, 38
nice_box, 39
nice_require, 39
notify_once, 40

option, 34
options, 64

pamr, 6
pamr.cv, 19
pamr.predict, 28, 47
pamr.train, 19
par, 38, 39, 67
parLapply, 9
plot, 26, 41
plot.learning_curve, 40
plot.roc_curve (roc_curve), 60
plot.Surv, 41

prcomp, 53
pre_center, 6
pre_center (pre_process), 52
pre_convert (pre_process), 52
pre_impute, 29, 50
pre_impute_knn, 6, 29, 50, 54
pre_impute_mean (pre_impute), 50
pre_impute_median, 6, 29
pre_impute_median (pre_impute), 50
pre_pamr, 10, 51, 52
pre_pca (pre_process), 52
pre_process, 5, 6, 10–12, 29, 52
pre_remove (pre_process), 52
pre_remove_constant (pre_process), 52
pre_remove_correlated (pre_process), 52
pre_scale, 6
pre_scale (pre_process), 52
pre_split, 6, 37, 50, 51, 53, 55
pre_split (pre_process), 52
pre_transpose (pre_process), 52
predict, 5, 13, 36, 43, 67
predict.coxph, 44
predict.glmnet, 27, 45
predict.lda, 45
predict.lm, 46
predict.model, 42
predict.qda, 48
predict.caret, 43
predict.cforest, 15, 43
predict.coxph, 15, 44
predict.glmnet, 17, 27, 44
predict.lasso (predict.glmnet), 44
predict.lda, 17, 45
predict.lm, 18, 46
predict.pamr, 19, 28, 47
predict.qda, 20, 48
predict.randomForest, 20, 29, 48
predict_ridge_regression
(predict.glmnet), 44

predict_rpart, 49
print.preprocessed_data, 54
pvalue, 55, 56–58
pvalue.coxph, 56
pvalue.crr, 55, 56
pvalue.cuminc, 55, 57
pvalue.survdiff, 55, 58

qda, 6, 20
randomForest, 6, 20
resample, 5, 10–12, 19, 26, 31, 59, 63, 64
resample_bootstrap(resample), 59
resample_crossvalidation, 5
resample_crossvalidation(resample), 59
resample_holdout, 5, 19
resample_holdout(resample), 59
Resampling schemes, 7
reset_notification(notify_once), 40
ridge_regression, 6
rmse, 6
rmse(error_fun), 7
ROC-curves, 7
roc_curve, 6, 60
rpart, 6, 21
sapply, 5
segments, 67
select, 5, 64, 65
select_., 62
select_.list, 62
select_.modeling_result(select_.list), 62
sprintf, 34
subresample, 60, 63
subtree, 5, 64
summary.coxph, 56
Surv, 4, 41
survdiff, 58

train, 14
treeresponse, 43
tune, 5, 9–11, 13, 35, 36, 42, 66
vlines, 67

warning, 40
weighted_error_rate, 6, 68