Package ‘coxme’

January 27, 2015

Title Mixed Effects Cox Models.
Maintainer Terry Therneau <terry.therneau@mayo.edu>
Priority optional
Version 2.2-3
Date 2012-05-15
Depends survival (>= 2.36.14), bdsmatrix (>= 1.3), nlme, Matrix (>= 1.0), methods, R (>= 2.12.0)
Suggests mvtnorm, kinship2
LinkingTo bdsmatrix
LazyData Yes
LazyLoad Yes
Author Terry Therneau
Description Cox proportional hazards models containing Gaussian random effects, also known as frailty models.
License LGPL-2
URL http://r-forge.r-project.org
Repository CRAN
Date/Publication 2012-05-15 15:35:39
NeedsCompilation yes

R topics documented:

anova.coxme ... 2
coxme ... 3
coxme.control .. 5
coxmeFull .. 6
coxmeMlist .. 7
eortc ... 8
expand.nested ... 9
fixef.coxme ... 10
Description

Compute an analysis of deviance table for one or more Cox model fits.

Usage

```r
## S3 method for class 'coxme'
anova(object, ..., test = 'Chisq')
```

Arguments

- **object**: An object of class `coxme` or `coxph`
- **...**: Further `coxme` objects
- **test**: a character string. The appropriate test is a chisquare, all other choices result in no test being done.

Details

Specifying a single object gives a sequential analysis of deviance table for that fit. That is, the reductions in the model log-likelihood as each term of the formula is added in turn are given in as the rows of a table, plus the log-likelihoods themselves.

If more than one object is specified, the table has a row for the degrees of freedom and loglikelihood for each model. For all but the first model, the change in degrees of freedom and loglik is also given. (This only make statistical sense if the models are nested.) It is conventional to list the models from smallest to largest, but this is up to the user.

The table will optionally contain test statistics (and P values) comparing the reduction in loglik for each row.

Value

An object of class "anova" inheriting from class "data.frame".

Warning

The comparison between two or more models by anova or will only be valid if they are fitted to the same dataset. This may be a problem if there are missing values.
See Also

coxme, anova.

Examples

Testing a shrunken estimate of ECOG performance status
fit1 <- coxph(Surv(time, status) ~ age + sex, data=lung,
 subset=!is.na(ph.ecog))
fit2 <- coxme(Surv(time, status) ~ age + sex + (1|ph.ecog), lung)
anova(fit1, fit2)

coxme Fit a mixed effects Cox model

Description

Fit a Cox model containing mixed (random and fixed) effects. Assume a Gaussian distribution for the random effects.

Usage

coxme(formula, data, weights, subset, na.action, init, control,
ties = c("efron", "breslow"),
varlist, vfixed, vinit,
sparse = c(50, 0.02), x = FALSE, y = TRUE,
refine.n = 0, random, fixed, variance, ...)

Arguments

formula a two-sided formula with a survival object as the left hand side of a ~ operator and the fixed and random effects on the right.
data an optional data frame containing the variables named in the formula.
subset, weights, na.action further model specifications arguments as in lm; see there for details.
init optional initial values for the fixed effects.
control optional list of control options. See coxme.control for details.
ties method for handling exact ties in the survival time.
varlist the variance family to be used for each random term. If there are multiple terms it will be a list of variance functions. The default is coxmeFull. Alternatively it can be a list of matrices, in which case the coxmeMlist function is used.

vfixed optional named list or vector used to fix the value of one or more of the variance terms at a constant.

vinit optional named list or vector giving suggested starting values for the variance.
sparse rule for deciding sparsity of a random effect. See the main documentation for
discussion of the issue.
x if TRUE the X matrix (fixed effects) is included in the output object
y if TRUE the y variable (survival time) is included in the output object
refine.n number of samples to be used in a monte-carlo estimate of possible error in the
log-likelihood of the fitted model due to inadequacy of the Laplace approxima-
tion.
fixed, random, variance
In the preliminary version of coxme the fixed and random effects were separate
arguments. These arguments are included for backwards compatibility, but are
depreciated. The variance argument is a depreciated alias for vfixed.
...
any other arguments are passed forward to coxme.control.

Value
An object of class coxme.

Author(s)
Terry Therneau

References
S Ripatti and J Palmgren, Estimation of multivariate frailty models using penalized partial likeli-
T Therneau, P Grambsch and VS Pankratz, Penalized survival models and frailty, J Computational

See Also
coxmeFull, coxmeMlist

Examples
Not run: # Random treatment effects per institution
fit1 <- coxme(Surv(pgtime, pgstat) ~ stage + trt + (1+trt |institution),
data=colon2)
fit2 <- coxme(Surv(pgtime, pgstat) ~ stage + trt + (trt |institution) +
strata(institution), data=colon2)

End(Not run)
Shrinkage effects (equivalent to ridge regression)
temp <- with(lung, scale(cbind(age, wt.loss, meal.cal)))
rfit <- coxme(Surv(time, status) ~ ph.ecog + (temp | 1), data=lung)
coxme.control

Auxillary parameters for controlling coxme fits.

Description

Auxillary function which packages the optional parameters of a coxme fit as a single list.

Usage

coxme.control(eps = 1e-08, toler.chol = .Machine$double.eps*0.75, iter.max = 20, inner.iter = Quote(max(4, fit0$iter+1)), sparse.calc = NULL, optpar = list(method = "BFGS", control=list(reltol = 1e-5), refine.df=4, refine.detail=FALSE, refine.method="control")

Arguments

eps convergence criteria for the partial likelihood
toler.chol tolerance for the underlying Cholesky decomposition. This is used to detect singularity (redundant variables).
iter.max maximum number of iterations for the final fit
inner.iter number of iterations for the ‘inner loop’ fits, i.e. when the partial likelihood is the objective function of optim. The default is to use one more iteration than the baseline coxph model fit0. The baseline model contains only the fixed effects, and is as part of the setup by the main program. The minimum value of 4 applies most often to the case where there are no fixed effects.
sparse.calc choice of method 1 or 2 for a particular portion of the calculation. This can have an effect on run time for problems with thousands of random effects.
optpar parameters passed forward to the optim routine.
refine.df the degrees of freedom for the t-distribution used to draw random samples for the refine.n option
refine.detail this option is mostly for debugging. If TRUE then an extra component refine.detail will be present in the output which contains intermediate variables from the iterative refinement calculation.
refine.method method by which the control calculations are done. This is a current research/development question, the option will likely disappear at some future date, and users should ignore it.

Details

The main flow of coxme is to use the optim routine to find the best values for the variance parameters. For any given trial value of the variance parameters, an inner loop maximizes the partial likelihood to select the regression coefficients beta (fixed) and b (random). Within this loop cholesky decomposition is used. It is critical that the convergence criteria of inner loops be less than outer ones, thus toler.chol < eps < reltol.
Value
a list of control parameters

Author(s)
Terry Therneau

See Also

coxme

Description
This function sets up the default variance family information for a mixed effects survival model fit with coxme.

Usage
coxmeFull(collapse = FALSE)

Arguments
collapse Form for fitting a nested effect, either standard or collapsed. The latter appears to be more numerically stable (still under research).

Details
Coxme variance families create a list with three functions: initialize, generate, and wrapup, that determine how the variance structure of a fit is modeled.

Value
an object of class coxvar.

Author(s)
Terry Therneau

See Also

coxme
coxmeMlist

| coxmeMlist | Coxme variance function |

Description

This variance function accepts a list of matrices, which define a correlation structure for a coxme fit.

Usage

```r
coxmeMlist(varlist, rescale = FALSE, pdcheck = TRUE, positive = TRUE)
```

Arguments

- `varlist`: a list containing one or more matrix or bdsmatrix objects.
- `rescale`: if TRUE, each input matrix is rescaled to have a diagonal of 1. (Kinship matrices for instance are often generated with a diagonal of .5 and would be multiplied by 2).
- `pdcheck`: check each matrix to ensure that it is positive definite.
- `positive`: constrain coefficients to be positive. This may also be a vector of the same length as `varlist`.

Details

If two matrices A and B were given, this fits the variance structure $V = \sigma^2_1 A + \sigma^2_2 B$, where the variances σ^2_1 and σ^2_2 are parameters that will be optimized by coxme, treating A and B as fixed.

Value

A coxme variance family object, used by coxme in the fitting process.

Author(s)

Terry Therneau

See Also

- coxme
Description

This is a simulated survival data set for investigating random center effects. To make it realistic, the number of centers and their sizes is based on an EORTC cancer trial.

Usage

data(eortc)

Format

A data frame with 2323 observations on the following 4 variables.

y survival time
uncens 0=alive, 1=dead
center enrolling center, a number from 1 to 37
trt treatment arm, 0 or 1

Details

This is used in the test suite for the code.

Source

PhD thesis work of Jose Cortinas Abrahantes

References

Cortinas Abrahantes, Jose; Burzykowski, Tomasz (2002), A version of the EM algorithm for proportional hazards models with random effects, Published in: Lecture Notes of the ICB Seminars. p. 15-20

Examples

data(eortc)
coxme(Surv(y, uncens) ~ trt + (trt | center) + strata(center), eortc)
expand.nested

Description
Expand out the data frame for a nested factor such as (1 | a/b). This is used by the variance function routines of coxme.

Usage
expand.nested(x)

Arguments
x A data frame containing the nesting variables

Details
The initialize function of a coxme variance family is passed, as one of its arguments, a data frame G containing the grouping variables, each of which is a factor. Assume a nested factor (1 | a/b) in the model formula and a data set whose first few rows are:

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

The function will replace the second column with a variable named a/b and values of 1/1, 1/2, 2/1, etc.

Value
an updated data frame

Author(s)
Terry Therneau

See Also
coxme, coxmeMlist
Description

Extract the fixed effects, randome effects, variance of the fixed effects, or variance of the random
effects from a coxme model.

Usage

```r
def fixef(object)
def ranef(object)
def vcov(object)
def varcorr(x)
```

Arguments

- `object` an object inheriting from class `coxme` representing the result of a mixed effects Cox model.
- `x` an object inheriting from class `coxme` representing the result of a mixed effects Cox model.
- `...` some methods for this generic require additional arguments. None are used in this method.

Value

the fixed effects are a vector and the variance of the fixed effects is a matrix. The random effects will be a list with one element for each random effects terms, as will be their variance.

Author(s)

Terry Therneau

See Also

coxme, random.effects, fixed.effects

Examples

```r
rat1 <- coxme(Surv(time, status) ~ rx + (1|litter), rats)
fixed.effects(rat1)
vcov(rat1)
random.effects(rat1)[[1]]  #one value for each of the 50 litters
VarCorr(rat1)
```
Description

Extract the fixed effects, random effects, variance of the fixed effects, or variance of the random effects from a linear mixed effects model fit with \texttt{lmekin}.

Usage

\begin{verbatim}
S3 method for class 'lmekin'
fixef(object, ...)
S3 method for class 'lmekin'
ranef(object, ...)
S3 method for class 'lmekin'
vcov(object, ...)
S3 method for class 'lmekin'
VarCorr(x, ...)
\end{verbatim}

Arguments

\begin{itemize}
 \item object an object inheriting from class \texttt{lmekin} representing the result of a mixed effects model.
 \item x an object inheriting from class \texttt{lmekin} representing the result of a mixed effects model.
 \item \ldots some methods for this generic require additional arguments. None are used in this method.
\end{itemize}

Value

the fixed effects are a vector and the variance of the fixed effects is a matrix. The random effects will be a list with one element for each random effects terms, as will be their variance.

Author(s)

Terry Therneau

See Also

\texttt{lmekin, random.effects, fixed.effects}

Examples

\begin{verbatim}
efit <- lmekin(effort ~ Type + (1|Subject), ergoStool)
ranef(efit)
\end{verbatim}
lmekin

Fit a linear mixed effects model

Description

The lmekin function fits a linear mixed effects model, with random effects specified in the same structure as in the coxme function.

Usage

lmekin(formula, data, weights, subset, na.action, control, varlist, vfixed, vinit, method = c("ML", "REML"), sparse = c(1, 0), x = FALSE, y = TRUE, random, fixed, variance, ...)

Arguments

formula

a two-sided formula with the response as the left hand side of a ~ operator and the fixed and random effects on the right.

data

an optional data frame containing the variables named in the formula.

subset, weights, na.action

further model specifications arguments as in lm; see there for details.

control

optional list of control options. See coxme.control for details.

varlist

the variance family to be used for each random term. If there are multiple terms it will be a list of variance functions. The default is coxmeFull. Alternatively it can be a list of matrices, in which case the coxmeMlist function is used.

vfixed

optional named list or vector used to fix the value of one or more of the variance terms at a constant.

vinit

optional named list or vector giving suggested starting values for the variance.

method

fit using either maximum likelihood or restricted maximum likelihood

sparse

rule for deciding sparsity of a random effect. See the main documentation for discussion of the issue.

x

if TRUE the X matrix (fixed effects) is included in the output object

y

if TRUE the y variable is included in the output object

fixed, random, variance

In an earlier version of lmekin the fixed and random effects were separate arguments. These arguments are included for backwards compatibility, but are depreciated. The variance argument is a depreciated alias for vfixed.

...

any other arguments are passed forward to coxme.control.
Details

This routine was originally written as a check for the coxme routine; it uses the same code to process input arguments and form the random effects, comparison of its output with lme helped validate those operations. It is possible to specify some models in this framework that can not be fit with lme, in particular models with familial genetic effects, i.e., a kinship matrix, and hence the name of the routine. Using user-specified variance functions an even wider range of models is possible.

For simple models the specification of the random effects follows the same form as the lmer function. For any model which can be fit by both lmekin and lmer, the latter routine would normally be prefered due to a much wider selection of post-fit tools for residuals, prediction, plotting, etc.

Value

An object of class lmekin.

Author(s)

Terry Therneau

See Also

lmekin.object, coxme

Examples

```r
fit1 <- lme(effort ~ Type, data=ergoStool, random =~1|Subject,
    method="ML")
fit2 <- lmekin(effort ~ Type + (1|Subject), data=ergoStool)
```

Description

This class of object is returned by the lmekin function to represent a fittd mixed effect linear model. Objects of this class currently have methods for print and residuals.

Details

The random effects are modeled internally as \(N(0, \sigma^2 A) \) where \(\sigma^2 \) is the residual variance. The parameters of vcoef refer to \(A \). THe printed results for the model have been multiplied by \(\sigma \), removing the factorization.

The variance matrix vvar is for the transformed parameters. For the details of the transformation see the individual variance functions. The coxmeFull routine, for instance, uses a log transform for variances. Use this with caution.
Value

A list with the following components:

- `coefficients` a list with components fixed and random; the first will be NULL for a model with no fixed effects. The random component is itself a list, with an element for each random effect.
- `var` the variance matrix of the fixed effects
- `vcoef` the parameters of the variance matrix of the random effects.
- `vvar` variance matrix for `vcoef`
- `residuals` vector of residuals from the fit
- `method` either "ML" or "REML"
- `loglik` the log-likelihood for the fitted model
- `sigma` the estimated residual error
- `n` number of observations used
- `call` a copy of the call
- `na.action` this will be present if any observations were removed due to missing values

Author(s)

Terry Therneau

See Also

`lmekin, coxmeFull, coxmeMlist`

print.coxme

Print method for a coxme fit.

Description

Print out the result of a coxme fit.

Usage

```r
## S3 method for class 'coxme'
print(x, rcoef=FALSE, digits = options()$digits, ...)
```

Arguments

- `x` an object of class coxme, from the fit of a mixed effects survival model.
- `rcoef` print the random (penalized) coefficients, as well as the fixed ones.
- `digits` number of significant digits to print
- `...` optional arguments
print.lmekin

Author(s)
Terry Therneau

See Also
coxme

print.lmekin

Print function for lmekin

Description
Print out the result of an lmekin fit.

Usage
```r
## S3 method for class 'lmekin'
print(x, ...)
```

Arguments
- **x** an object of class lmekin.
- **...** generic arguments to print, unused.

Details
The print function current has no options. This should one day improve.

Author(s)
Terry Therneau

See Also
lmekin
Index

+ Topic **datasets**
 - eortc, 8
+ Topic **models**
 - anova.coxme, 2
 - fixef.coxme, 10
 - fixef.lmekin, 11
 - lmekin, 12
 - lmekin.object, 13
 - print.lmekin, 15
+ Topic **regression**
 - anova.coxme, 2
+ Topic **survival**
 - anova.coxme, 2
 - coxme, 3
 - coxme.control, 5
 - coxmeFull, 6
 - coxmeMlist, 7
 - expand.nested, 9
 - fixef.coxme, 10
 - print.coxme, 14

anova, 3
anova.coxme, 2
anova.coxmelist (anova.coxme), 2

coxme, 3, 3, 6, 7, 9, 10, 13, 15
coxme.control, 5
coxmeFull, 4, 6, 14
coxmeMlist, 4, 7, 9, 14

eortc, 8
expand.nested, 9

fixed.effects, 10, 11
fixef.coxme, 10
fixef.lmekin, 11

lmekin, 11, 12, 14, 15
lmekin.object, 13, 13
print.coxme, 14

print.lmekin, 15

random.effects, 10, 11
ranef.coxme (fixef.coxme), 10
ranef.lmekin (fixef.lmekin), 11

VarCorr.coxme (fixef.coxme), 10
VarCorr.lmekin (fixef.lmekin), 11
vcov.coxme (fixef.coxme), 10
vcov.lmekin (fixef.lmekin), 11