Package ‘MALDIquant’

August 11, 2014

Version 1.11

Date 2014-08-11

Title Quantitative Analysis of Mass Spectrometry Data

Depends R (>= 3.0.0), methods

Suggests knitr, testthat (>= 0.8)

Description MALDIquant provides a complete analysis pipeline for MALDI-TOF and other mass spectrometry data. Distinctive features include baseline subtraction methods such as TopHat or SNIP, peak alignment using warping functions, handling of replicated measurements as well as allowing spectra with different resolutions.

License GPL (>= 3)

URL http://strimmerlab.org/software/maldiquant/
 https://github.com/sgibb/MALDIquant/

BugReports https://github.com/sgibb/MALDIquant/issues/

LazyLoad yes

VignetteBuilder knitr

Author Sebastian Gibb [aut, cre], Korbinian Strimmer [ths]

Maintainer Sebastian Gibb <mail@sebastiangibb.de>

NeedsCompilation yes

Repository CRAN

Date/Publication 2014-08-11 21:39:21
MALDIquant-package

R topics documented:

MALDIquant-package .. 2
AbstractMassObject-class .. 3
alignSpectra ... 5
averageMassSpectra .. 7
binPeaks .. 8
calibrateIntensity-methods ... 10
createMassPeaks ... 11
createMassSpectrum ... 12
detectPeaks-methods ... 13
determineWarpingFunctions ... 14
estimateBaseline-methods ... 17
estimateNoise-methods ... 20
fiedler2009subset .. 22
filterPeaks ... 23
findEmptyMassObjects ... 25
intensityMatrix ... 27
isMassSpectrum ... 28
isMassSpectrumList ... 29
labelPeaks-methods ... 30
MassPeaks-class ... 32
MassSpectrum-class ... 33
mergeMassPeaks ... 34
plot-methods ... 36
plotImsSlice ... 37
referencePeaks ... 38
removeBaseline-methods .. 39
smoothIntensity-methods ... 40
transformIntensity-methods ... 42
trim-methods .. 43
warpMassSpectra ... 44

Index 46

MALDIquant-package Quantitative Analysis of Mass Spectrometry Data

Description

MALDIquant provides a complete analysis pipeline for MALDI-TOF and other 2-dimensional mass spectrometry data. Distinctive features include baseline subtraction methods such as TopHat or SNIP, peak alignment using warping functions, handling of replicated measurements as well as allowing spectra with different resolutions.

For a first overview run demo("MALDIquant").

Details
Main classes:

- **MassPeaks**: Represents a peak list of a single spectrum.
- **MassSpectrum**: Represents a single spectrum.

The accompanying website (see below) provides example R scripts to illustrate the functionality of this package, too.

Author(s)

Sebastian Gibb

Maintainer: Sebastian Gibb <mail@sebastiangibb.de>

References

Website: http://strimmerlab.org/software/maldiquant/

See Also

- Introduction: vignette("MALDIquant", package="MALDIquant").
- Run demo files: demo("MALDIquant").
- List all available manual pages: library(help="MALDIquant").

AbstractMassObject-class

Class "AbstractMassObject"

Description

AbstractMassObject is an abstract (means pure virtual) class. It is the parent class of *MassSpectrum* and *MassPeaks*. It shouldn’t create or handle by the user because it is for internal use only.

Derived classes

MassPeaks, MassSpectrum
AbstractMassObject-class

Slots

mass: numeric, mass or mass-to-charge ratio
intensity: numeric, intensities for measured mass-to-charge ratios
metadata: list, some metadata to describe the spectrum

Methods

[signature(x = "AbstractMassObject", i = "numeric"): Extracts a range of an AbstractMassObject object and returns a new one.

as.matrix signature(x = "AbstractMassObject"): Converts an AbstractMassObject object to a matrix with 2 columns (mass, intensity).

intensity signature(object = "AbstractMassObject"): Accessor function for slot intensity.

intensity<- signature(object = "AbstractMassObject", value = "numeric") Replacement function for slot intensity.

isEmpty signature(object = "AbstractMassObject"): Returns TRUE if length of intensity is 0 or all intensity values are 0.

length signature(x = "AbstractMassObject"): Returns length of slot intensity.

lines signature(x = "AbstractMassObject"): Extented function for adding AbstractMassObject object as a line to a specific plot. See lines for details.

mass signature(object = "AbstractMassObject"): Accessor function for slot mass.

mass<- signature(object = "AbstractMassObject", value = "numeric") Replacement function for slot mass.

metaData signature(object = "AbstractMassObject"): Accessor function for slot metaData.

metaData<- signature(object = "AbstractMassObject"): Replacement function for slot metaData.

points signature(x = "AbstractMassObject"): Extented function for adding AbstractMassObject object as points to a specific plot. See points for details.

Author(s)

Sebastian Gibb <mail@sebastiangibb.de>

See Also

Website: http://strimmerlab.org/software/maldiquant/
Examples

```
## load package
library("MALDIquant")

## create example spectrum
s <- createMassSpectrum(mass=1:10, intensity=11:20, 
                        metaData=list(name="Example Spectrum"))

## get intensity
intensity(s)

## get mass
mass(s)

## get metaData
metaData(s)

## replace metaData
metaData(s) <- list(name="Spectrum")

## trim spectrum
trim(s, c(2, 9))

## select a range
s[3:6]
```

alignSpectra

alignSpectra

Align MassSpectrum objects.

Description

This function aligns a list of MassSpectrum objects (spectra alignment is also known as warping/phase correction).

Usage

```
alignSpectra(spectra, halfWindowSize=20, noiseMethod="MAD", SNR=2, 
             reference, tolerance=0.002, warpingMethod="lowess")
```

Arguments

- **spectra** list, list of MassSpectrum objects.
- **halfWindowSize** numeric, half window size; see detectPeaks.
- **noiseMethod** a noise estimation method; see detectPeaks.
- **SNR** single numeric value. SNR is an abbreviation for signal-to-noise-ratio; see detectPeaks.
- **reference** MassPeaks, reference object to which the samples (1) should be aligned. If missing referencePeaks is used; see determineWarpingFunctions.
alignSpectra

tolerance double, maximal deviation of a peak position (mass) to be considered as identical; see determineWarpingFunctions.
warpingMethod used basic warping function; see determineWarpingFunctions.

Details
alignSpectra is a wrapper function around detectPeaks, determineWarpingFunctions and warpMassSpectra. Please call these functions manually if you need finer control (e.g. plotting of warping functions).

Value
Returns a list of aligned MassSpectrum objects.

Author(s)
Sebastian Gibb <mail@sebastiangibb.de>

See Also
demo("warping")
Website: http://strimmerlab.org/software/maldiquant/

Examples
load package
library("MALDIquant")

load example data
data("fiedler2009subset", package="MALDIquant")

running typical workflow

transform intensities
spectra <- transformIntensity(fiedler2009subset, method="sqrt")

smooth spectra
spectra <- smoothIntensity(spectra, method="MovingAverage")

baseline correction
spectra <- removeBaseline(spectra)

align spectra
spectra <- alignSpectra(spectra)
averageMassSpectra

Averages MassSpectrum objects.

Description

This function averages MassSpectrum objects.

Usage

averageMassSpectra(l, labels, method=c("mean", "median", "sum"))

Arguments

- `l` list, list of MassSpectrum objects.
- `labels` list, list of factors (one for each MassSpectrum object) to do groupwise averaging.
- `method` used aggregation function.

Details

The mass of the averaged MassSpectrum object will be the mass of the first non-empty MassSpectrum object (of each group).

Value

Returns a single (no labels given) or a list (labels given) of averaged MassSpectrum objects.

Author(s)

Sebastian Gibb <mail@sebastiangibb.de>

See Also

MassSpectrum, mergeMassPeaks

Website: http://strimmerlab.org/software/maldiquant/

Examples

```r
## load package
library("MALDIquant")

## create four MassSpectrum objects and add them to a list
s <- list(createMassSpectrum(mass=1:5, intensity=1:5),
          createMassSpectrum(mass=1:5, intensity=1:5),
          createMassSpectrum(mass=1:5, intensity=6:10),
          createMassSpectrum(mass=1:5, intensity=6:10))

## average all four MassSpectrum objects into a single new one
```
Description

This function looks for similar peaks (mass) across MassPeaks objects and equalizes their mass.

Usage

```r
binPeaks(l, method=c("strict", "relaxed"), tolerance=0.002)
```

Arguments

- `l`: list, list of MassPeaks objects.
- `method`: bin creation rule. "strict" creates bins never containing two or more peaks of the same sample. "relaxed" allows multiple peaks of the same sample in one bin.
- `tolerance`: double, maximal deviation of a peak position (mass) to be considered as identical.

Details

The algorithm is based on the following workflow:

1. Put all mass in a sorted vector.
2. Calculate differences between each neighbor.
3. Divide the mass vector at the largest gap (largest difference) and form a left and a right bin.
4. Rerun step 3 for the left and/or the right bin if they don’t fulfill the following criteria:
 - All peaks in a bin are near to the mean (abs(mass-meanMass)/meanMass < tolerance).
 - method == "strict": The bin doesn’t contain two or more peaks of the same sample.
 - method == "relaxed": The new peak positions (mass value) are the mean mass of a bin.
 - method == "relaxed": The new peak positions for the highest peaks of each sample in a bin are generated by the mean mass of this peaks. The lower peaks are not changed.

Value

Returns a list of mass adjusted MassPeaks objects.
binPeaks

Author(s)
Sebastian Gibb <mail@sebastiangibb.de>

See Also

intensityMatrix, MassPeaks

Website: http://strimmerlab.org/software/maldiQuant/

Examples

```r
## load package
library("MALDIquant")

## create two MassPeaks objects
p <- list(createMassPeaks(mass=seq(100, 500, 100), intensity=1:5),
           createMassPeaks(mass=c(seq(100.2, 300.2, 100), 305), intensity=1:4))

## only keep peaks which occur in all MassPeaks objects
binnedPeaks <- binPeaks(p, tolerance=0.002)

## compare result
im1 <- intensityMatrix(p)
im2 <- intensityMatrix(binnedPeaks)

all(dim(im1) == c(2, 9)) # TRUE
all(dim(im2) == c(2, 6)) # TRUE

show(im2)

## increase tolerance
binnedPeaks <- binPeaks(p, tolerance=0.1)
im3 <- intensityMatrix(binnedPeaks)

all(dim(im3) == c(2, 5)) # TRUE

show(im3)

## differences between "strict" and "relaxed"
p <- c(createMassPeaks(mass=c(1, 1.01, 3), intensity=c(2, 1, 1)),
       createMassPeaks(mass=c(0.99, 3), intensity=rep(1, 2)),
       createMassPeaks(mass=c(1.02, 3), intensity=rep(1, 2)))

intensityMatrix(binPeaks(p, method="strict", tolerance=0.05))
intensityMatrix(binPeaks(p, method="relaxed", tolerance=0.05))
```
Calibrates intensities of a MassSpectrum object.

Description

This function calibrates (normalize) intensities of MassSpectrum objects.

Usage

```r
## S4 method for signature 'MassSpectrum'
calibrateIntensity(object,method=c("TIC", "PQN", "median"), ...)
```

Arguments

- `object`: MassSpectrum object or a list of MassSpectrum objects.
- `method`: the calibration method to be used. This should be one of "TIC", "PQN" or "median". See 'Details' section.
- `...`: arguments to be passed to other functions (unneeded until now).

Details

A number of different calibration methods are provided:

"TIC": The TIC (Total Ion Current) of a MassSpectrum object is set to one.

"PQN": The PQN (Probabilistic Quotient Normalization) is described in Dieterle et al 2006. calibrateIntensity uses the following algorithm:

1. Calibrate all spectra using the "TIC" calibration.
2. Calculate a median reference spectrum.
3. Calculate the quotients of all intensities of the spectra with those of the reference spectrum.
4. Calculate the median of these quotients for each spectrum.
5. Divide all intensities of each spectrum by its median of quotients.

"Median": The median of intensities of a MassSpectrum object is set to one.

Value

Returns a modified MassSpectrum object with calibrated intensities.

Author(s)

Sebastian Gibb <mail@sebastiangibb.de>
createMassPeaks

References

See Also
MassSpectrum
Website: http://strimmerlab.org/software/maldiquant/

Examples

```r
## load package
library("MALDIquant")

## load example data
data("fiedler2009subset", package="MALDIquant")

## baseline correction
b <- removeBaseline(fiedler2009subset)

## calibrate intensity values
calibrateIntensity(b, method="TIC")
```

createMassPeaks
Creates a MassPeaks object.

Description
This function creates a MassPeaks object. Normally it shouldn’t called by the user. Try `detectPeaks,MassSpectrum-method` instead.

Usage
```
createMassPeaks(mass, intensity, snr=as.double(rep(NA, length(intensity))),
metaData=list())
```

Arguments
- **mass** vector, mass or mass-to-charge ratio.
- **intensity** vector, intensities for measured mass-to-charge ratios.
- **snr** vector, signal-to-noise ratios for intensity values.
- **metaData** list, some metadata to describe the peaks.

Value
Returns a MassPeaks object.
createMassSpectrum

Author(s)
Sebastian Gibb <mail@sebastiangibb.de>

See Also
detectPeaks, MassSpectrum-method, MassPeaks
Website: http://strimmerlab.org/software/maldiQuant/

Examples

```r
## load package
library("MALDIquant")

## create a MassPeaks object by default constructor
s <- createMassPeaks(mass=1:100, intensity=rnorm(100)^2,
                      metaData=list(name="example peaks"))

## show some details
s
```

createMassSpectrum Creates a MassSpectrum object.

Description
This function creates a MassSpectrum object.

Usage

createMassSpectrum(mass, intensity, metaData=list())

Arguments

- `mass` vector, mass or mass-to-charge ratio
- `intensity` vector, intensities for measured mass-to-charge ratios
- `metaData` list, some metadata to describe the spectrum

Value

Returns a MassSpectrum object.

Author(s)
Sebastian Gibb <mail@sebastiangibb.de>
detectPeaks-methods

See Also

MassSpectrum

Website: http://strimmerlab.org/software/maldiquant/

Examples

```r
## load package
library("MALDIquant")

## create a MassSpectrum object by default constructor
s <- createMassSpectrum(mass=1:100, intensity=rnorm(100)^2,
                         metaData=list(name="example spectrum"))

## show some details
s
```

detectPeaks-methods Detects peaks in a MassSpectrum object.

Description

This method looks for peaks in mass spectrometry data (represented by a MassSpectrum object). A peak is a local maximum above a user defined noise threshold.

Usage

```r
## S4 method for signature 'MassSpectrum'
detectPeaks(object, halfWindowSize=20, method=c("MAD", "SuperSmoother"), SNR=2, ...)
```

Arguments

- **object** MassSpectrum object or a list of MassSpectrum objects.
- **halfWindowSize** numeric, half window size. The resulting window reaches from mass[currentIndex-halfWindowSize] to mass[currentIndex+halfWindowSize]. A local maximum have to be the highest one in the given window to be recognized as peak.
- **method** a noise estimation function; see estimateNoise,MassSpectrum-method.
- **SNR** single numeric value. SNR is an abbreviation for signal-to-noise-ratio. A local maximum has to be higher than SNR*noise to be recognize as peak.
- **...** arguments to be passed to estimateNoise,MassSpectrum-method.

Value

Returns a MassPeaks object.
determineWarpingFunctions

Author(s)

Sebastian Gibb <mail@sebastiangibb.de>

See Also

MassPeaks, MassSpectrum, estimateNoise, MassSpectrum-method
demo("peaks")
Website: http://strimmerlab.org/software/maldiquant/

Examples

```r
## load package
library("MALDIquant")

## load example data
data("fiedler2009subset", package="MALDIquant")

## choose only the first mass spectrum
s <- fiedler2009subset[[1]]

## transform intensities
s <- transformIntensity(s, method="sqrt")

## smoothing spectrum
s <- smoothIntensity(s, method="MovingAverage")

## remove baseline
s <- removeBaseline(s)

## plot spectrum
plot(s)

## call peak detection
p <- detectPeaks(s)

## draw peaks on the plot
points(p)

## label 10 highest peaks
top10 <- intensity(p) %in% sort(intensity(p), decreasing=TRUE)[1:10]
labelPeaks(p, index=top10)
```

determineWarpingFunctions

* Determine warping functions of MassPeaks objects.*
determineWarpingFunctions

Description

This function determines a warping function for a list of *AbstractMassObject* objects (warping is also known as *phase correction/spectra alignment*).

Usage

```r
determineWarpingFunctions(l, reference, tolerance=0.002,
    method=c("lowess", "linear", "quadratic", "cubic"),
    plot=FALSE, plotInteractive=FALSE, ...)
```

Arguments

- `l`: list, list of *MassPeaks* objects.
- `reference`: *MassPeaks*, reference object to which the samples (`l`) should be aligned. If missing `referencePeaks` is used.
- `tolerance`: double, maximal deviation of a peak position (mass) to be considered as identical.
- `method`: used basic warping function.
- `plot`: logical, if TRUE a warping plot is drawn for each sample.
- `plotInteractive`: logical, if FALSE a non-interactive device (e.g. pdf) is used for warping plots.
- `...`: arguments to be passed to `warpingFunction`

Details

`warpingFunction`: `determineWarpingFunctions` estimates a warping function to overcome the difference between mass in reference and in the current sample. To calculate the differences each reference peak would match with the highest sample peak in the nearer neighborhood (defined by mass of reference peak*tolerance).

`plotInteractive`: If `plot` is TRUE a lot of output is created (each sample in `l` gets its own plot). That's why an non-interactive devices is recommended:

```r
## create a device
pdf()
## calculate warping functions
w <- determineWarpingFunctions(p, plot=TRUE)
## close device
dev.off()
```

Value

Returns a list of individual warping functions.

Author(s)

Sebastian Gibb <mail@sebastiangibb.de>
determineWarpingFunctions

See Also

referencePeaks, warpMassPeaks, warpMassSpectra, MassPeaks
demo("warping")

Website: http://strimmerlab.org/software/maldiquant/

Examples

load package
library("MALDIquant")

create a reference MassPeaks object
r <- createMassPeaks(mass=1:5, intensity=1:5)

create test samples
p <- list(createMassPeaks(mass=((1:5)*1.01), intensity=1:5),
 createMassPeaks(mass=((1:5)*0.99), intensity=1:5))

create an interactive device with 2 rows
par(mfrow=c(2, 1))

calculate warping function
(using a linear function as basic warping function)
and show warping plot
w <- determineWarpingFunctions(p, tolerance=0.02, method="linear",
 plot=TRUE, plotInteractive=TRUE)
par(mfrow=c(1, 1))

w contains the individual warping functions
warpedPeaks <- warpMassPeaks(p, w)

compare results
all(mass(r) == mass(warpedPeaks[[1]])) # TRUE
all(mass(r) == mass(warpedPeaks[[2]])) # TRUE

realistic example

load example data
data("fiedler2009subset", package="MALDIquant")

running typical workflow

use only four spectra of the subset
spectra <- fiedler2009subset[1:4]

transform intensities
spectra <- transformIntensity(spectra, method="sqrt")

smooth spectra
spectra <- smoothIntensity(spectra, method="MovingAverage")
baseline correction
spectra <- removeBaseline(spectra)

detect peaks
peaks <- detectPeaks(spectra)

create an interactive device with 2 rows
par(mfrow=c(4, 1))
calculate warping functions (using LOESS based basic function [default])
w <- determineWarpingFunctions(peaks, plot=TRUE, plotInteractive=TRUE)
par(mfrow=c(1, 1))

realistic example with user defined reference/calibration peaks

use the workflow above for fiedler2009subset

create reference peaks
refPeaks <- createMassPeaks(mass=c(1207, 1264, 1351, 1466, 1616, 2769, 2932,
 3191, 3262, 4091, 4209, 5904, 7762, 9285),
 intensity=rep(1, 14))

create an interactive device with 2 rows
par(mfrow=c(4, 1))
calculate warping functions (using a quadratic function as basic function)
w <- determineWarpingFunctions(peaks, reference=refPeaks, method="quadratic",
 plot=TRUE, plotInteractive=TRUE)
par(mfrow=c(1, 1))

estimateBaseline-methods

Estimates the baseline of a MassSpectrum object.

Description

This method estimates the baseline of mass spectrometry data (represented by a MassSpectrum object).

Usage

```r
## S4 method for signature 'MassSpectrum'
estimateBaseline(object, 
    method=c("SNIP", "TopHat", "ConvexHull", "median"), 
    ...)```
estimateBaseline-methods

Arguments

object MassSpectrum object
method used baseline estimation method, one of "SNIP", "TopHat", "ConvexHull" or "median".
... arguments to be passed to method

Details

"SNIP": This baseline estimation is based on the Statistics-sensitive Non-linear Iterative Peak-clipping algorithm (SNIP) described in Ryan et al 1988.

The algorithm based on the following equation:

\[ y_i(k) = \min\{y_i, \frac{(y_{i-k} + y_{i+k})}{2}\} \]

It has two additional arguments namely iterations and decreasing. iterations controls the window size (k; similar to halfWindowSize in "TopHat", "Median") of the algorithm. The resulting window reaches from mass[cur_index-iterations] to mass[cur_index+iterations].

decreasing: In Morhac 2009 a decreasing clipping window is suggested to get a smoother baseline. For decreasing = TRUE (decreasing = FALSE) k=iterations is decreased (increased) by one until zero (iterations) is reached.

"TopHat": This algorithm applies a moving minimum (erosion filter) and subsequently a moving maximum (dilation filter) filter on the intensity values. The implementation is based on van Herk 1996. It has an additional halfWindowSize argument determining the half size of the moving window for the TopHat filter. The resulting window reaches from mass[cur_index-halfWindowSize] to mass[cur_index+halfWindowSize].

"ConvexHull": The baseline estimation is based on a convex hull constructed below the spectrum.

"median": This baseline estimation uses a moving median. It is based on runmed. The additional argument halfWindowSize corresponds to the k argument in runmed (k = 2 * halfWindowSize + 1) and controls the half size of the moving window. The resulting window reaches from mass[cur_index-halfWindowSize] to mass[cur_index+halfWindowSize].

Value

Returns a two column matrix (first column: mass, second column: intensity) of the estimated baseline.

Author(s)

Sebastian Gibb <mail@sebastiangibb.de>

References

"SNIP":


"TopHat":


"ConvexHull":

See Also
MassSpectrum, removeBaseline, MassSpectrum-method
demo("baseline")
Website: http://strimmerlab.org/software/maldiquant/

Examples

```r
load package
library("MALDIquant")

load example data
data("feldler2009subset", package="MALDIquant")

choose only the first mass spectrum
s <- feldler2009subset[[1]]

SNIP
plot(s)

estimate baseline
b <- estimateBaseline(s, method="SNIP", iterations=100)

draw baseline on the plot
lines(b, col="red")

TopHat
plot(s)

estimate baseline (try different parameters)
b1 <- estimateBaseline(s, method="TopHat", halfWindowSize=75)
b2 <- estimateBaseline(s, method="TopHat", halfWindowSize=150)
```
## estimateNoise-methods

Estimates the noise of a MassSpectrum object.

### Description

This method estimates the noise of mass spectrometry data (represented by a `MassSpectrum` object).

### Usage

```r
S4 method for signature 'MassSpectrum'
estimateNoise(object, method=c("MAD", "SuperSmoother"), ...)
```

### Arguments

- `object`  
  MassSpectrum object
- `method`  
  used noise estimation method, one of "MAD" or "SuperSmoother".
- `...`  
  arguments to be passed to method.
Details

"MAD": This function estimates the noise of mass spectrometry data by calculating the median absolute deviation, see also mad.

"SuperSmoother": This function estimates the noise of mass spectrometry data using Friedman’s Super Smoother. Please refer supsmu for details and additional arguments.

Value

Returns a two column matrix (first column: mass, second column: intensity) of the estimated noise.

Author(s)

Sebastian Gibb <mail@sebastiangibb.de>

See Also

MassSpectrum, detectPeaks, MassSpectrum-method, mad, supsmu

Website: http://strimmerlab.org/software/maldi/quant/

Examples

```r
load package
library("MALDIquant")

load example data
data("fiedler2009subset", package="MALDIquant")

choose only the first mass spectrum
s <- fiedler2009subset[[1]]

transform intensities
s <- transformIntensity(s, method="sqrt")

remove baseline
s <- removeBaseline(s)

plot spectrum
plot(s)

estimate noise
nm <- estimateNoise(s, method="MAD")
nss <- estimateNoise(s, method="SuperSmoother")

draw noise on the plot
lines(nm, col=2)
lines(nss, col=4)

draw legend
legend(x="topright", lwd=1, legend=c("MAD", "SuperSmoother"),
 col=c(2, 4))
```
Description

This dataset contains 16 example mass spectra. It is used to demonstrate the usage of MALDIquant-package.

Usage

fiedler2009subset

Format

A list containing 16 MassSpectrum-class objects.

Details

The dataset is a subset of data used in Fiedler et al 2009. It contains spectra of 8 different patients (each one has 2 technical replicates).

<table>
<thead>
<tr>
<th>list_index</th>
<th>laboratory</th>
<th>patient_id</th>
<th>sex</th>
<th>age</th>
<th>type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Leipzig</td>
<td>LC77</td>
<td>male</td>
<td>37</td>
<td>control</td>
</tr>
<tr>
<td>2</td>
<td>Leipzig</td>
<td>LC77</td>
<td>male</td>
<td>37</td>
<td>control</td>
</tr>
<tr>
<td>3</td>
<td>Leipzig</td>
<td>LC213</td>
<td>female</td>
<td>51</td>
<td>control</td>
</tr>
<tr>
<td>4</td>
<td>Leipzig</td>
<td>LC213</td>
<td>female</td>
<td>51</td>
<td>control</td>
</tr>
<tr>
<td>5</td>
<td>Leipzig</td>
<td>LT178</td>
<td>male</td>
<td>58</td>
<td>cancer</td>
</tr>
<tr>
<td>6</td>
<td>Leipzig</td>
<td>LT178</td>
<td>male</td>
<td>58</td>
<td>cancer</td>
</tr>
<tr>
<td>7</td>
<td>Leipzig</td>
<td>LT157</td>
<td>male</td>
<td>60</td>
<td>cancer</td>
</tr>
<tr>
<td>8</td>
<td>Leipzig</td>
<td>LT157</td>
<td>male</td>
<td>60</td>
<td>cancer</td>
</tr>
<tr>
<td>9</td>
<td>Heidelberg</td>
<td>HC49</td>
<td>male</td>
<td>43</td>
<td>control</td>
</tr>
<tr>
<td>10</td>
<td>Heidelberg</td>
<td>HC49</td>
<td>male</td>
<td>43</td>
<td>control</td>
</tr>
<tr>
<td>11</td>
<td>Heidelberg</td>
<td>HC54</td>
<td>female</td>
<td>71</td>
<td>control</td>
</tr>
<tr>
<td>12</td>
<td>Heidelberg</td>
<td>HC54</td>
<td>female</td>
<td>71</td>
<td>control</td>
</tr>
<tr>
<td>13</td>
<td>Heidelberg</td>
<td>HT151</td>
<td>male</td>
<td>53</td>
<td>cancer</td>
</tr>
<tr>
<td>14</td>
<td>Heidelberg</td>
<td>HT151</td>
<td>male</td>
<td>53</td>
<td>cancer</td>
</tr>
<tr>
<td>15</td>
<td>Heidelberg</td>
<td>HT429</td>
<td>female</td>
<td>58</td>
<td>cancer</td>
</tr>
<tr>
<td>16</td>
<td>Heidelberg</td>
<td>HT429</td>
<td>female</td>
<td>58</td>
<td>cancer</td>
</tr>
</tbody>
</table>

References

“Serum Peptidome Profiling Revealed Platelet Factor 4 as a Potential Discriminating Peptide Associated with Pancreatic Cancer”
ISSN 1557-3265; doi:10.1158/1078-0432.CCR-08-2701
filterPeaks

Removes less frequent peaks.

Description

This function removes infrequently occurring peaks in a list of MassPeaks objects.

Usage

filterPeaks(l, minFrequency, minNumber, labels, mergeWhitelists=FALSE)

Arguments

- `l`: list, list of MassPeaks objects.
- `minFrequency`: double, remove all peaks which occur in less than `minFrequency*length(l)` MassPeaks objects. It is a relative threshold.
- `minNumber`: double, remove all peaks which occur in less than `minNumber` MassPeaks objects. It is an absolute threshold.
- `labels`: factor, (one for each MassPeaks object) to do groupwise filtering. The levels of the factor label define the groups. If not specified a single group is assumed.
- `mergeWhitelists`: logical, if FALSE the filtering criteria are applied groupwise. If TRUE peaks that survive the filtering in one group (level of labels) these peaks are also kept in other groups even if their frequencies are below `minFrequency`.

Details

For mergeWhitelists=FALSE the filtering uses a separate peak whitelist for each group specified by labels, and is done independently in each group. For mergeWhitelists=TRUE the peak whitelists are combined, which means that peaks that occur frequently in at least one group are also kept in all other groups.

If both `minFrequency` and `minNumber` arguments are specified the more stringent threshold is used.

Value

Returns a list of filtered MassPeaks objects.

Author(s)

Sebastian Gibb <mail@sebastiangibb.de>
See Also

`intensityMatrix, MassPeaks`

Website: [http://strimmerlab.org/software/maldiQuant/](http://strimmerlab.org/software/maldiQuant/)

Examples

```r
load package
library("MALDIquant")

create four MassPeaks objects and add them to the list
p <- list(createMassPeaks(mass=1:2, intensity=1:2),
 createMassPeaks(mass=1:3, intensity=1:3),
 createMassPeaks(mass=1:4, intensity=1:4),
 createMassPeaks(mass=1:5, intensity=1:5))

only keep peaks which occur in all MassPeaks objects
filteredPeaks <- filterPeaks(p, minFrequency=1)

compare result
intensities <- intensityMatrix(filteredPeaks)

peaks at mass 3, 4, 5 are removed
all(dim(intensities) == c(4, 2)) # TRUE
all(intensities[,1] == 1) # TRUE
all(intensities[,2] == 2) # TRUE

only keep peaks which occur in all MassPeaks objects in a group
(e.g. useful for technical replicates)
groups <- factor(c("a", "a", "b", "b"), levels=c("a", "b"))
filteredPeaks <- filterPeaks(p, minFrequency=1, labels=groups)

peaks at mass 3 were removed in group "a"
filteredPeaks[groups == "a"]

peaks at mass 5 were removed in group "b"
filteredPeaks[groups == "b"]

only keep peaks which occur at least twice in a group
(e.g. useful for technical replicates)
groups <- factor(c("a", "a", "b", "b", "b"), levels=c("a", "b"))
filteredPeaks <- filterPeaks(c(p, p[[3]]), minNumber=2, labels=groups)

peaks at mass 3 were removed in group "a"
filteredPeaks[groups == "a"]

peaks at mass 5 were removed in group "b"
filteredPeaks[groups == "b"]

apply different minFrequency arguments to each group
(e.g. useful for technical replicates)
groups <- factor(c("a", "a", "b", "b", "b"), levels=c("a", "b"))
filteredPeaks <- filterPeaks(c(p, p[[3]]), minFrequency=c(1, 2/3), labels=groups)
intensityMatrix(filteredPeaks)
1 2 3 4
findEmptyMassObjects

findEmptyMassObjects Finds or removes empty AbstractMassObject objects in a list.

Description
These functions looks for empty AbstractMassObject objects in a list.

Usage
findEmptyMassObjects(l)
removeEmptyMassObjects(l)

Arguments
l list, list of AbstractMassObject where empty objects should be found or removed.
findEmptyMassObjects

Value

findEmptyMassObjects: Returns a vector of indices referring to empty AbstractMassObject objects.

removeEmptyMassObjects: Returns a list of AbstractMassObject objects but without empty ones.

Author(s)

Sebastian Gibb <mail@sebastiangibb.de>

See Also

isEmpty, AbstractMassObject-method, AbstractMassObject

Website: http://strimmerlab.org/software/maldiquant/

Examples

```r
## load package
library("MALDIquant")

## create list
peakList <- list()

## create two MassPeaks objects and add them to the list
peakList[[1]] <- createMassPeaks(mass=1:100, intensity=1:100,
metadata=list(name="example 1"))
peakList[[2]] <- createMassPeaks(mass=1:100, intensity=1:100,
metadata=list(name="example 2"))

## find empty objects (there should not be any one)
findEmptyMassObjects(peakList)

## add an empty MassPeaks object to the list
peakList[[3]] <- createMassPeaks(mass=double(), intensity=double(),
metadata=list(name="empty MassPeaks object"))

## look for empty objects (isEmptyIdx == 3)
(isEmptyIdx <- findEmptyMassObjects(peakList))

## to remove all empty MassObjects from a list
length(peakList) # 3
peakList <- removeEmptyMassObjects(peakList)
length(peakList) # 2; WARNING: all indices could change
```
intensityMatrix

Converting a list of `MassPeaks` objects into a matrix.

Description

This function converts a list of `MassPeaks` objects into a matrix.

Usage

`intensityMatrix(peaks, spectra)`

Arguments

- **peaks** list, list of `MassPeaks` objects.
- **spectra** list, list of `MassSpectrum` objects. If a peak is missing the corresponding intensity value of the spectrum is used. If spectra is missing NA is used instead.

Details

Peaks have to be binned by `binPeaks` before calling `intensityMatrix`.

Value

Returns a matrix containing intensities of all `MassPeaks` objects of peaks and interpolated intensity values for missing peaks if spectra was given or NA otherwise. The matrix has length(peaks) rows (one row for each sample) and length(unique(mass)) columns. The column names of the returned matrix store the mass values.

Author(s)

Sebastian Gibb <mail@sebastiangibb.de>

See Also

`binPeaks, MassPeaks, MassSpectrum`

Website: http://strimmerlab.org/software/maldiquant/

Examples

```r
## load package
library("MALDIquant")

## create example MassPeaks objects
p <- list(createMassPeaks(mass=1:4,
                           intensity=11:14,
                           metaData=list(name="test mass peaks 1")),
           createMassPeaks(mass=2:5,
                           intensity=22:25),
           createMassPeaks(mass=1:3,
                           intensity=10:13))

## apply intensityMatrix
m <- intensityMatrix(p)
```
isMassSpectrum

Tests for MassSpectrum or MassPeaks object.

Description
These functions test for a MassSpectrum or MassPeaks object.

Usage

isMassSpectrum(x)

isMassPeaks(x)

Arguments

x object to be tested.
isMassSpectrumList

Value

Returns TRUE or FALSE depending on whether its argument is an MassSpectrum or MassPeaks object.

Author(s)

Sebastian Gibb <mail@sebastianGibb.de>

See Also

MassPeaks, MassSpectrum, AbstractMassObject

Website: http://strimmerlab.org/software/maldiQuant/

Examples

load package
library("MALDIquant")

create a MassPeaks object
peaks <- createMassPeaks(mass=1:100, intensity=1:100,
 metaData=list(name="example 1"))

test
isMassPeaks(peaks) # returns TRUE
isMassSpectrum(peaks) # returns FALSE
isMassPeaks(double()) # returns FALSE

isMassSpectrumList Tests a list of MassSpectrum or MassPeaks objects.

Description

These functions test a list whether containing MassSpectrum or MassSpectrum objects.

Usage

isMassSpectrumList(x)

isMassPeaksList(x)

Arguments

x object to be tested.

Value

Returns TRUE or FALSE depending on whether its argument is a list of MassSpectrum or MassPeaks objects.
Author(s)
Sebastian Gibb <mail@sebastiangibb.de>

See Also
MassPeaks, MassSpectrum, AbstractMassObject

Website: http://strimmerlab.org/software/maldiquant/

Examples

```r
## load package
library("MALDIquant")

## create list
p <- list()

## test list
isMassPeaksList(p) # returns FALSE

## create two MassPeaks objects and add them to the list
p <- createMassPeaks(mass=1:100, intensity=1:100, metaData=list(name="example 1"))
p <- createMassPeaks(mass=1:100, intensity=1:100, metaData=list(name="example 2"))

## test list
isMassPeaksList(p) # returns TRUE
isMassSpectrumList(p) # returns FALSE
```

labelPeaks-methods

Draws peak labels to plot.

Description

`labelPeaks` draws the corresponding mass values on top of the peaks stored in a `MassPeaks` object to a plot.

Usage

```r
## S4 method for signature 'MassPeaks'
labelPeaks(object, index, mass, labels, digits=3, underline=TRUE, verticalOffset=abs(diff(par("usr")[3:4]))*0.01, absoluteVerticalPos, adj=c(0.5, 0), cex=0.7,
```
avoidOverlap=FALSE,
arrowLength=0, arrowLwd=0.5, arrowCol=1,
...

Arguments

object MassPeaks object.
index integer/logical, indices of peaks to label.
mass numeric, mass of peaks to label.
labels character, use labels instead of mass values as peak label.
digits integer, number of decimal places.
underline logical, underline peak values?
verticalOffset numeric, move label vertically (relative to peak height).
absoluteVerticalPos numeric, absolute y value for the label. If missing verticalOffset is used.
adj numeric, adjust text to the left, center, right and top, center, bottom; see text.
cex numeric, font size, see par.
avoidOverlap logical, try to find label coordinates to avoid overlap.
arrowLength, arrowLwd, arrowCol

... arguments to be passed to text.

Author(s)

Sebastian Gibb

See Also

MassPeaks, plot, AbstractMassObject, missing-method

Website: http://strimmerlab.org/software/maldiquant/

Examples

load package
library("MALDIquant")

create a MassPeaks object from scratch
p <- createMassPeaks(mass=1:20, intensity=sample(x=100:10000, size=20),
 metaData=list(name="example"))

plot peaks
plot(p)

label the first 5 peaks
labelPeaks(p, index=1:5)
Class "MassPeaks"

Description

`MassPeaks` represents extracted peaks of a single spectrum of a MALDI-TOF mass spectrometry measurement.

Objects from the Class

- `createMassPeaks`: Creates a `MassPeaks` object.

Extends

- Class `AbstractMassObject`, directly.

Slots

- `snr`: vector, signal-to-noise ratio

Methods

- `labelPeaks` signature(x = "MassPeaks"): Draws peak labels to plot. See `labelPeaks`, `MassPeaks-method` for details.
MassSpectrum-class

Author(s)

Sebastian Gibb <mail@sebastiangibb.de>

See Also

Website: http://strimmerlab.org/software/maldiquant/

MassSpectrum-class Class "MassSpectrum"

Description

MassSpectrum represents a single spectrum of a MALDI-TOF mass spectrometry measurement. It provides an easy framework for doing some preprocessing steps like peak detection, baseline correction and much more.

Objects from the Class

createMassSpectrum: Creates a MassSpectrum object.

Extends

Class AbstractMassObject, directly.

Methods

calibrateIntensity signature(x = "MassSpectrum"): Calibrates the intensity of a MassSpectrum object. See calibrateIntensity, MassSpectrum-method for details.
detectPeaks signature(x = "MassSpectrum"): Look for local maxima and estimate noise to extract peaks out of a MassSpectrum object. See detectPeaks, MassSpectrum-method for details.
isRegular signature(object = "MassSpectrum"): Returns FALSE if the frequency of mass values with irregular intervals is greater than threshold (because object was measured in centroid mode or some intensity values were filtered).
removeBaseline signature(x = "MassSpectrum"): Estimates and removes the baseline of a MassSpectrum object. See removeBaseline, MassSpectrum-method for details.
totalIonCurrent signature(object = "MassSpectrum"): Accessor function for Total Ion Current (TIC, area under the curve).
mergeMassPeaks

Description

This function merges `MassPeaks` objects.

Usage

```r
mergeMassPeaks(l, labels, method=c("mean", "median", "sum"), ignore.na=TRUE)
```
mergeMassPeaks

Arguments

1. list, list of MassPeaks objects.
2. labels list, list of factors (one for each MassPeaks object) to do groupwise merging.
3. method used merge method.
4. ignore.na Should NA (positions where a peak is missing) ignored (ignore.na=TRUE) or treated as zero (ignore.na=FALSE)?

Value

Returns a single (no labels given) or a list (labels given) of merged MassPeaks objects.

Author(s)

Sebastian Gibb <mail@sebastiangibb.de>

See Also

MassPeaks, averageMassSpectra

Website: http://strimmerlab.org/software/maldiquant/

Examples

```r
## load package
library("MALDIquant")

## create four MassPeaks objects and add them to the list
p <- list(createMassPeaks(mass=1:2, intensity=1:2),
          createMassPeaks(mass=1:3, intensity=1:3),
          createMassPeaks(mass=1:4, intensity=1:4),
          createMassPeaks(mass=1:5, intensity=1:5))

## merge all four MassPeaks objects into a single new one
## by sum their intensities
## (no labels, returns only one new MassPeaks object)
mergedPeaks <- mergeMassPeaks(p, method="sum")

## only merge MassPeaks objects in a group
## (two different labels, returns a list of two new MassPeaks objects)
groups <- factor(c("a", "a", "b", "b"), levels=c("a", "b"))
mergedPeaks <- mergeMassPeaks(p, labels=groups, method="mean")

## the same, but treat NA as zero
mergedPeaks <- mergeMassPeaks(p, labels=groups, method="mean", ignore.na=FALSE)
```
Plots an AbstractMassObject object.

Description

This is an overloaded method to allow plotting of an AbstractMassObject object.

Usage

```r
## S4 method for signature 'AbstractMassObject,missing'
plot(x, col="black",
     xlab="mass", ylab="intensity",
     type=ifelse(isMassPeaks(x), "h", "l"),
     xlim=c(ifelse(length(x@mass), min(x@mass, na.rm=TRUE), 0),
            ifelse(length(x@mass), max(x@mass, na.rm=TRUE), 1)),
     ylim=c(0, ifelse(length(x@intensity), max(x@intensity, na.rm=TRUE), 1)),
     main=x@metadata$name, sub=x@metadata$file,
     cex.sub=0.75, col.sub="#808080",
     abline.col="#808080", ...)
```

Arguments

- `x` MassSpectrum object.
- `col` line colour, see `par`.
- `xlab` title for the x-axis, see `title`.
- `ylab` title for the y-axis, see `title`.
- `type` type of plot: see `plot`.
- `xlim` the x limits (x1, x2) of the plot, see `plot.default`.
- `ylim` the y limits (y1, y2) of the plot, see `plot.default`.
- `main` title for the plot, see `title`.
- `sub` sub title for the plot, see `title`.
- `cex.sub` sub title font size, see `par`.
- `col.sub` sub title color, see `par`.
- `abline.col` colour for horizontal line at y=0.
- `...` arguments to be passed to `plot`.

Author(s)

Sebastian Gibb <mail@sebastiangibb.de>

See Also

AbstractMassObject

Website: http://strimmerlab.org/software/maldiquant/
Examples

```r
## load package
library("MALDIquant")

## create a MassSpectrum object by default constructor
s <- createMassSpectrum(mass=1:100, intensity=rnorm(100)^2,
                       metaData=list(name="example"))

## show some details
s

## plot spectrum
plot(s)
```

plotImsSlice
Plots an Imaging Mass Spectrometry dataset.

Description

This function allows to plot a slice of an Imaging Mass Spectrometry dataset represented by a list of `AbstractMassObject` objects.

Usage

```r
plotImsSlice(x, range=c(0, Inf),
             sub=paste0("m/z: ", range[1L], ", ", range[2L], ", ",
             removeEmptyRows=TRUE, removeEmptyCols=TRUE,
             colRamp=colorRamp(c("black", "blue", "green", "yellow", "red")),
             interpolate=FALSE, ...)```

Arguments

- **x**: list, list of `MassSpectrum/MassPeaks` objects.
- **range**: double, length 2, range/thickness of the slice.
- **sub**: character, sub title for the plot, see `title`.
- **removeEmptyRows**: logical, Should empty rows be removed?
- **removeEmptyCols**: logical, Should empty columns be removed?
- **colRamp**: colours as `colorRamp` function, see `colorRamp` for details.
- **interpolate**: logical, use linear interpolation when drawing the image, see `rasterImage` for details.
- **...**: arguments to be passed to `plot`.
Details

Each `MassSpectrum/MassPeaks` object in `x` must contain a list named `imaging` with an element `pos` that stores the `x` and `y` value of the spectrum, e.g.:

```
> metaData(spectra[[1]])$imaging$pos
 x y
1 5
```

Author(s)

Sebastian Gibb <mail@sebastiangibb.de>

See Also


Website: http://strimmerlab.org/software/maldiquant/

Example: https://github.com/sgibb/MALDIquantExamples/blob/master/vignettes/ims.Rnw

Examples

```
Not run:
plotImSlice(spectra, range = c(3361.8, 3362.8))

End(Not run)
```

---

**referencePeaks**

*Creates a reference MassPeaks object.*

Description

This function creates a reference `MassPeaks` object (also called `Anchor Peaks`) from a list of `MassPeaks` objects. Generally it is a combination of `binPeaks` and `filterPeaks`.

Usage

```
referencePeaks(l, method=c("strict", "relaxed"), minFrequency=0.9, tolerance=0.002)
```

Arguments

- `l` list, list of `MassPeaks` objects.
- `method` bin creation rule (see `binPeaks`).
- `minFrequency` double, remove all peaks which occur in less than `minFrequency*length(l)` `MassPeaks` objects.
- `tolerance` double, maximal deviation of a peak position (mass) to be considered as identical.
Value

Returns a new MassPeaks objects. The intensity slot of the returned MassPeaks represents the frequency of this mass position in all samples.

Author(s)

Sebastian Gibb <mail@sebastiangibb.de>

See Also

binPeaks, filterPeaks, MassPeaks

Website: http://strimmerlab.org/software/maldiquant/

Examples

```r
load package
library("MALDIquant")

create four MassPeaks objects and add them to the list
p <- list(
 createMassPeaks(mass=1:2, intensity=1:2),
 createMassPeaks(mass=1:3, intensity=1:3),
 createMassPeaks(mass=1:4, intensity=1:4),
 createMassPeaks(mass=1:5, intensity=1:5))

only use peaks which occur in all MassPeaks objects as reference peaks
refPeaks <- referencePeaks(p, minFrequency=1)

mass(refPeaks) # 1:2
intensity(refPeaks) # c(1, 1)
```

### Description

This method removes the baseline of mass spectrometry data (represented by a MassSpectrum object). The intensity of the mass spectrometry data would be reduced by baseline.

### Usage

```r
S4 method for signature 'MassSpectrum'
removeBaseline(object,
 method=c("SNIP", "TopHat", "ConvexHull", "median"),
 ...)
smoothIntensity-methods

Arguments

- **object**: Mass Spectrum object or a list of Mass Spectrum objects.
- **method**: used baseline estimation method, one of "SNIP", "TopHat", "ConvexHull" or "median". See estimateBaseline,MassSpectrum-method for details.
- ... arguments to be passed to estimateBaseline,MassSpectrum-method.

Value

Returns a modified Mass Spectrum object with reduced intensities.

Author(s)

Sebastian Gibb <mail@sebastiangibb.de>

See Also

Mass Spectrum, estimateBaseline,Mass Spectrum-method
demo("baseline")
Website: http://strimmerlab.org/software/maldi/quant/

Examples

```r
## load package
library("MALDIquant")

## load example data
data("fiedler2009subset", package="MALDIquant")

## choose only the first mass spectrum
s <- fiedler2009subset[[1]]

## plot spectrum
plot(s)

## subtract baseline
b <- removeBaseline(s, method="SNIP")

## draw modified spectrum on the plot
lines(b, col="blue")
```

smoothIntensity-methods

Smoothes intensities of a Mass Spectrum object.

Description

This method smoothes the intensity values of a Mass Spectrum object.
smoothIntensity-methods

Usage

```r
## S4 method for signature 'Mass Spectrum'
smoothIntensity(object, 
    method=c("SavitzkyGolay", "MovingAverage"), halfWindowSize, 
    ...) 
```

Arguments

- **object**: AbstractMassObject object or a list of AbstractMassObject objects.
- **method**: used smoothing method, one of "SavitzkyGolay" or "MovingAverage".
- **halfWindowSize**: half window size. The resulting window reaches from `mass[currentIndex-halfWindowSize]` to `mass[currentIndex+halfWindowSize]` (window size is `2*halfWindowSize+1`). The best size differs depending on the selected method.
- **...**: arguments to be passed to `method`. `SavitzkyGolay` has an additional `polynomialOrder` argument (default: 3) to control the order of the filter. Unused for `MovingAverage`.

Details

- **halfWindowSize**: Depends on the selected method. For the `SavitzkyGolay` the `halfWindowSize` should be smaller than FWHM of the peaks (full width at half maximum; please find details in Bromba and Ziegler 1981). In general the `halfWindowSize` for the `MovingAverage` has to be much smaller than for `SavitzkyGolay` to conserve the peak shape.

Author(s)

Sebastian Gibb <mail@sebastiangibb.de>

References

See Also

- MassSpectrum

Website: http://strimmerlab.org/software/maldiQuant/

Examples

```r
## load package
library("MALDIquant")

## load example data
data("fiedler2009subset", package="MALDIquant")

## smooth spectra
```
transformIntensity-methods

Transforms intensities of an AbstractMassObject object.

Description
This method performs a transformation (e.g. sqrt-transformation) on the intensities of an AbstractMassObject object.

Usage
S4 method for signature 'AbstractMassObject'
transformIntensity(object,
 method=c("sqrt", "log", "log2", "log10"))

Arguments
- object: AbstractMassObject object or a list of AbstractMassObject objects.
- method: used transformation method.

Author(s)
Sebastian Gibb <mail@sebastiangibb.de>

See Also
- AbstractMassObject, MassSpectrum

Website: http://strimmerlab.org/software/maldiquant/

Examples
load package
library("MALDIquant")

load example data
data("fiedler2009subset", package="MALDIquant")

choose only the first mass spectrum
s <- fiedler2009subset[[1]]

transform spectrum
t <- transformIntensity(s, method="sqrt")

s <- smoothIntensity(fiedler2009subset, method="MovingAverage",
 halfWindowSize=2)
or
s <- smoothIntensity(fiedler2009subset, method="SavitzkyGolay",
 halfWindowSize=10)
trim-methods

Trim an AbstractMassObject object.

Description

These methods trim an AbstractMassObject object. This is useful if some mass ranges should be excluded from further analysis.

Usage

```r
## S4 method for signature 'AbstractMassObject,numeric'
trim(object, range)
## S4 method for signature 'list,numeric'
trim(object, range)
## S4 method for signature 'list,missing'
trim(object)
```

Arguments

- **object**: AbstractMassObject object or a list of AbstractMassObject objects.
- **range**: numeric, limits of trimming (left/minimal mass, right/maximal mass). If missing it is automatically determined (largest overlapping mass range) for a list of AbstractMassObject.

Author(s)

Sebastian Gibb <mail@sebastiangibb.de>

See Also

AbstractMassObject, MassPeaks, MassSpectrum

Website: http://strimmerlab.org/software/maldiquant/

Examples

```r
## load package
library("MALDIquant")

## load example data
data("fiedler2009subset", package="MALDIquant")
```
Description

These functions run warping functions on `AbstractMassObject` objects (warping is also known as *phase correction*).

Usage

```r
warpMassPeaks(l, w)
warpMassSpectra(l, w)
```

Arguments

- `l` : list, list of `MassPeaks` or `MassSpectrum` objects.
- `w` : a list of warping functions determined by `determineWarpingFunctions`. Has to be of the same length as `l`.

Details

The warping function `w` is called in the following way:

\[
\text{newMass} = \text{oldMass} + w(\text{oldMass})
\]

Value

Returns a list of warped `MassPeaks` or `MassSpectrum` objects.

Author(s)

Sebastian Gibb <mail@sebastiangibb.de>
warpMassSpectra

See Also
determineWarpingFunctions, MassPeaks, MassSpectrum

Website: http://strimmerlab.org/software/maldiquant/

Examples

```r
## load package
library("MALDIquant")

## create a MassPeaks object
p < createMassPeaks(mass=1:5, intensity=1:5)

## stupid warping function for demonstration
## (please use determineWarpingFunctions in real life applications)
simpleWarp <- function(x) { return(1) }

## run warping function
w <- warpMassPeaks(list(p), list(simpleWarp))[[1]]

## compare results
all(mass(w) == mass(p)+1) # TRUE
```
Index

*Topic **classes**
- AbstractMassObject-class, 3
- MassPeaks-class, 32
- MassSpectrum-class, 33

*Topic **datasets**
- fiedler2009subset, 22

*Topic **methods**
- alignSpectra, 5
- averageMassSpectra, 7
- binPeaks, 8
- calibrateIntensity-methods, 10
- createMassPeaks, 11
- createMassSpectrum, 12
- detectPeaks-methods, 13
- determineWarpingFunctions, 14
- estimateBaseline-methods, 17
- estimateNoise-methods, 20
- filterPeaks, 23
- findEmptyMassObjects, 25
- intensityMatrix, 27
- isMassSpectrum, 28
- isMassSpectrumList, 29
- labelPeaks-methods, 30
- mergeMassPeaks, 34
- plot-methods, 36
- referencePeaks, 38
- removeBaseline-methods, 39
- smoothIntensity-methods, 40
- transformIntensity-methods, 42
- trim-methods, 43
- warpMassSpectra, 44

[,] AbstractMassObject, logical, missing-method (AbstractMassObject-class), 3
[,] AbstractMassObject, numeric, missing-method (AbstractMassObject-class), 3
[,] MassPeaks, logical, missing-method (AbstractMassObject-class), 3
[,] MassPeaks, numeric, missing-method (AbstractMassObject-class), 3

AbstractMassObject, 3, 4, 15, 25, 26, 29, 30, 32–34, 36–38, 41–44
alignSpectra, 5
arrows, 31
as.matrix, AbstractMassObject-method (AbstractMassObject-class), 3
averageMassSpectra, 7, 35
binPeaks, 8, 27, 38, 39
calibrateIntensity
 (calibrateIntensity-methods), 10
calibrateIntensity, list-method
 (calibrateIntensity-methods), 10
calibrateIntensity, MassSpectrum-method
 (calibrateIntensity-methods), 10
calibrateIntensity-methods, 10
colorRamp, 37
createMassPeaks, 11, 32, 33
createMassSpectrum, 12, 33, 34
detectPeaks, 5, 6
detectPeaks (detectPeaks-methods), 13
detectPeaks, list-method
 (detectPeaks-methods), 13
detectPeaks, MassSpectrum-method
 (detectPeaks-methods), 13
detectPeaks-methods, 13
determineWarpingFunctions, 5, 6, 14, 44, 45
estimateBaseline
 (estimateBaseline-methods), 17
estimateBaseline, MassSpectrum-method
 (estimateBaseline-methods), 17
estimateBaseline-methods, 17
estimateNoise (estimateNoise-methods), 20
estimateNoise, MassSpectrum-method (estimateNoise-methods), 20
estimateNoise-methods, 20
factor, 7, 35
FALSE, 29
fiedler2009subset, 22
filterPeaks, 23, 38, 39
findEmptyMassObjects, 25
intensity, 39
intensity (AbstractMassObject-class), 3
intensity, AbstractMassObject-method (AbstractMassObject-class), 3
intensity<-(AbstractMassObject-class), 3
intensity<-, AbstractMassObject, numeric-method (AbstractMassObject-class), 3
intensityMatrix, 9, 24, 27, 27
isEmpty (AbstractMassObject-class), 3
isEmpty, AbstractMassObject-method (AbstractMassObject-class), 3
isMassPeaks (isMassSpectrum), 28
isMassPeaksList (isMassSpectrumList), 29
isMassSpectrum, 28
isMassSpectrumList, 29
isRegular (MassSpectrum-class), 33
isRegular, MassSpectrum-method (MassSpectrum-class), 33
labelPeaks, 30
labelPeaks (labelPeaks-methods), 30
labelPeaks, MassPeaks-method (labelPeaks-methods), 30
labelPeaks-methods, 30
length, AbstractMassObject-method (AbstractMassObject-class), 3
lines, 4
lines, AbstractMassObject-method (AbstractMassObject-class), 3
list, 7, 8, 23, 25–27, 29, 35
mad, 21
MALDIquant (MALDIquant-package), 2
MALDIquant-package, 2
mass (AbstractMassObject-class), 3
mass, AbstractMassObject-method (AbstractMassObject-class), 3
mass<- (AbstractMassObject-class), 3
mass<-, AbstractMassObject, numeric-method (AbstractMassObject-class), 3
MassPeaks, 3–5, 8, 9, 11–16, 23, 24, 27–32, 34, 35, 37–39, 43–45
MassPeaks (MassPeaks-class), 32
MassPeaks-class, 32
MassSpectrum, 3–7, 10–14, 17–21, 27–30, 33, 36–45
MassSpectrum (MassSpectrum-class), 33
MassSpectrum-class, 33
matrix, 27
mergeMassPeaks, 7, 34
metaData (AbstractMassObject-class), 3
metaData, AbstractMassObject-method (AbstractMassObject-class), 3
metaData<-(AbstractMassObject-class), 3
metaData<-, AbstractMassObject-method (AbstractMassObject-class), 3
par, 31, 36
plot, 36, 37
plot, AbstractMassObject, missing-method (plot-methods), 36
plot, MassSpectrum, missing-method (plot-methods), 36
plot-methods, 36
plot.default, 36
plotImSlice, 37
points, 4
points, AbstractMassObject-method (AbstractMassObject-class), 3
rasterImage, 37
referencePeaks, 5, 6, 15, 16, 38
removeBaseline (removeBaseline-methods), 39
removeBaseline, list-method (removeBaseline-methods), 39
removeBaseline, MassSpectrum-method (removeBaseline-methods), 39
removeBaseline-methods, 39
removeEmptyMassObjects (findEmptyMassObjects), 25
runmed, 18
smoothIntensity (smoothIntensity-methods), 40
smoothIntensity, list-method
 (smoothIntensity-methods), 40
smoothIntensity, MassSpectrum-method
 (smoothIntensity-methods), 40
smoothIntensity-methods, 40
snr (MassPeaks-class), 32
snr, MassPeaks-method (MassPeaks-class),
 32
supsmu, 21

text, 31
title, 36, 37
totalIonCurrent (MassSpectrum-class), 33
totalIonCurrent, MassSpectrum-method
 (MassSpectrum-class), 33
transformIntensity
 (transformIntensity-methods), 42
transformIntensity, AbstractMassObject-method
 (transformIntensity-methods), 42
transformIntensity, list-method
 (transformIntensity-methods), 42
transformIntensity-methods, 42
trim (trim-methods), 43
trim, AbstractMassObject, numeric-method
 (trim-methods), 43
trim, list, missing-method
 (trim-methods), 43
trim, list, numeric-method
 (trim-methods), 43
trim-methods, 43
TRUE, 29

vector, 26

warpMassPeaks, 16
warpMassPeaks (warpMassSpectra), 44
warpMassSpectra, 6, 16, 44