
Package ‘qpcR’
September 15, 2014

Type Package

LazyLoad yes

LazyData yes

Title Modelling and analysis of real-time PCR data

Version 1.4-0

Date 2014-09-15

Author Andrej-Nikolai Spiess <a.spiess@uke.uni-hamburg.de>

Maintainer Andrej-Nikolai Spiess <a.spiess@uke.uni-hamburg.de>

Description Model fitting, optimal model selection and calculation of various features that are essen-
tial in the analysis of quantitative real-time polymerase chain reaction (qPCR).

License GPL (>= 2)

Depends R (>= 2.13.0), MASS, minpack.lm, rgl, robustbase, Matrix

NeedsCompilation yes

Repository CRAN

Date/Publication 2014-09-15 20:33:00

R topics documented:
AICc . 3
akaike.weights . 4
calib . 5
Cy0 . 7
eff . 8
efficiency . 10
evidence . 13
expcomp . 14
expfit . 15

1

2 R topics documented:

fitchisq . 17
getPar . 18
is.outlier . 20
KOD . 21
llratio . 23
LOF.test . 24
LRE . 26
maxRatio . 28
meltcurve . 30
midpoint . 32
modlist . 34
mselect . 37
parKOD . 39
pcrbatch . 40
pcrboot . 43
pcrfit . 45
pcrGOF . 47
pcrimport . 48
pcrimport2 . 51
pcropt1 . 53
pcrsim . 54
plot.pcrfit . 56
predict.pcrfit . 58
PRESS . 60
propagate . 62
qpcR.news . 67
qpcR_datasets . 68
qpcR_functions . 73
ratiobatch . 77
ratiocalc . 82
ratioPar . 87
refmean . 91
replist . 94
resplot . 96
resVar . 98
RMSE . 99
Rsq . 100
Rsq.ad . 101
RSS . 102
sliwin . 102
takeoff . 105
update.pcrfit . 106

Index 108

AICc 3

AICc Akaike’s second-order corrected Information Criterion

Description

Calculates the second-order corrected Akaike Information Criterion for objects of class pcrfit,
nls, lm, glm or any other models from which coefficients and residuals can be extracted. This
is a modified version of the original AIC which compensates for bias with small n. As qPCR data
usually has n

k < 40 (see original reference), AICc was implemented to correct for this.

Usage

AICc(object)

Arguments

object a fitted model.

Details

Extends the AIC such that

AICc = AIC +
2k(k + 1)

n− k − 1

with k = number of parameters, and n = number of observations. For large n, AICc converges to
AIC.

Value

The second-order corrected AIC value.

Author(s)

Andrej-Nikolai Spiess

References

Akaike Information Criterion Statistics.
Sakamoto Y, Ishiguro M and Kitagawa G.
D. Reidel Publishing Company (1986).

Regression and Time Series Model Selection in Small Samples.
Hurvich CM & Tsai CL.
Biometrika (1989), 76: 297-307.

See Also

AIC, logLik.

4 akaike.weights

Examples

m1 <- pcrfit(reps, 1, 2, l5)
AICc(m1)

akaike.weights Calculation of Akaike weights/relative likelihoods/delta-AICs

Description

Calculates Akaike weights from a vector of AIC values.

Usage

akaike.weights(x)

Arguments

x a vector containing the AIC values.

Details

Although Akaike’s Information Criterion is recognized as a major measure for selecting models,
it has one major drawback: The AIC values lack intuitivity despite higher values meaning less
goodness-of-fit. For this purpose, Akaike weights come to hand for calculating the weights in
a regime of several models. Additional measures can be derived, such as ∆(AIC) and relative
likelihoods that demonstrate the probability of one model being in favor over the other. This is done
by using the following formulas:

delta AICs:
∆i(AIC) = AICi −min(AIC)

relative likelihood:

L ∝ exp
(
−1

2
∆i(AIC)

)
Akaike weights:

wi(AIC) =
exp

(
− 1

2∆i(AIC)
)∑K

k=1 exp
(
− 1

2∆k(AIC)
)

Value

A list containing the following items:

deltaAIC the ∆(AIC) values.

rel.LL the relative likelihoods.

weights the Akaike weights.

calib 5

Author(s)

Andrej-Nikolai Spiess

References

Classical literature:
Akaike Information Criterion Statistics.
Sakamoto Y, Ishiguro M and Kitagawa G.
D. Reidel Publishing Company (1986).

Model selection and inference: a practical information-theoretic approach.
Burnham KP & Anderson DR.
Springer Verlag, New York, USA (2002).

A good summary:
AIC model selection using Akaike weights. Wagenmakers EJ & Farrell S.
Psychonomic Bull Review (2004), 11: 192-196.

See Also

AIC, logLik.

Examples

Apply a list of different sigmoidal models to data
and analyze GOF statistics with Akaike weights
on 8 different sigmoidal models.
modList <- list(l7, l6, l5, l4, b7, b6, b5, b4)
aics <- sapply(modList, function(x) AIC(pcrfit(reps, 1, 2, x)))
akaike.weights(aics)$weights

calib Calculation of qPCR efficiency using dilution curves and replicate
bootstrapping

Description

This function calculates the PCR efficiency from a classical qPCR dilution experiment. The thresh-
old cycles are plotted against the logarithmized concentration (or dilution) values, a linear regression
line is fit and the efficiency calculated by E = 10

−1
slope . A graph is displayed with the raw values

plotted with the threshold cycle and the linear regression curve. The threshold cycles are calculated
either by some arbitrary fluorescence value (i.e. as given by the qPCR software) or calculated from
the second derivative maximum of the dilution curves. If values to be predicted are given, they are
calculated from the curve and also displayed within. calib2 uses a bootstrap approach if replicates
for the dilutions are supplied. See ’Details’.

6 calib

Usage

calib(refcurve, predcurve = NULL, thresh = "cpD2", dil = NULL,
group = NULL, plot = TRUE, conf = 0.95, B = 200)

Arguments

refcurve a ’modlist’ containing the curves for calibration.

predcurve an (optional) ’modlist’ containing the curves for prediction.

thresh the fluorescence value from which the threshold cycles are defined. Either
"cpD2" or a numeric value.

dil a vector with the concentration (or dilution) values corresponding to the calibra-
tion curves.

group a factor defining the group membership for the replicates. See ’Examples’.

plot logical. Should the fitting (bootstrapping) be displayed? If FALSE, only values
are returned.

conf the confidence interval. Defaults to 95%, can be omitted with NULL.

B the number of bootstraps.

Details

calib2 calculates confidence intervals for efficiency, AICc, adjusted R2
adj and the prediction curve

concentrations. If single replicates per dilution are supplied by the user, confidence intervals for the
prediction curves are calculated based on asymptotic normality. If multiple replicates are supplied,
the regression curves are calculated by randomly sampling one of the replicates from each dilution
group. The confidence intervals are then calculated from the bootstraped results.

Value

A list with the following components:

eff the efficiency.

AICc the second-order corrected AIC.

Rsq.ad the adjusted R2
adj .

predconc the (log) concentration of the predicted curves.

conf.boot a list containing the confidence intervals for the efficiency, the AICc, Rsq.ad and
the predicted concentrations.

A plot is also supplied for efficiency, AICc, Rsq.ad and predicted concentrations including confi-
dence intervals in red.

Author(s)

Andrej-Nikolai Spiess

Cy0 7

Examples

Define calibration curves,
dilutions (or copy numbers)
and curves to be predicted.
Do background subtraction using
average of first 8 cycles. No replicates.
CAL <- modlist(reps, fluo = c(2, 6, 10, 14, 18, 22),

baseline = "mean", basecyc = 1:8)
COPIES <- c(100000, 10000, 1000, 100, 10, 1)
PRED <- modlist(reps, fluo = c(3, 7, 11),

baseline = "mean", basecyc = 1:8)

Conduct normal quantification using
the second derivative maximum of first curve.
calib(refcurve = CAL, predcurve = PRED, thresh = "cpD2",

dil = COPIES, plot = FALSE)

Using a defined treshold value.
calib(refcurve = CAL, predcurve = PRED, thresh = 0.5, dil = COPIES)

Using six dilutions with four replicates/dilution.
Not run:
CAL2 <- modlist(reps, fluo = 2:25)
calib(refcurve = CAL2, predcurve = PRED, thresh = "cpD2",

dil = COPIES, group = gl(6,4))

End(Not run)

Cy0 Cy0 alternative to threshold cycles as in Guescini et al. (2008)

Description

An alternative to the classical crossing point/threshold cycle estimation as described in Guescini et
al (2002). A tangent is fit to the first derivative maximum (point of inflection) of the modeled curve
and the intersection with the x-axis is calculated.

Usage

Cy0(object, plot = FALSE, add = FALSE, ...)

Arguments

object a fitted object of class ’pcrfit’.

plot if TRUE, displays a plot of Cy0.

add if TRUE, a plot is added to any other existing plot, i.e. as from plot.pcrfit.

... other parameters to be passed to plot.pcrfit or points.

8 eff

Details

The function calculates the first derivative maximum (cpD1) of the curve and the slope and fluores-
cence FcpD2 at that point. Cy0 is then calculated by Cy0 = cpD1− FcpD2

slope .

Value

The Cy0 value.

Author(s)

Andrej-Nikolai Spiess

References

A new real-time PCR method to overcome significant quantitative inaccuracy due to slight amplifi-
cation inhibition.
Guescini M, Sisti D, Rocchi MB, Stocchi L & Stocchi V.
BMC Bioinformatics (2008), 9: 326.

Examples

Single curve with plot.
m1 <- pcrfit(reps, 1, 2, l5)
Cy0(m1, plot = TRUE)

Add to 'efficiency' plot.
efficiency(m1)
Cy0(m1, add = TRUE)

Compare s.d. of replicates between
Cy0 and cpD2 method. cpD2 wins!
ml1 <- modlist(reps, model = l4)
cy0 <- sapply(ml1, function(x) Cy0(x))
cpd2 <- sapply(ml1, function(x) efficiency(x, plot = FALSE)$cpD2)
tapply(cy0, gl(7, 4), function(x) sd(x))
tapply(cpd2, gl(7, 4), function(x) sd(x))

eff The amplification efficiency curve of a fitted object

Description

Calculates the efficiency curve from the fitted object by En = Fn

Fn−1
, with E = efficiency, F = raw

fluorescence, n = Cycle number. Alternatively, a cubic spline interpolation can be used on the raw
data as in Shain et al. (2008).

eff 9

Usage

eff(object, method = c("sigfit", "spline"), sequence = NULL, baseshift = NULL,
smooth = FALSE, plot = FALSE)

Arguments

object an object of class ’pcrfit’.

method the efficiency curve is either calculated from the sigmoidal fit (default) or a cubic
spline interpolation.

sequence a 3-element vector (from, to, by) defining the sequence for the efficiency curve.
Defaults to [min(Cycles), max(Cycles)] with 100 points per cycle.

baseshift baseline shift value in case of type = "spline". See documentation to maxRatio.

smooth logical. If TRUE and type = "spline", invokes a 5-point convolution filter
(filter). See documentation to maxRatio.

plot should the efficiency be plotted?

Details

For more information about the curve smoothing, baseline shifting and cubic spline interpolation
for the method as in Shain et al. (2008), see ’Details’ in maxRatio.

Value

A list with the following components:

eff.x the cycle points.

eff.y the efficiency values at eff.x.

effmax.x the cycle number with the highest efficiency.

effmax.y the maximum efficiency.

Author(s)

Andrej-Nikolai Spiess

References

A new method for robust quantitative and qualitative analysis of real-time PCR.
Shain EB & Clemens JM.
Nucleic Acids Research (2008), 36, e91.

Examples

With default 100 points per cycle.
m1 <- pcrfit(reps, 1, 7, l5)
eff(m1, plot = TRUE)

Not all data and only 10 points per cycle.
eff(m1, sequence = c(5, 35, 0.1), plot = TRUE)

10 efficiency

When using cubic splines it is preferred
to use the smoothing option.
eff(m1, method = "spline", plot = TRUE, smooth = TRUE, baseshift = 0.3)

efficiency Calculation of qPCR efficiency and other important qPCR parameters

Description

This function calculates the PCR efficiency of a model of class ’pcrfit’, including several other im-
portant values for qPCR quantification like the first and second derivatives and the corresponding
maxima thereof (i.e. threshold cycles). These values can subsequently be used for the calculation
of PCR kinetics, fold induction etc. All values are included in a graphical output of the fit. Addi-
tionally, several measures of goodness-of-fit are calculated, i.e. the Akaike Information Criterion
(AIC), the residual variance and the R2 value.

Usage

efficiency(object, plot = TRUE, type = "cpD2", thresh = NULL,
shift = 0, amount = NULL, ...)

Arguments

object an object of class ’pcrfit’.

plot logical. If TRUE, a graph is displayed. If FALSE, values are printed out.

type the method of efficiency estimation. See ’Details’.

thresh an (optional) numeric value for a fluorescence threshold border. Overrides type.

shift a user defined shift in cycles from the values defined by type. See ’Examples’.

amount the template amount or molecule number for quantitative calibration.

... other parameters to be passed to eff or plot.pcrfit.

Details

The efficiency is always (with the exception of type = "maxRatio") calculated from the efficiency
curve (in blue), which is calculated according to En = Fn

Fn−1
from the fitted curve, but taken from

different points at the curve, as to be defined in type:

"cpD2" taken from the maximum of the second derivative curve,
"cpD1" taken from the maximum of the first derivative curve,
"maxE" taken from the maximum of the efficiency curve,
"expR" taken from the exponential region by expR = cpD2− (cpD1− cpD2),
"CQ" taken from the 20% value of the fluorescence at "cpD2" as developed by Corbett Research
(comparative quantification),
"Cy0" the intersection of a tangent on the first derivative maximum with the abscissa as calculated
according to Guescini et al. or

efficiency 11

a numeric value taken from the threshold cycle output of the PCR software, i.e. 15.24 as defined in
type or
a numeric value taken from the fluorescence threshold output of the PCR software as defined in
thresh.

The initial fluorescence F0 for relative or absolute quantification is either calculated by setting
x = 0 in the sigmoidal model of object giving init1 or by calculating an exponential model
down (init2) with F0 = Fn

En , with Fn = raw fluorescence, E = PCR efficiency and n = the cycle
number defined by type. If a template amount is defined, a conversion factor cf = amount

F0
is

given. The different measures for goodness-of-fit give an overview for the validity of the efficiency
estimation. First and second derivatives are calculated from the fitted function and the maxima of
the derivatives curve and the efficiency curve are obtained.

If type = "maxRatio", the maximum efficiency is calculated from the cubic spline interpolated
raw fluorescence values and therefore NOT from the sigmoidal fit. This is a different paradigm and
will usually result in fairly the same threshold cycles as with type = "cpD2", but the efficiencies are
generally lower. See documentation to maxRatio. This method is usually not applied for calculating
efficiencies that are to be used for relative quantification, but one might try...

Value

A list with the following components:

eff the PCR efficiency.
resVar the residual variance.
AICc the bias-corrected Akaike Information Criterion.
AIC the Akaike Information Criterion.
Rsq the R2 value.
Rsq.ad the adjusted R2

adj value.
cpD1 the first derivative maximum (point of inflection in ’l4’ or ’b4’ models, can be

used for defining the threshold cycle).
cpD2 the second derivative maximum (turning point of cpD1, more often used for

defining the threshold cycle).
cpE the PCR cycle with the highest efficiency.
cpR the PCR cycle within the exponential region calculated as under ’Details’.
cpT the PCR cycle corresponding to the fluorescence threshold as defined in thresh.
Cy0 the PCR threshold cycle ’Cy0’ according to Guescini et al. See ’Details’.
cpCQ the PCR cycle corresponding to the 20% fluorescence value at ’cpD2’.
cpMR the PCR cycle corresponding to the ’maxRatio’, if this was selected.
fluo the raw fluorescence value at the point defined by type or thresh.
init1 the initial template fluorescence from the sigmoidal model, calculated as under

’Details’.
init2 the initial template fluorescence from an exponential model, calculated as under

’Details’.
cf the conversion factor between raw fluorescence and template amount, if the lat-

ter is defined.

If object was of type ’modlist’, the results are given as a matrix, with samples in columns.

12 efficiency

Note

In some curves that are fitted with the ’b5’/’l5’ models, the ’f’ (asymmetry) parameter can be
extremely high due to severe asymmetric structure. The efficiency curve deduced from the coef-
ficients of the fit can then be very extreme in the exponential region. It is strongly advised to use
efficiency(object, method = "spline") so that eff calculates the curve from a cubic spline
of the original data points (see ’Examples’).

Three parameter models (’b3’ or ’l3’) do not work very well in calculating the PCR efficiency. It
is advisable not to take too many cycles of the plateau phase prior to fitting the model as this has a
strong effect on the validity of the efficiency estimates.

Author(s)

Andrej-Nikolai Spiess

References

Validation of a quantitative method for real time PCR kinetics.
Liu W & Saint DA.
BBRC (2002), 294: 347-353.

A new real-time PCR method to overcome significant quantitative inaccuracy due to slight amplifi-
cation inhibition.
Guescini M, Sisti D, Rocchi MB, Stocchi L & Stocchi V.
BMC Bioinformatics (2008), 9: 326.

Examples

Fitting initial model.
m1 <- pcrfit(reps, 1, 2, l4)
efficiency(m1)

Using one cycle 'downstream'
of second derivative max.
efficiency(m1, type = "cpD2", shift = -1)

Using "maxE" method, with calculation of PCR efficiency
2 cycles 'upstream' from the cycle of max efficiency.
efficiency(m1, type = "maxE", shift = 2)

Using the exponential region.
efficiency(m1, type = "expR")

Using threshold cycle (i.e. 15.32)
from PCR software.
efficiency(m1, type = 15.32)

Using Cy0 method from Guescini et al. (2008)
add Cy0 tangent.
efficiency(m1, type = "Cy0")
Cy0(m1, add = TRUE)

evidence 13

Using a defined fluorescence
threshold value from PCR software.
efficiency(m1, thresh = 1)

Using the first 30 cycles and a template amount
(optical calibration).
m2 <- pcrfit(reps[1:30,], 1, 2, l5)
efficiency(m2, amount = 1E3)

Using 'maxRatio' method from Shain et al. (2008)
baseshifting essential!
efficiency(m1, type = "maxRatio", baseshift = 0.2)

Using the efficiency from a cubic spline fit
of the 'eff' function.
efficiency(m1, method = "spline")

Not run:
On a modlist with plotting
of the efficiencies.
ml1 <- modlist(reps, model = l5)
res <- sapply(ml1, function(x) efficiency(x)$eff)
barplot(as.numeric(res))

End(Not run)

evidence Evidence ratio for model comparisons with AIC, AICc or BIC

Description

The evidence ratio
1

exp(−0.5 · (IC2− IC1))

is calculated for one of the information criteria IC = AIC,AICc,BIC either from two fitted
models or two numerical values. Models can be compared that are not nested and where the f-test
on residual-sum-of-squares is not applicable.

Usage

evidence(x, y, type = c("AIC", "AICc", "BIC"))

Arguments

x a fitted object or numerical value.

y a fitted object or numerical value.

type any of the three Information Criteria AIC, AICc or BIC.

14 expcomp

Details

Small differences in values can mean substantial more ’likelihood’ of one model over the other. For
example, a model with AIC = -130 is nearly 150 times more likely than a model with AIC = -120.

Value

A value of the first model x being more likely than the second model y. If large, first model is better.
If small, second model is better.

Author(s)

Andrej-Nikolai Spiess

Examples

Compare two four-parameter and five-parameter
log-logistic models.
m1 <- pcrfit(reps, 1, 2, l4)
m2 <- pcrfit(reps, 1, 2, l5)
evidence(m2, m1)

Ratio of two AIC's.
evidence(-120, -123)

expcomp Comparison of all sigmodal models within the exponential region

Description

The exponential region of the qPCR data is identified by the studentized outlier method, as in
expfit. The root-mean-squared-error (RMSE) of all available sigmoidal models within this region
is then calculated. The result of the fits are plotted and models returned in order of ascending
RMSE.

Usage

expcomp(object, ...)

Arguments

object an object of class ’pcrfit’.

... other parameters to be passed to expfit.

Details

The following sigmoidal models are fitted: b4, b5, b6, b7, l4, l5, l6, l7

expfit 15

Value

A dataframe with names of the models, in ascending order of RMSE.

Author(s)

Andrej-Nikolai Spiess

Examples

m1 <- pcrfit(reps, 1, 2, l4)
expcomp(m1)

expfit Calculation of PCR efficiency by fitting an exponential model

Description

An exponential model is fit to a window of defined size on the qPCR raw data. The window is
identified either by the second derivative maximum ’cpD2’ (default), ’studentized outlier’ method
as described in Tichopad et al. (2003), the ’midpoint’ method (Peirson et al., 2003) or by subtracting
the difference of cpD1 and cpD2 from cpD2 (’ERBCP’, unpublished).

Usage

expfit(object, method = c("cpD2", "outlier", "midpoint", "ERBCP"),
model = c("exp", "linexp"), offset = 0, pval = 0.05, n.outl = 3,
n.ground = 1:5, corfact = 1, fix = c("top", "bottom", "middle"),
nfit = 5, plot = TRUE, ...)

Arguments

object an object of class ’pcrfit’.

method one of the four possible methods to be used for defining the position of the fitting
window.

model which exponential model to use. expGrowth is default, but the linear-exponential
model linexp can also be chosen.

offset for method = "cpD2", the cycle offset from second derivative maximum.

pval for method = "outlier", the p-value for the outlier test.

n.outl for method = "outlier", the number of successive outlier cycles.

n.ground for method = "midpoint", the number of cycles in the noisy ground phase to
calculate the standard deviation from.

corfact for method = "ERBCP", the correction factor for finding the exponential region.
See ’Details’.

fix for methods "midpoint" and "ERBCP", the orientation of the fitting window
based on the identified point. See ’Details’.

16 expfit

nfit the size of the fitting window.

plot logical. If TRUE, a graphical display of the curve and the fitted region is shown.

... other parameters to be passed to the plotting function.

Details

The exponential growth function f(x) = a · exp(b · x) + c is fit to a subset of the data. Calls
efficiency for calculation of the second derivative maximum, takeoff for calculation of the
studentized residuals and ’outlier’ cycle, and midpoint for calculation of the exponential phase
’midpoint’. For method ’ERBCP’ (Exponential Region By Crossing Points), the exponential region
is calculated by expR = cpD2− corfact · (cpD1− cpD2). The efficiency is calculated from the
exponential fit with E = exp(b) and the inital template fluorescence F0 = a.

Value

A list with the following components:

point the point within the exponential region as identified by one of the three methods.

cycles the cycles of the identified region.

eff the efficiency calculated from the exponential fit.

AIC the Akaike Information Criterion of the fit.

resVar the residual variance of the fit.

RMSE the root-mean-squared-error of the fit.

init the initial template fluorescence.

mod the exponential model of class ’nls’.

Author(s)

Andrej-Nikolai Spiess

References

Standardized determination of real-time PCR efficiency from a single reaction set-up.
Tichopad A, Dilger M, Schwarz G & Pfaffl MW.
Nucleic Acids Research (2003), 31:e122.

Comprehensive algorithm for quantitative real-time polymerase chain reaction.
Zhao S & Fernald RD.
J Comput Biol (2005), 12:1047-64.

Examples

Using default SDM method.
m1 <- pcrfit(reps, 1, 2, l5)
expfit(m1)

Using 'outlier' method.
expfit(m1, method = "outlier")

fitchisq 17

Linear exponential model.
expfit(m1, model = "linexp")

fitchisq The chi-square goodness-of-fit

Description

Calculates χ2, reduced χ2
ν and the χ2 fit probability for objects of class pcrfit, lm, glm, nls or

any other object with a call component that includes formula and data. The function checks for
replicated data (i.e. multiple same predictor values). If replicates are not given, the function needs
error values, otherwise NA’s are returned.

Usage

fitchisq(object, error = NULL)

Arguments

object a single model of class ’pcrfit’, a ’replist’ or any fitted model of the above.
error in case of a model without replicates, a single error for all response values or a

vector of errors for each response value.

Details

The variance of a fit s2 is also characterized by the statistic χ2 defined as followed:

χ2 ≡
n∑
i=1

(yi − f(xi))
2

σ2
i

The relationship between s2 and χ2 can be seen most easily by comparison with the reduced χ2:

χ2
ν =

χ2

ν
=

s2

〈σ2
i 〉

whereas ν = degrees of freedom (N - p), and 〈σ2
i 〉 is the weighted average of the individual vari-

ances. If the fitting function is a good approximation to the parent function, the value of the reduced
chi-square should be approximately unity, χ2

ν = 1. If the fitting function is not appropriate for
describing the data, the deviations will be larger and the estimated variance will be too large, yield-
ing a value greater than 1. A value less than 1 can be a consequence of the fact that there exists an
uncertainty in the determination of s2, and the observed values of χ2

ν will fluctuate from experiment
to experiment. To assign significance to the χ2 value, we can use the integral probability

Pχ(χ2; ν) =

∫ ∞
χ2

Pχ(x2, ν)dx2

which describes the probability that a random set of n data points sampled from the parent distri-
bution would yield a value of χ2 equal to or greater than the calculated one. This is calculated by
1− pchisq(χ2, ν).

18 getPar

Value

A list with the following items:

chi2 the χ2 value.

chi2.red the reduced χ2
ν .

p.value the fit probability as described above.

Author(s)

Andrej-Nikolai Spiess

References

Data Reduction and Error Analysis for the Physical Sciences.
Bevington PR & Robinson DK.
McGraw-Hill, New York (2003).

Applied Regression Analysis.
Draper NR & Smith H.
Wiley, New York, 1998.

Examples

Using replicates by making a 'replist'.
ml1 <- modlist(reps, fluo = 2:5)
rl1 <- replist(ml1, group = c(1, 1, 1, 1))
fitchisq(rl1[[1]])

Using single model with added error.
m1 <- pcrfit(reps, 1, 2, l5)
fitchisq(m1, 0.1)

getPar Batch calculation of qPCR fit parameters/efficiencies/threshold cycles
with simple output, especially tailored to high-throughput data

Description

This is a cut-down version of pcrbatch, starting with data of class ’modlist’, which delivers a sim-
ple dataframe output, with either the parameters of the fit or calculated threshold cycles/efficiencies.
The column names are deduced from the run names. All calculations have been error-protected
through tryCatch, so whenever there is any kind of error (parameter extraction, efficiency estima-
tion etc), NA is returned. This function can be used with high throughput data quite conveniently.
All methods as in pcrbatch are available. The results are automatically copied to the clipboard.

getPar 19

Usage

getPar(x, type = c("fit", "curve"), cp = "cpD2", eff = "sigfit", ...)

Arguments

x an object of class ’pcrfit’ or ’modlist’.

type fit will extract the fit parameters, curve will invoke efficiency and return
threshold cycles/efficiencies.

cp which method for threshold cycle estimation. Any of the methods in efficiency,
i.e. "cpD2" (default), "cpD1", "maxE", "expR", "Cy0", "CQ", "maxRatio".

eff which method for efficiency estimation. Either "sigfit" (default), "sliwin" or
"expfit".

... other parameters to be passed to efficiency, sliwin or expfit.

Details

Takes about 4 sec for 100 runs on a Pentium 4 Quad-Core (3 Ghz) when using type = "curve".
When using type = "fit", the fitted model parameters are returned. If type = "curve", thresh-
old cycles and efficiencies are calculated by efficiency based on the parameters supplied in ...
(default cpD2).

Value

A dataframe, which is automatically copied to the clipboard.

Author(s)

Andrej-Nikolai Spiess.

Examples

Not run:
Simple example with fit parameters.
ml1 <- modlist(rutledge, model = l5)
getPar(ml1, type = "fit")

Simple example with plotting of threshold cycles.
res1 <- getPar(ml1, type = "curve", cp = "cpD2", eff = "sliwin")
barplot(res1[1,], las = 2)

Using a mechanistic model such as
'mak3' and extracting D0 values
=> initial template fluorescence.
ml2 <- modlist(rutledge, 1, 2:41, model = mak3)
res <- getPar(ml2, type = "fit")
barplot(log10(res[1,]), las = 2)

End(Not run)

20 is.outlier

is.outlier Outlier summary for objects of class ’modlist’ or ’replist’

Description

For model lists of class ’modlist’ or ’replist’, is.outlier returns a vector of logicals for each run
if they are outliers (i.e. sigmoidal or kinetic) or not.

Usage

is.outlier(object)

Arguments

object an object of class ’modlist’ or ’replist’.

Value

A vector of logicals with run names.

Author(s)

Andrej-Nikolai Spiess

See Also

KOD.

Examples

Analyze in respect to amplification
efficiency outliers.
ml1 <- modlist(reps, 1, 2:5)
res1 <- KOD(ml1, check = "uni2")

Which runs are outliers?
outl <- is.outlier(res1)
outl
which(outl)

Not run:
Test for sigmoidal outliers
with the 'testdat' dataset.
ml2 <- modlist(testdat, model = l5, check = "uni2")
is.outlier(ml2)

End(Not run)

KOD 21

KOD (K)inetic (O)utlier (D)etection using several methods

Description

Identifies and/or removes qPCR runs according to several published methods or own ideas. The
univariate measures are based on efficiency or difference in first/second derivative maxima. Mul-
tivariate methods are implemented that describe the structure of the curves according to several
fixpoints such as first/second derivative maximum, slope at first derivative maximum or plateau flu-
orescence. These measures are compared with a set of curves using the mahalanobis distance with
a robust covariance matrix and calculation of statistics by a χ2 distribution. See ’Details’.

Usage

KOD(object, method = c("uni1", "uni2", "multi1", "multi2", "multi3"),
par = parKOD(), remove = FALSE, verbose = TRUE, plot = TRUE, ...)

Arguments

object an object of class ’modlist’ or ’replist’.

method which method to use for kinetic outlier identification. Method "uni1" is default.
See ’Details’ for all methods.

par parameters for the different methods. See parKOD.

remove logical. If TRUE, outlier runs are removed and the object is updated. If FALSE,
the individual qPCR runs are tagged as ’outliers’ or not. See ’Details’.

verbose logical. If TRUE, all calculation steps and results are displayed on the console.

plot logical. If TRUE, a multivariate plot is displayed.

... any other parameters to be passed to sliwin, efficiency or expfit.

Details

The following methods for the detection of kinetic outliers are implemented
uni1: KOD method according to Bar et al. (2003). Outliers are defined by removing the sample
efficiency from the replicate group and testing it against the remaining samples’ efficiencies using
a Z-test:

P = 2 ·
[
1− Φ

(
ei − µtrain
σtrain

)]
< 0.05

uni2: This method from the package author is more or less a test on sigmoidal structure for the
individual curves. It is different in that there is no comparison against other curves from a replicate
set. The test is simple: The difference between first and second derivative maxima should be less
than 10 cycles: (

∂3F (x; a, b, ...)

∂x3
= 0

)
−
(
∂2F (x; a, b...)

∂x2
= 0

)
< 10

22 KOD

Sounds astonishingly simple, but works: Runs are defines as ’outliers’ that really failed to amplify,
i.e. have no sigmoidal structure or are very shallow. It is the default setting in modlist.

multi1: KOD method according to Tichopad et al. (2010). Assuming two vectors with first and
second derivative maxima t1 and t2 from a 4-parameter sigmoidal fit within a window of points
around the first derivative maximum, a linear model t2 = t1 · b + a + τ is made. Both t1 and the
residuals from the fit τ = t2 − t̂2 are Z-transformed:

t1(norm) =
t1 − t̄1
σt1

, τ1norm =
τ1 − τ̄1
στ 1

Both t1 and τ are used for making a robust covariance matrix. The outcome is plugged into a
mahalanobis distance analysis using the ’adaptive reweighted estimator’ from package ’mvoutlier’
and p-values for significance of being an ’outlier’ are deduced from a χ2 distribution. If more than
two parameters are supplied, princomp is used instead.

multi2: Second KOD method according to Tichopad et al. (2010), mentioned in the paper. Uses
the same pipeline as multi1, but with the slope at the first derivative maximum and maximum
fluorescence as parameters:

∂F (x; a, b, ...)

∂x
, Fmax

multi3: KOD method according to Sisti et al. (2010). Similar to multi2, but uses maximum
fluorescence, slope at first derivative maximum and y-value at first derivative maximum as fixpoints:

∂F (x; a, b, ...)

∂x
, F

(
∂2F (x; a, b, ...)

∂x2
= 0

)
, Fmax

All essential parameters for the methods can be tweaked by parKOD. See there and in ’Examples’.

Value

An object of the same class as in object that is ’tagged’ in its name (**name**) if it is an outlier
and also with an item $isOutlier with outlier information (see is.outlier). If remove = TRUE,
the outlier runs are removed (and the fitting updated in case of a ’replist’).

Author(s)

Andrej-Nikolai Spiess

References

Kinetic Outlier Detection (KOD) in real-time PCR.
Bar T, Stahlberg A, Muszta A & Kubista M.
Nucl Acid Res (2003), 31: e105.

Quality control for quantitative PCR based on amplification compatibility test.
Tichopad A, Bar T, Pecen L, Kitchen RR, Kubista M &, Pfaffl MW.
Methods (2010), 50: 308-312.

Shape based kinetic outlier detection in real-time PCR.
Sisti D, Guescini M, Rocchi MBL, Tibollo P, D’Atri M & Stocchi V.
BMC Bioinformatics (2010), 11: 186.

llratio 23

See Also

Function is.outlier to get an outlier summary.

Examples

kinetic outliers:
on a 'modlist', using efficiency from sigmoidal fit
and alpha = 0.01.
F7.3 detected as outlier (shallower => low efficiency)
ml1 <- modlist(reps, 1, c(2:5, 28), model = l5)
res1 <- KOD(ml1, method = "uni1", par = parKOD(eff = "sliwin", alpha = 0.01))
plot(res1)

Sigmoidal outliers:
remove runs without sigmoidal structure.
ml2 <- modlist(testdat, model = l5)
res2 <- KOD(ml2, method = "uni2", remove = TRUE)
plot(res2, which = "single")

Not run:
Multivariate outliers:
a few runs are identified.
ml3 <- modlist(reps, model = l5)
res3 <- KOD(ml3, method = "multi1")

On a 'replist', several outliers identified.
rl3 <- replist(ml3, group = gl(7, 4))
res4 <- KOD(rl3, method = "uni1")

End(Not run)

llratio Calculation of likelihood ratios for nested models

Description

Calculates the likelihood ratio and p-value from a chi-square distribution for two nested models.

Usage

llratio(objX, objY)

Arguments

objX Either a value of class logLik or a model for which logLik can be applied.

objY Either a value of class logLik or a model for which logLik can be applied.

24 LOF.test

Details

The likelihood ratio statistic is

LR =
f(X, φ̂, ψ̂)

f(X,φ, ψ̂0)

The usual test statistic is
Λ = 2 · (l(φ̂, ψ̂)− l(φ, ψ̂0))

Following the large sample theory, if H0 is true, then

Λ ∼ χ2
p

Value

A list containing the following items:

ratio the likelihood ratio statistic.

df the change in parameters.

p.value the p-value from a χ2 distribution. See Details.

Author(s)

Andrej-Nikolai Spiess

See Also

AIC, logLik.

Examples

Compare l5 and l4 model.
m1 <- pcrfit(reps, 1, 2, l5)
m2 <- pcrfit(reps, 1, 2, l4)
llratio(m1, m2)

LOF.test Formal lack-Of-Fit test of a nonlinear model against a one-way
ANOVA model

Description

Tests the nonlinear model against a more general one-way ANOVA model and from a likelihood
ratio test. P-values are derived from the F- and χ2 distribution, respectively.

Usage

LOF.test(object)

LOF.test 25

Arguments

object an object of class ’replist’, ’pcrfit’ or ’nls’, which was fit with replicate response
values.

Details

The one-way ANOVA model is constructed from the data component of the nonlinear model by
factorizing each of the predictor values. Hence, the nonlinear model becomes a submodel of the
one-way ANOVA model and we test both models with the null hypothesis that the ANOVA model
can be simplified to the nonlinear model (Lack-of-fit test). This is done by two approaches:

1) an F-test (Bates & Watts, 1988).
2) a likelihood ratio test (Huet et al, 2004).

P-values are derived from an F-distribution (1) and a χ2 distribution (2).

Value

A list with the following components:

pF the p-value from the F-test against the one-way ANOVA model.

pLR the p-value from the likelihood ratio test against the one-way ANOVA model.

Author(s)

Andrej-Nikolai Spiess

References

Nonlinear Regression Analysis and its Applications.
Bates DM & Watts DG.
John Wiley & Sons (1988), New York.

Statistical Tools for Nonlinear Regression: A Practical Guide with S-PLUS and R Examples.
Huet S, Bouvier A, Poursat MA & Jolivet E.
Springer Verlag (2004), New York, 2nd Ed.

Examples

Example with a 'replist'
no lack-of-fit.
ml1 <- modlist(reps, fluo = 2:5, model = l5)
rl1 <- replist(ml1, group = c(1, 1, 1, 1))
LOF.test(rl1)

Example with a 'nls' fit
=> there is a lack-of-fit.
DNase1 <- subset(DNase, Run == 1)
fm1DNase1 <- nls(density ~ SSlogis(log(conc), Asym, xmid, scal), DNase1)
LOF.test(fm1DNase1)

26 LRE

LRE Calculation of qPCR efficiency by the ’linear regression of efficiency’
method

Description

The LRE method is based on a linear regression of raw fluorescence versus efficiency, with the final
aim to obtain cycle dependent individual efficiencies En. A linear model is then fit to a sliding win-
dow of defined size(s) and within a defined border. Regression coefficients are calculated for each
window, and from the window of maximum regression, parameters such as PCR efficiency and ini-
tial template fluorescence are calculated. See ’Details’ for more information. This approach is quite
similar to the one in sliwin, but while sliwin regresses cycle number versus log(fluorescence),
LRE regresses raw fluorescence versus efficiency. Hence, the former is based on assuming a con-
stant efficiency for all cycles while the latter is based on a per-cycle individual efficiency.

Usage

LRE(object, wsize = 6, basecyc = 1:6, base = 0, border = NULL,
plot = TRUE, verbose = TRUE, ...)

Arguments

object an object of class ’pcrfit’.

wsize the size(s) of the sliding window(s), default is 6. A sequence such as 4:6 can be
used to optimize the window size.

basecyc if base != 0, which cycles to use for an initial baseline estimation based on the
averaged fluorescence values.

base either 0 for no baseline optimization, or a scalar defining multiples of the stan-
dard deviation of all baseline points obtained from basecyc. These are itera-
tively subtracted from the raw data. See ’Details’ and ’Examples’.

border either NULL (default) or a two-element vector which defines the border from
the take-off point to points nearby the upper asymptote (saturation phase). See
’Details’.

plot if TRUE, the result is plotted with the fluorescence/efficiency curve, sliding win-
dow, regression line and baseline.

verbose logical. If TRUE, more information is displayed in the console window.

... only used internally for passing the parameter matrix.

Details

To avoid fits with a high R2 in the baseline region, some border in the data must be defined. In
LRE, this is by default (base = NULL) the region in the curve starting at the take-off cycle (top)
as calculated from takeoff and ending at the transition region to the upper asymptote (saturation
region). The latter is calculated from the first and second derivative maxima: asympt = cpD1 +
(cpD1− cpD2). If the border is to be set by the user, border values such as c(-2, 4) extend these

LRE 27

values by top + border[1] and asympt + border[2]. The efficiency is calculated by En = Fn

Fn−1

and regressed against the raw fluorescence values F : E = Fβ + ε. For the baseline optimization,
100 baseline values Fbi are interpolated in the range of the data:

Fmin ≤ Fbi ≤ base · σ(Fbasecyc[1]...Fbasecyc[2])

and subtracted from Fn. For all iterations, the best regression window in terms of R2 is found and
its parameters returned. Two different initial template fluorescence values F0 are calculated in LRE:

init1: Using the single maximum efficiency Emax (the intercept of the best fit) and the fluores-
cence at second derivative maximum FcpD2, by

F0 =
FcpD2

EcpD2
max

init2: Using the cycle dependent efficiencies En from n = 1 to the near-lowest integer (floor)
cycle of the second derivative maximum n = bcpD2c, and the fluorescence at the floor of the
second derivative maximum FbcpD2c, by

F0 =
FbcpD2c∏

En

This approach corresponds to the paradigm described in Rutledge & Stewart (2008), by using cycle-
dependent and decreasing efficiencies ∆E to calculate F0.

Value

A list with the following components:

eff the maximum PCR efficiency Emax calculated from the best window.

rsq the maximum R2.

base the optimized baseline value.

window the best window found within the borders.

parMat a matrix containing the parameters as above for each iteration.

init1 the initial template fluorescence F0 assuming constant efficiency Emax as de-
scribed under ’Details’.

init2 the initial template fluorescence F0, assuming cycle-dependent efficiency En as
described under ’Details’.

Author(s)

Andrej-Nikolai Spiess

References

A kinetic-based sigmoidal model for the polymerase chain reaction and its application to high-
capacity absolute quantitative real-time PCR.
Rutledge RG & Stewart D.
BMC Biotech (2008), 8: 47.

28 maxRatio

Examples

Sliding window of size 5 between take-off point
and 3 cycles upstream of the upper asymptote
turning point, no baseline optimization.
m1 <- pcrfit(reps, 1, 2, l4)
LRE(m1, wsize = 5, border = c(0, 3), base = 0)

Not run:
Optimizing with window sizes of 4 to 6,
between 0/+2 from lower/upper border,
and baseline up to 2 standard deviations.
LRE(m1, wsize = 4:6, border = c(0, 2), base = 2)

End(Not run)

maxRatio The maxRatio method as in Shain et al. (2008)

Description

The maximum ratio (MR) is determined along the cubic spline interpolated curve of Fn

Fn−1
and the

corresponding cycle numbers FCN and its adjusted version FCNA are then calculated for MR.

Usage

maxRatio(x, method = c("spline", "sigfit"), baseshift = NULL,
smooth = TRUE, plot = TRUE, ...)

Arguments

x an object of class ’pcrfit’ (single run) or ’modlist’ (multiple runs).

method the parameters are either calculated from the cubic spline interpolation (default)
or a sigmoidal fit.

baseshift numerical. Shift value in case of type = "spline". See ’Details’.

smooth logical. If TRUE and type = "spline", invokes a 5-point convolution filter
(filter). See ’Details’.

plot Should diagnostic plots be displayed?

... other parameters to be passed to eff or plot.

Details

In a first step, the raw fluorescence data can be smoothed by a 5-point convolution filter. This
is optional but feasible for many qPCR setups with significant noise in the baseline region, and
therefore set to TRUE as default. If baseshift is a numeric value, this is added to each response
value Fn = Fn + baseshift (baseline shifting). Finally, a cubic spline is fit with a resolution of
0.01 cycles and the maximum ratio (efficiency) is calculated by MR = max(Fn

Fn−1
− 1). FCN

maxRatio 29

is then calculated as the cycle number at MR and from this the adjusted FCNA = FCN −
log2(MR). Sometimes problems are encountered in which, due to high noise in the background
region, randomly high efficiency ratios are calculated. This must be resolved by tweaking the
baseshift value.

Value

A list with the following components:

eff the maximum efficiency. Equals to mr + 1.

mr the maximum ratio.

fcn the cycle number at mr.

fcna an adjusted fcn, as described in Shain et al.

names the names of the runs as taken from the original dataframe.

Note

This function has been approved by the original author (Eric Shain).

Author(s)

Andrej-Nikolai Spiess

References

A new method for robust quantitative and qualitative analysis of real-time PCR.
Shain EB & Clemens JM.
Nucleic Acids Research (2008), 36: e91.

Examples

On single curve using baseline shifting.
m1 <- pcrfit(reps, 1, 2, l5)
maxRatio(m1, baseshift = 0.3)

On a 'modlist' using baseline shifting.
Not run:
ml1 <- modlist(reps, model = l5)
maxRatio(ml1, baseshift = 0.5)

End(Not run)

30 meltcurve

meltcurve Melting curve analysis with (iterative) Tm identification and peak area
calculation/cutoff

Description

This function conducts a melting curve analysis from the melting curve data of a real-time qPCR
instrument. The data has to be preformatted in a way that for each column of temperature values
there exists a corresponding fluorescence value column. See edit(dyemelt) for a proper format.
The output is a graph displaying the raw fluorescence curve (black), the first derivative curve (red)
and the identified melting peaks. The original data together with the results (−∂F∂T values, Tm
values) are returned as a list. An automatic optimization procedure is also implemented which
iterates over span.smooth and span.peaks values and finds the optimal parameter combination
that delivers minimum residual sum-of-squares of the identified Tm values to known Tm values.
For all peaks, the areas can be calculated and only those included which have areas higher than a
given cutoff (cut.Area). If no peak was identified meeting the cutoff values, the melting curves are
flagged with a ’bad’ attribute. See ’Details’.

Usage

meltcurve(data, temps = NULL, fluos = NULL, window = NULL,
norm = FALSE, span.smooth = 0.05, span.peaks = 51,
is.deriv = FALSE, Tm.opt = NULL, Tm.border = c(1, 1),
plot = TRUE, peaklines = TRUE, calc.Area = TRUE,
plot.Area = TRUE, cut.Area = 0,...)

Arguments

data a dataframe containing the temperature and fluorescence data.

temps a vector of column numbers reflecting the temperature values. If NULL, they are
assumed to be 1, 3, 5,

fluos a vector of column numbers reflecting the fluorescence values. If NULL, they are
assumed to be 2, 4, 6,

window a user-defined window for the temperature region to be analyzed. See ’Details’.

norm logical. If TRUE, the fluorescence values are scaled between [0, 1].

span.smooth the window span for curve smoothing. Can be tweaked to optimize Tm identifi-
cation.

span.peaks the window span for peak identification. Can be tweaked to optimize Tm iden-
tification. Must be an odd number.

is.deriv logical. Use TRUE, if data is already in first derivative transformed format.

Tm.opt a possible vector of known Tm values to optimize span.smooth and span.peaks
against. See ’Details’ and ’Examples’.

Tm.border for peak area calculation, a vector containing left and right border temperature
values from the Tm values. Default is -1/+1 ?C.

meltcurve 31

plot logical. If TRUE, a plot with the raw melting curve, derivative curve and identi-
fied Tm values is displayed for each sample.

peaklines logical. If TRUE, lines that show the identified peaks are plotted.
calc.Area logical. If TRUE, all peak areas are calculated.
plot.Area logical. If TRUE, the baselined area identified for the peaks is plotted by filling

the peaks in red.
cut.Area a peak area value to identify only those peaks with a higher area.
... other parameters to be passed to plot.

Details

The melting curve analysis is conducted with the following steps:

1a) Temperature and fluorescence values are selected in a region according to window.
1b) If norm = TRUE, the fluorescence data is scaled into [0, 1] by qpcR:::rescale.
Then, the function qpcR:::TmFind conducts the following steps:
2a) A cubic spline function (splinefun) is fit to the raw fluorescence melt values.
2b) The first derivative values are calculated from the spline function for each of the temperature
values.
2c) Friedman’s supersmoother (supsmu) is applied to the first derivative values.
2d) Melting peaks (Tm) values are identified by qpcR:::peaks.
2e) Raw melt data, first derivative data, best parameters, residual sum-of-squares and identified Tm
values are returned.
Peak areas are then calculated by qpcR:::peakArea:
3a) A linear regression curve is fit from the leftmost temperature value (Tm - Tm.border[1]) to the
rightmost temperature value (Tm + Tm.border[2]) by lm.
3b) A baseline curve is calculated from the regression coefficients by predict.lm.
3c) The baseline data is subtracted from the first derivative melt data (baselining).
3d) A splinefun is fit to the baselined data.
3e) The area of this spline function is integrated from the leftmost to rightmost temperature value.
4) If calculated peak areas were below cut.Area, the corresponding Tm values are removed.
Finally,
5) A matrix of xyy-plots is displayed using qpcR:::xyy.plot.

is.deriv must be set to TRUE if the exported data was already transformed to −∂F∂T by the PCR
system (i.e. Stratagene MX3000P).

If values are given to Tm.opt (see ’Examples’), then meltcurve is iterated over all combinations
of span.smooth = seq(0, 0.2, by = 0.01) and span.peaks = seq(11, 201, by = 10).
For each iteration, Tm values are calculated and compared to those given by measuring the residual
sum-of-squares between the given values Tm.opt and the Tm values obtained during the iteration:

RSS =

n∑
i=1

(Tmi − Tm.opti)2

The returned list items containing the resulting data frame each has an attribute "quality" which
is set to "bad" if none of the peaks met the cut.Area criterion (or "good" otherwise).

32 midpoint

Value

A list with as many items as melting curves, named as in data, each containing a data.frame with the
temperature (Temp), fluorescence values (Fluo), first derivative (dF.dT) values, (optimized) param-
eters of span.smooth/span.peaks, residual sum-of-squares (if Tm.opt != NULL), identified melting
points (Tm), calculated peak areas (Area) and peak baseline values (baseline).

Note

The peaks function is derived from a R-Help mailing list entry in Nov 2005 by Martin Maechler.

Author(s)

Andrej-Nikolai Spiess

Examples

Default columns.
data(dyemelt)
res1 <- meltcurve(dyemelt, window = c(75, 86))
res1

Selected columns and normalized fluo values.
res2 <- meltcurve(dyemelt, temps = c(1, 3), fluos = c(2, 4),

window = c(75, 86), norm = TRUE)

Removing peaks based on peak area
=> two peaks have smaller areas and are not included.
res3 <- meltcurve(dyemelt, temps = 1, fluos = 2, window = c(75, 86),

cut.Area = 0.2)
attr(res3[[1]], "quality")

If all peak areas do not meet the cutoff value, meltcurve is
flagged as 'bad'.
res4 <- meltcurve(dyemelt, temps = 1, fluos = 2, window = c(75, 86),

cut.Area = 0.5)
attr(res4[[1]], "quality")

Optimizing span and peaks values.
Not run:
res5 <- meltcurve(dyemelt[, 1:6], window = c(74, 88),

Tm.opt = c(77.2, 80.1, 82.4, 84.8))

End(Not run)

midpoint Calculation of the ’midpoint’ region

Description

Calculates the exponential region midpoint using the algorithm described in Peirson et al. (2003).

midpoint 33

Usage

midpoint(object, noise.cyc = 1:5)

Arguments

object a fitted object of class ’pcrfit’.

noise.cyc the cycles defining the background noise.

Details

The ’midpoint’ region is calculated by

Fnoise ·
√
Fmax
Fnoise

with Fnoise = the standard deviation of the background cycles and Fmax = the maximal fluores-
cence.

Value

A list with the following components:

f.mp the ’midpoint’ fluorescence.

cyc.mp the ’midpoint’ cycle, as predicted from f.mp.

Author(s)

Andrej-Nikolai Spiess

References

Experimental validation of novel and conventional approaches to quantitative real-time PCR data
analysis.
Peirson SN, Butler JN & Foster RG.
Nucleic Acids Research (2003), 31: e73.

Examples

m1 <- pcrfit(reps, 1, 2, l5)
mp <- midpoint(m1)
plot(m1)
abline(h = mp$f.mp, col = 2)
abline(v = mp$mp, col = 2)

34 modlist

modlist Create nonlinear models from a dataframe and coerce them into a list

Description

Essential function to create a list of nonlinear models from the columns (runs) of a qPCR dataframe.
This function houses different methods for curve transformation prior to fitting, such as normaliza-
tion in [0, 1], smoothing, baseline subtraction etc. Runs that failed to fit or that have been identified
as kinetic outliers (by default: lack of sigmoidal structure) can be removed automatically as well as
their entries in an optionally supplied label vector.

Usage

modlist(x, cyc = 1, fluo = NULL, model = l4, check = "uni2",
checkPAR = parKOD(), remove = c("none", "fit", "KOD"),
exclude = NULL, labels = NULL, norm = FALSE,
baseline = c("none", "mean", "median", "lin", "quad", "parm"),
basecyc = 1:8, basefac = 1, smooth = NULL, smoothPAR = NULL,
factor = 1, opt = FALSE,
optPAR = list(sig.level = 0.05, crit = "ftest"), verbose = TRUE, ...)

Arguments

x a dataframe containing the qPCR data or a single qPCR run of class ’pcrfit’.

cyc the column containing the cycle data. Defaults to first column.

fluo the column(s) (runs) to be analyzed. If NULL, all runs will be considered.

model the model to be used for all runs.

check the method for kinetic outlier detection. Default is check for sigmoidal structure,
see KOD. To turn off, use NULL.

checkPAR parameters to be supplied to the check method, see KOD.

remove which runs to remove. Either "none", those which failed to "fit" or from the
"KOD" outlier method.

exclude either "" for samples with missing column names or a regular expression defin-
ing columns (samples) to be excluded from modlist. See ’Details’.

labels a vector containing labels, i.e. for defining replicate groups prior to ratiobatch.

norm logical. Should the raw data be normalized within [0, 1] before model fitting?

baseline type of baseline subtraction. See ’Details’.

basecyc cycle range to be used for baseline subtraction, i.e. 1:5.

basefac a factor for the baseline value, such as 0.95.

smooth which curve smoothing method to use. See ’Details’.

smoothPAR parameters to be supplied to the smoothing functions, supplied as a list. See
’Details’.

modlist 35

factor a multiplication factor for the fluorescence response values (barely useful, but
who knows...).

opt logical. Should model selection be applied to each model?

optPAR parameters to be supplied to mselect.

verbose logical. If TRUE, fitting and tagging results will be displayed in the console.

... other parameters to be passed to pcrfit.

Details

From version 1.4-0, the following baselining methods are available for the fluorescence values:
baseline = numeric: a numeric value such as baseline = 0.2 for subtracting from each Fi.
"mean": subtracts the mean of all basecyc cycles from each Fi.
"median": subtracts the median of all basecyc cycles from each Fi.
"lin": creates a linear model of all basecyc cycles, predicts Pi over all cycles i from this model,
and subtracts Fi − Pi.
"quad": creates a quadratic model of all basecyc cycles, predicts Pi over all cycles i from this
model, and subtracts Fi − Pi.
"parm": extracts the c parameter from the fitted sigmoidal model and subtracts this value from all
Fi.
It is switched off by default, but in case of data with a high baseline (such as in TaqMan PCR), it
should be turned on as otherwise this will give highly underestimated efficiencies and hence wrong
init2 values.

From version 1.3-8, the following smoothing methods are available for the fluorescence values:
"lowess": Lowess smoothing, see lowess, parameter in smoothPAR: f.
"supsmu": Friedman’s SuperSmoother, see supsmu, parameter in smoothPAR: span.
"spline": Smoothing spline, see smooth.spline, parameter in smoothPAR: spar.
"savgol": Savitzky-Golay smoother, qpcR:::savgol, parameter in smoothPAR: none.
"kalman": Kalman smoother, see arima, parameter in smoothPAR: none.
"runmean": Running mean, see qpcR:::runmean, parameter in smoothPAR: wsize.
"whit": Whittaker smoother, see qpcR:::whittaker, parameter in smoothPAR: lambda.
"ema": Exponential moving average, see qpcR:::EMA, parameter in smoothPAR: alpha.
The author of this package advocates the use of "spline", "savgol" or "whit" because these three
smoothers have the least influence on overall curve structure.

In case of unsuccessful model fitting and if remove = "none" (default), the original data is included
in the output, albeit with no fitting information. This is useful since using plot.pcrfit on the
’modlist’ shows the non-fitted runs. If remove = "fit", the non-fitted runs are automatically
removed and will thus not be displayed. If remove = "KOD", by default all runs without sigmoidal
structure are removed likewise. If a labels vector lab is supplied, the labels from the failed fits are
removed and a new label vector lab_mod is written to the global environment. This way, an initial
labeling vector for all samples can be supplied, bad runs and their labels automatically removed
and these transfered to downstream analysis (i.e. to ratiobatch) without giving errors. exclude
offers an option to exclude samples from the modlist by some regular expression or by using "" for
samples with empty column names. See ’Examples’.

36 modlist

Value

A list with each item containing the model from each column. A names item (which is tagged by
NAME, if fitting failed) containing the column name is attached to each model as well as an item
isFitted with either TRUE (fitting converged) or FALSE (a fitting error occured). This information
is useful when ratiocalc is to be applied and unsuccessful fits should automatically removed from
the given group definition. If kinetic outlier detection is selected, an item isOutlier is attached,
defining the run as an outlier (TRUE) or not (FALSE).

Author(s)

Andrej-Nikolai Spiess

See Also

pcrbatch for batch analysis using different methods.

Examples

Calculate efficiencies and ct values
for each run in the 'reps' data,
subtract baseline using mean of
first 8 cycles.
ml1 <- modlist(reps, model = l5, baseline = "mean")
getPar(ml1, type = "curve")

'Crossing points' for the first 3 runs (normalized)
and using best model from Akaike weights.
ml2 <- modlist(reps, 1, 2:5, model = l5, norm = TRUE,

opt = TRUE, optPAR = list(crit = "weights"))
sapply(ml2, function(x) efficiency(x, plot = FALSE)$cpD2)

Convert a single run to a 'modlist'.
m <- pcrfit(reps, 1, 2, l5)
ml3 <- modlist(m)

Using the 'testdat' set
include failed fits.
ml4 <- modlist(testdat, 1, 2:9, model = l5)
plot(ml4, which = "single")

Remove failed fits and update a label vector.
GROUP <- c("g1s1", "g1s2", "g1s3", "g1s4", "g1c1", "g1c2", "g1c3", "g1c4")
ml5 <- modlist(testdat, 1, 2:9, model = l5, labels = GROUP, remove = "KOD")
plot(ml5, which = "single")

Smoothing by EMA and alpha = 0.8.
ml6 <- modlist(reps, model = l5, smooth = "ema",

smoothPAR = list(alpha = 0.5))
plot(ml6)

Not run:

mselect 37

Use one of the mechanistic models
get D0 values.
ml7 <- modlist(reps, model = mak3)
sapply(ml7, function(x) coef(x)[1])

Exclude first sample in each
replicate group of dataset 'reps'.
ml8 <- modlist(reps, exclude = ".1")
plot(ml8, which = "single")

Using weighted fitting:
weighted by inverse residuals.
ml9 <- modlist(reps, weights = "1/abs(resid)")
plot(ml9, which = "single")

Use linear model of the first 10
cycles for baselining.
ml10 <- modlist(reps, basecyc = 1:10, baseline = "lin")
plot(ml10)

Use a single value for baselining.
ml11 <- modlist(reps, basecyc = 1:10, baseline = 0.5)
plot(ml11)

End(Not run)

mselect Sigmoidal model selection by different criteria

Description

Model selection by comparison of different models using

1) the maximum log likelihood value,
2) Akaike’s Information Criterion (AIC),
3) bias-corrected Akaike’s Information Criterion (AICc),
4) the estimated residual variance,
5) the p-value from a nested F-test on the residual variance,
6) the p-value from the likelihood ratio,
7) the Akaike weights based on AIC,
8) the Akaike weights based on AICc, and
9) the reduced chi-square, χ2

ν , if replicates exist.

The best model is chosen by 5), 6), 8) or 9) and returned as a new model.

Usage

mselect(object, fctList = NULL, sig.level = 0.05, verbose = TRUE,
crit = c("ftest", "ratio", "weights", "chisq"), do.all = FALSE, ...)

38 mselect

Arguments

object an object of class ’pcrfit’ or ’replist’.

fctList a list of functions to be analyzed, i.e. for a non-nested regime. Should also
contain the original model.

sig.level the significance level for the nested F-test.

verbose logical. If TRUE, the result matrix is displayed in the console.

crit the criterium for model selection. Either "ftest"/"ratio" for nested models
or "weights"/"fitprob" for nested and non-nested models.

do.all if TRUE, all available sigmoidal models are tested and the best one is selected
based on AICc weights.

... other parameters to be passed to fitchisq.

Details

Criteria 5) and 6) cannot be used for comparison unless the models are nested. Criterion 8),
Akaike weights, can be used for nested and non-nested regimes, which also accounts for the re-
duced χ2

ν . For criterion 1) the larger the better. For criteria 2), 3) and 4): the smaller the better.
The best model is chosen either from the nested F-test (anova), likelihood ratio (llratio), cor-
rected Akaike weights (akaike.weights) or reduced χ2

ν (fitchisq) and returned as a new model.
When using "ftest"/"ratio" the corresponding nested functions are analyzed automatically, i.e.
b3/b4/b5/b6/b7; l3/l4/l5/l6/l7. If supplying nested models, please do this with ascending number of
parameters.

Value

A model of the best fit selected by one of the criteria above. The new model has an additional list
item ’retMat’ with a result matrix of the criterion tests.

Author(s)

Andrej-Nikolai Spiess

See Also

llratio, akaike.weights and fitchisq.

Examples

Choose best model based on F-tests
on the corresponding nested models.
m1 <- pcrfit(reps, 1, 2, l4)
m2 <- mselect(m1)
summary(m2) ## Converted to l7 model!

Use Akaike weights on non-nested models
compare to original model.
m2 <- mselect(m1, fctList = list(l4, b5, cm3), crit = "weights")
summary(m2) ## Converted to b5 model!

parKOD 39

Try all sigmoidal models.
m3 <- pcrfit(reps, 1, 20, l4)
mselect(m3, do.all = TRUE) ## l7 wins by far!

On replicated data using reduced chi-square.
ml1 <- modlist(reps, fluo = 2:5, model = l4)
rl1 <- replist(ml1, group = c(1, 1, 1, 1))
mselect(rl1, crit = "chisq") ## converted to l6!

parKOD Parameters that can be changed to tweak the kinetic outlier methods

Description

A control function with different list items that change the performance of the different (kinetic)
outlier functions as defined in KOD.

Usage

parKOD(eff = c("sliwin", "sigfit", "expfit"), train = TRUE,
alpha = 0.05, cp.crit = 10, cut = c(-6, 2))

Arguments

eff uni1. The efficiency method to be used. Either sliwin, sigfit or expfit.

train uni1. If TRUE, the sample’s efficiency is NOT included in the calculation of the
average efficiency (default), if FALSE it is.

cp.crit uni2. The cycle difference between first and second derivative maxima, default
is 10.

cut multi1. A 2-element vector defining the lower and upper border from the first
derivative maximum from where to cut the complete curve.

alpha the p-value cutoff value for all implemented statistical tests.

Details

For more details on the function of the parameters within the different kinetic and sigmoidal outlier
methods, see KOD.

Value

If called, returns a list with the parameters as items.

Author(s)

Andrej-Nikolai Spiess

40 pcrbatch

Examples

Multivariate outliers,
adjusting the 'cut' parameter.
ml1 <- modlist(reps, 1, 2:5, model = l5)
res1 <- KOD(ml1, method = "multi1", par = parKOD(cut = c(-5, 2)))

pcrbatch Batch calculation of qPCR efficiency and other qPCR parameters

Description

This function batch calculates the results obtained from efficiency, sliwin, expfit, LRE or the
coefficients from any of the makX/cm3 models on a dataframe containing many qPCR runs. The
input can also be a list obtained from modlist, which simplifies things in many cases. The output
is a dataframe with the estimated parameters and model descriptions. Very easy to use on datasheets
containing many qPCR runs, i.e. as can be imported from Excel. The result is automatically copied
to the clipboard.

Usage

pcrbatch(x, cyc = 1, fluo = NULL,
methods = c("sigfit", "sliwin", "expfit", "LRE"),
model = l4, check = "uni2", checkPAR = parKOD(),
remove = c("none", "fit", "KOD"), exclude = NULL,
type = "cpD2", labels = NULL, norm = FALSE,
baseline = c("none", "mean", "median", "lin", "quad", "parm"),
basecyc = 1:8, basefac = 1, smooth = NULL, smoothPAR = NULL,

factor = 1, opt = FALSE, optPAR = list(sig.level = 0.05, crit = "ftest"),
group = NULL, names = c("group", "first"), plot = TRUE,
verbose = TRUE, ...)

Arguments

x a dataframe containing the qPCR raw data from the different runs or a list ob-
tained from modlist.

cyc the column containing the cycle data. Defaults to first column.

fluo the column(s) (runs) to be analyzed. If NULL, all runs will be considered.

methods a character vector defining the methods to use. See ’Details’.

model the model to be used for all runs.

check the method for outlier detection in KOD. Default is check for sigmoidal structure.

checkPAR parameters to be supplied to the check method.

remove which runs to remove. Either none, those which failed to fit or from the outlier
methods.

pcrbatch 41

exclude either "" for samples with missing column names or a regular expression defin-
ing columns (samples) to be excluded from pcrbatch. See ’Details’ and ’Ex-
amples’ in modlist.

type the point on the amplification curve from which the efficiency is estimated. See
efficiency.

labels a vector containing labels, i.e. for defining replicate groups prior to ratiobatch.

norm logical. Should the raw data be normalized within [0, 1] before model fitting?

baseline type of baseline subtraction. See ’Details’ in modlist.

basecyc cycle range to be used for baseline subtraction, i.e. 1:5.

basefac a factor when using averaged baseline cycles, such as 0.95.

smooth which curve smoothing method to use. See modlist.

smoothPAR parameters to be supplied to the smoothing functions, supplied as a list. See
modlist.

factor a multiplication factor for the fluorescence response values (barely useful, but
who knows...).

opt logical. Should model selection be applied to each model?

optPAR parameters to be supplied to mselect.

group a vector containing the grouping for possible replicates.

names how to name the grouped fit. Either ’group_1, ...’ or the first name of the
replicates.

plot logical. If TRUE, the single runs are plotted from the internal ’modlist’ for diag-
nostics.

verbose logical. If TRUE, fitting and tagging results will be displayed in the console.

... other parameters to be passed to downstream methods.

Details

The methods vector is used for defining the different methods from which pcrbatch will concate-
nate the results. The mechanistic models (mak2, mak2i, mak3, mak3i, cm3) are omitted by
default, because fitting is time-expensive. If they should be included, just add "mak3" to methods.
See ’Examples’. The qPCR raw data should be arranged with the cycle numbers in the first column
with the name "Cycles". All subsequent columns must be plain raw data with sensible column de-
scriptions. If replicates are defined by group, the output will contain a numbering of groups (i.e.
"group_1" for the first replicate group). The model selection process is optional, but we advocate
using this for obtaining better parameter estimates. Normalization has been described to improve
certain qPCR analyses, but this has still to be independently evaluated. Background subtraction is
done as in modlist and efficiency. In case of unsuccessful model fitting or lack of sigmoidal
structure, the names are tagged by *NAME* or **NAME**, respectively (if remove = "none").
However, if remove = "fit" or remove = "KOD", the failed runs are excluded from the output.
Similar to modlist, if a labels vector lab is supplied, the labels from the failed fits are removed
and a new label vector lab_mod is written to the global environment.

42 pcrbatch

Value

A dataframe with the results in columns containing the calculated values, fit parameters and (tagged)
model name together with the different methods used as the name prefix. A plot shows a plot matrix
of all amplification curves/sigmoidal fits and failed amplifications marked with asterisks.

Note

IMPORTANT: When subsequent use of ratiocalc is desired, use pcrbatch on the single run level
with group = NULL and remove = "none", so that ratiocalc can automatically delete the failed
runs from its group definition. Otherwise error propagation will fail.

Author(s)

Andrej-Nikolai Spiess

See Also

The function modlist for creating a list of models, which is used internally by pcrbatch.

Examples

First 4 runs and return parameters of fit
do background subtraction using mean the first 5 cycles.
pcrbatch(reps, fluo = 2:5, baseline = "mean", basecyc = 1:5)

Not run:
First 8 runs, with 4 replicates each, l5 model.
pcrbatch(reps, fluo = 2:9, model = l5, group = c(1,1,1,1,2,2,2,2))

Using model selection (Akaike weights)
on the first 4 runs, runs 1 and 2 are replicates.
pcrbatch(reps, fluo = 2:5, group = c(1,1,2,3),

opt = TRUE, optPAR = list(crit = "weights"))

Fitting a sigmoidal and 'mak3' mechanistic model.
pcrbatch(reps, methods = c("sigfit", "mak3"))

Converting a 'modlist' to 'pcrbatch'.
ml5 <- modlist(reps, 1, 2:5, b5)
res5 <- pcrbatch(ml5)

Using Whittaker smoothing.
pcrbatch(reps, smooth = "whit")

End(Not run)

pcrboot 43

pcrboot Bootstrapping and jackknifing qPCR data

Description

Confidence intervals for the estimated parameters and goodness-of-fit measures are calculated for a
nonlinear qPCR data fit by either
a) boostrapping the residuals of the fit or
b) jackknifing and refitting the data.

Confidence intervals can also be calculated for all parameters obtained from the efficiency anal-
ysis.

Usage

pcrboot(object, type = c("boot", "jack"), B = 100, njack = 1,
plot = TRUE, do.eff = TRUE, conf = 0.95, verbose = TRUE, ...)

Arguments

object an object of class ’pcrfit’.

type either bootstrapping or jackknifing.

B numeric. The number of iterations.

njack numeric. In case of type = "jack", how many datapoints to exclude. Defaults
to leave-one-out.

plot should the fitting and final results be displayed as a plot?

do.eff logical. If TRUE, efficiency analysis will be performed.

conf the confidence level.

verbose logical. If TRUE, the iterations will be printed on the console.

... other parameters to be passed on to the plotting functions.

Details

Non-parametric bootstrapping is applied using the centered residuals.
1) Obtain the residuals from the fit:

ε̂t = yt − f(xt, θ̂)

2) Draw bootstrap pseudodata:
y∗t = f(xt, θ̂) + ε∗t

where ε∗t are i.i.d. from distribution F̂ , where the residuals from the original fit are centered at zero.
3) Fit θ̂∗ by nonlinear least-squares.
4) Repeat B times, yielding bootstrap replications

θ̂∗1, θ̂∗2, . . . , θ̂∗B

44 pcrboot

One can then characterize the EDF and calculate confidence intervals for each parameter:

θ ∈ [EDF−1(α/2), EDF−1(1− α/2)]

The jackknife alternative is to perform the bootstrap on the data-predictor vector, i.e. eliminating a
certain number of datapoints.
If the residuals are correlated or have non-constant variance the latter is recommended. This may
be the case in qPCR data, as the variance in the low fluorescence region (ground phase) is usually
much higher than in the rest of the curve.

Value

A list containing the following items:

ITER a list containing each of the results from the iterations.
CONF a list containing the confidence intervals for each item in ITER.

Each item contains subitems for the coefficients (coef), root-mean-squared error (rmse), resid-
ual sum-of-squares (rss), goodness-of-fit measures (gof) and the efficiency analysis (eff). If
plot = TRUE, all data is plotted as boxplots including confidence intervals.

Author(s)

Andrej-Nikolai Spiess

References

Nonlinear regression analysis and its applications.
Bates DM & Watts DG.
Wiley, Chichester, UK, 1988.

Nonlinear regression.
Seber GAF & Wild CJ.
Wiley, New York, 1989.

Boostrap accuracy for non-linear regression models.
Roy T.
J Chemometics (1994), 8: 37-44.

Examples

Simple bootstrapping with
too less iterations...
par(ask = FALSE)
m1 <- pcrfit(reps, 1, 2, l4)
pcrboot(m1, B = 20)

Jackknifing with leaving
5 datapoints out.
m2 <- pcrfit(reps, 1, 2, l4)
pcrboot(m2, type = "jack", njack = 5, B = 20)

pcrfit 45

pcrfit Workhorse function for qPCR model fitting

Description

This is the workhorse function of the qpcR package that fits one of the available models to qPCR
data using (weighted) nonlinear least-squares (Levenberg-Marquardt) fitting from nlsLM of the
’minpack.lm’ package.

Usage

pcrfit(data, cyc = 1, fluo, model = l4, start = NULL,
offset = 0, weights = NULL, verbose = TRUE, ...)

Arguments

data the name of the dataframe containing the qPCR runs.

cyc the column containing the cycle data. Defaults to 1.

fluo the column(s) containing the raw fluorescence data of the run(s). If more than
one column is given, the model will be built with the replicates. See ’Details’
and ’Examples’.

model the model to be used for the analysis. Defaults to ’l4’.

start a vector of starting values that can be supplied externally.

offset an offset cycle number from the second derivative cut-off cycle for all MAK meth-
ods. See ’Details’ and ’Example’.

weights a vector with same length as data containing possible weights for the nonlinear
fit, or an expression to calculate weights from. See ’Details’.

verbose logical. If TRUE, fitting and convergence results will be displayed in the console.

... other parameters to be passed to nlsLM.

Details

This is a newer (from qpcR 1.3-7 upwards) version of pcrfit. It is a much simpler implementation
containing only the LM-Algorithm for fitting, but this fitting routine has proven to be so robust that
other optimization routines (such as in optim) could safely be removed. The fitting is done with the
new nlsLM function of the ’minpack.lm’ package, which gives a model of class ’nls’ as output.

This function is to be used at the single run level or on replicates (by giving several columns). The
latter will build a single model based on the replicate values. If many models should be built on a
cohort of replicates, use modlist and replist.

The offset value defines the offset cycles from the second derivative maximum that is used as a
cut-off criterion in the MAK methods. See ’Examples’.

Since version 1.3-7, an expression given as a character string can be supplied to the weights argu-
ment. This expression, which is transferred to qpcR:::wfct, defines how the vector of weights is
calculated from the data. In principle, five different parameters can be used to define weights:

46 pcrfit

"x" relates to the cycles xi,
"y" relates to the raw fluorescence values yi,
"error" relates to the error σ(yi,j) of replicates j,
"fitted" relates to the fitted values ŷi of the fit,
"resid" relates to the residuals yi − ŷi of the fit.
For "fitted" and "resid", the model is fit unweighted by pcrfit, the fitted/residual values ex-
tracted and these subsequently used for refitting the model with weights. These parameters can be
used solely or combined to create a weights vector for different regimes. The most commonly used
are (see also ’Examples’):
Inverse of response (raw fluorescence) 1

yi
: "1/y"

Square root of predictor (Cycles)
√
xi: "sqrt(x)"

Inverse square of fitted values: 1
ŷ2
i

: "1/fitted^2"

Inverse variance 1
σ2(yi,j)

: "1/error^2"

Value

A model of class ’nls’ and ’pcrfit’ with the following items attached:

DATA the initial data used for fitting.

MODEL the model used for fitting.

call2 the call to pcrfit.

parMat the trace of the parameter values. Can be used to track problems.

opt.method defaults to "LM".

Author(s)

Andrej-Nikolai Spiess

References

Bioassay analysis using R.
Ritz C & Streibig JC.
J Stat Soft (2005), 12: 1-22.

A Method for the Solution of Certain Problems in Least Squares.
K. Levenberg.
Quart Appl Math (1944), 2: 164-168.

An Algorithm for Least-Squares Estimation of Nonlinear Parameters.
D. Marquardt.
SIAM J Appl Math (1963), 11: 431-441.

pcrGOF 47

Examples

Simple l4 fit of F1.1 of the 'reps' dataset.
m1 <- pcrfit(reps, 1, 2, l4)
plot(m1)

Supply own starting values.
pcrfit(reps, 1, 2, l4, start = c(-5, -0.05, 11, 16))

Make a replicate model,
use inverse variance as weights.
m2 <- pcrfit(reps, 1, 2:5, l5, weights = "1/error^2")
plot(m2)

Fit a mechanistic 'mak2' model
to -1 cycle from SDM.
m3 <- pcrfit(reps, 1, 2, mak2, offset = -1)
plot(m3)

pcrGOF Summarize measures for the goodness-of-fit

Description

Calculates all implemented measures for the goodness-of-fit and returns them as a list. Works for
objects of class pcrfit, lm, glm, nls, drc and many others...

Usage

pcrGOF(object, PRESS = FALSE)

Arguments

object a fitted object.

PRESS logical. If TRUE, the more calculation intensive P 2 is also returned.

Value

A list with all implemented Information criteria (AIC, AICc, BIC), residual variance, root-mean-
squared-error, the reduced χ2

ν from fitchisq (if replicates) and the PRESSP 2 value (if PRESS = TRUE).

Author(s)

Andrej-Nikolai Spiess

48 pcrimport

Examples

Single fit without replicates
including PRESS statistic.
m1 <- pcrfit(reps, 1, 2, l5)
pcrGOF(m1, PRESS = TRUE)

Fit containing replicates:
calculation of reduced
chi-square included!
m2 <- pcrfit(reps, 1, 2:5, l5)
pcrGOF(m2)

pcrimport Advanced qPCR data import function

Description

Advanced function to easily import/preformat qPCR data from delimited text files, the clipboard or
the workspace. The data files can be located in a directory which is automatically browsed for all
files. In a series of steps, the data can be imported and transformed to the appropriate format of the
’qpcR’ package (such as in dataset reps, with ’Cycles’ in the first column and named runs with raw
fluorescence data in remaining columns). A dataset can function as a transformation template, and
the remaining files in the directory are then formatted according to the established parameters. See
’Details’ and tutorial video in http://www.dr-spiess.de/qpcR/tutorials.html.

Usage

pcrimport(file = NA, sep = NA, dec = NA, delCol = NA, delRow = NA,
format = c(NA, "col", "row"), sampleDat = NA, refDat = NA,
names = NA, sampleLen = NA, refLen = NA, check = TRUE,
usePars = TRUE, dirPars = NULL, needFirst = TRUE, ...)

Arguments

file either a directory such as "c:/temp" containing the data file(s), the Windows
"clipboard" or an object in the workspace such as "reps".

sep the field separator character, i.e. "\t" for tabs.

dec the decimal seperator, i.e. ".".

delCol unneeded columns to delete after successful import, i.e. 2, 1:3, seq(1, 5, by = 2), etc....

delRow unneeded rows to delete after successful import, i.e. 2, 1:3, seq(1, 5, by = 2), etc....

format how the data is organized, i.e. in columns or rows.

sampleDat the columns with the raw fluorescence reporter dye data.

refDat optional columns with the raw fluorescence reference dye data.

names the row(s) that should be used for naming the runs.

sampleLen the rows with the reporter dye cycles.

http://www.dr-spiess.de/qpcR/tutorials.html

pcrimport 49

refLen the rows with the reference dye cycles.

check logical. If TRUE, a window displaying the transformed data after each step is
displayed. This assists in choosing the right parameters.

usePars logical. If TRUE, then all files in the directory are batch analysed using the stored
parameters. See ’Details’.

dirPars an optional directory such as "c:/pars" where the formatting parameters can
be stored. If NULL, the ’qpcR’ directory is used.

needFirst logical. If TRUE, then the (alphabetically) first file in the directory is used for an
initial definition of transformation parameters.

... other parameters to be passed to read.delim.

Details

This function has been designed to offer maximal flexibility in importing qPCR data from all kinds
of systems. This is accomplished by asking the user for many formatting options in single steps,
with the final goal of obtaining a dataset that is transformed in a way suitable for pcrfit, as in all
datasets in this package (i.e. ’reps’): it must be a dataframe with the first column containing the
cycle numbers ("Cycles") and all subsequent columns with sensible sample names, such as "S1_1".
In detail, the following steps are queried:

1) Location of the file. Either a directory containing the file(s), the (Windows) clipboard or a
dataframe in the workspace.
2) How are the fields separated, i.e. by tabs?
3) What is the decimal separator?
4) Which columns can be deleted? For analysis, we only need the raw fluorescence values and
sample names. Everything else should be deleted.
5) Which rows can be deleted? Same as above.
6) Are the runs organized in rows or in columns?
After these steps, the unwanted rows/columns are deleted and the data transformed into vertical
format (if it was in rows).
7) In which columns are the runs with reporter dye data (i.e. SybrGreen)?
8) If a reference dye (i.e. ROX) was used, in which columns are the runs?
9) How should the runs be named (automatically or from a row/rows containing names)? If more
than one row is supplied, the names in the rows are pasted together, i.e. "A4.GAPDH".
10) Which are the rows containing the raw fluorescence data from cycle to cycle for the reporter
dye?
11) If a reference dye was used, which are the rows with the cycle to cycle data?
After these steps, a ’Cycles’ column is prepended to the data which should then be in the right
format for downstream analysis.
ATTENTION: Because of this step, if the imported data also initially had a column containing
cycle numbers, these should be removed in steps 2) or 3)!

One major advantage of this function is that the formatting parameters are stored in a file and can
be reused with new data, most conveniently when doing a batch analysis of several files in a direc-
tory. When needFirst = TRUE, the alphabetically first run in the directory is used for defining
the formatting parameters, and if usePars = TRUE these are applied on all remaining datasets.
If the initial definition of formatting parameters is not needed, then setting needFirst = FALSE

50 pcrimport

will apply the last stored parameters on all datasets. By using different dirPars, one can establish
different formatting options for different qPCR systems.

The function will query (if needFirst = TRUE) all parameters that are defined as NA. For example,
using pcrimport(file = "c:/temp", sep = "\t", dec = ".", delCol = c(1, 3), ...)
will result in these parameters not being queried.

If reference dye data was supplied, the function checks if the data is of same dimensions than the
reporter dye data. The output is then the normalized fuorescence data Frep

Fref
.

The ’Examples’ feature internal datasets, but this function is best understood by the tutorial under
http://www.dr-spiess.de/qpcR/tutorials.html.

Value

A list with the transformed data as data.frame list items, suitable for downstream analysis.

Author(s)

Andrej-Nikolai Spiess

Examples

Not run:
EXAMPLE 1:
Internal dataset format01.txt (in 'add01' directory)
with 384 runs.
Tab delimited, 30 cycles, only reporter dye,
data in rows, and some unneeded columns and rows.
This is the example data path, but could be any path
with data such as c:/temp.
PATH <- path.package("qpcR")
PATHall <- paste(PATH, "/add01/", sep = "")
res <- pcrimport(PATHall)

Answer queries with the following parameters and
verify the effects in the 'View' windows:
1 => data is tab delimited
1 => decimal separator is "."
c(1, 3) => remove columns 1 + 3
1:2 => remove rows 1 + 2
2 => data is in rows
0 => all data is from reporter dye
1 => sample names are in row #1
0 => reporter data goes until end of table
Data is stored as dataframe list items and can
then be analyzed:
ml <- modlist(res[[1]], model = l5)
plot(ml, which = "single")

http://www.dr-spiess.de/qpcR/tutorials.html

pcrimport2 51

Alternative without query:
res <- pcrimport(PATHall, sep = "\t", dec = ".",

delCol = c(1, 3), delRow = 1:2,
format = "row", sampleDat = 0,
names = 1, sampleLen = 0,
check = FALSE)

Do something useful with the data:
ml <- modlist(res[[1]], model = l5)
plot(ml, which = "single")

EXAMPLE 2:
Internal datasets format02a.txt - format02d.txt
(in 'add02' directory) with 96 runs.
Tab delimited, 40 cycles, reporter dye + reference dye,
data in columns, and some unneeded columns and rows.
PATH <- path.package("qpcR")
PATHall <- paste(PATH, "/add02/", sep = "")
res <- pcrimport(PATHall)

Answer queries with the following parameters and
verify the effects in the 'View' windows:
1 => data is tab delimited
1 => decimal separator is "."
1 => remove column 1 with cycle data
c(1, 43, 44) => remove rows 1, 43, 44
1 => data is in columns
1:96 => data columns for reporter dye
-2 => reference dye stacked under reporter dye
1 => sample names are in row #1
1:40 => reporter data is in rows 1-40
-1 => reference data is stacked under samples
Data is stored as dataframe list items and can
then be analyzed.

Alternative without query:
res2 <- pcrimport(PATHall, sep = "\t", dec = ".",

delCol = 1, delRow = c(1, 43, 44),
format = "col", sampleDat = 1:96,
refDat = -2, names = 1,
sampleLen = 1:40, refLen = -1,
check = FALSE)

Do something useful with the data:
ml2 <- modlist(res2[[1]], model = l5)
plot(ml2)

End(Not run)

pcrimport2 Simple qPCR data import function (i.e. from text files or clipboard)

52 pcrimport2

Description

Simple wrapper function to easily import qPCR data from the clipboard (default) or tab-delimited
text files. In contrast to pcrimport, this function has no enhanced formatting features, but is quick
and easy to use on data that has been pre-formatted, i.e. as in dataset reps (’Cycles’ in the first
column, all remaining columns with sensible names.

Usage

pcrimport2(file = "clipboard", sep = "\t", header = TRUE, quote = "",
dec = ".", colClasses = "numeric", ...)

Arguments

file the name of the file which the data are to be read from (full path).

sep the field separator character.

header a logical value indicating whether the file contains the names of the variables as
its first line.

quote the set of quoting characters.

dec the character used in the file to denote decimal points.

colClasses character. A vector of classes to be assumed for the columns.

... further arguments to be passed on to read.table.

Details

For a more detailed description of the arguments see read.table.

Value

A data frame containing a representation of the data in the file.

Note

This function is the former pcrimport from packages 1.3-3 downward. See pcrimport for an
enhanced version offering formatting in the presence of reference dyes, columns/rows deletion,
transforming from wide to long format, and automatic batch analysis.

Author(s)

Andrej-Nikolai Spiess

Examples

Paste some Excel data into the clipboard.
Not run:
temp <- pcrimport2()

End(Not run)
From a tab-delimited text file.

pcropt1 53

Not run:
temp <- pcrimport2("c:\temp\foo.txt")

End(Not run)

pcropt1 Combinatorial elimination of plateau and ground phase cycles

Description

The estimation of PCR efficiency and calculation of initial fluorescence F0 is analyzed by refitting
the (optimized) model on subsets of the data, thereby using all possible combinations of datapoints.
The estimated parameters are then collated in a dataframe. This is intended to be the prerequisite
for finding the optimal datapoints that minimize the fit or exhibit the best correlation to a calibration
curve. This approch is an extension to the method described in Rutledge et al. (2004). The result
of any collected parameter can then be displayed by a rank-colored bubbleplot. See ’Examples’.

Usage

pcropt1(object, fact = 3, opt = FALSE, plot = TRUE, bubble = NULL, ...)

Arguments

object an object of class ’pcrfit’.

fact numeric. The multiplier for the scan border. See ’Details’.

opt logical. If true, model selection is applied for each combination of cycles.
Beware: Slow!!

plot logical. If TRUE, the iterative plotting is displayed, which makes the method a
bit slower.

bubble either NULL for no bubble plot or any parameter (given as a character vector) in
the result matrix to be displayed as a bubble plot. See ’Examples’.

... other parameters to be passed on to efficiency, mselect or qpcR:::bubbleplot.

Details

It has been shown by Rutledge (2004) that the estimation of PCR efficiency gives more realistic
values when the number of plateau cycles are decreased. This paradigm is the basis for this function,
but we also consider the cycles in the ground phase and all combinations between ground/plateau
cycles. All datapoints between the lower border cpD1 - fact * (cpD1 - cpD2) and upper border
cpD1 + fact * (cpD1 - cpD2) are cycled through.

Value

A matrix with the selected border values, goodness-of-fit measures as obtained from pcrGOF and
efficiency and F0 values from efficiency.

54 pcrsim

Author(s)

Andrej-Nikolai Spiess

References

Sigmoidal curve fitting redefines quantitative real-time PCR with the prospective of developing
automated high-throughput applications.
Rutledge RG.
Nucleic Acids Research (2004), 32: e178.

Examples

Not run:
Optimize fit and display bubbleplot of R-square.
m1 <- pcrfit(reps, 1, 2, l4)
res1 <- pcropt1(m1, plot = FALSE, bubble = "Rsq")

End(Not run)

pcrsim Simulation of sigmoidal qPCR data with goodness-of-fit analysis

Description

Simulated sigmoidal qPCR curves are generated from an initial model to which some user-defined
homoscedastic or heteroscedastic noise is added. One or more models can then be fit to this random
data and goodness-of-fit (GOF) measures are calculated for each of the models. This is essentially a
Monte-Carlo approach testing for the best model in dependence to some noise structure in sigmodal
models.

Usage

pcrsim(object, nsim = 100, error = 0.02,
errfun = function(y) 1, plot = TRUE,
fitmodel = NULL, select = FALSE,
statfun = function(y) mean(y, na.rm = TRUE),
PRESS = FALSE, ...)

Arguments

object an object of class ’pcrfit.

nsim the number of simulated curves.

error the gaussian error used for the simulation. See ’Details’.

errfun an optional function for the error distribution. See ’Details’.

plot should the simulated and fitted curves be displayed?

fitmodel a model or model list to test against the initial model.

pcrsim 55

select if TRUE, a matrix is returned with the best model in respect to each of the GOF
measures.

statfun a function to be finally applied to all collected GOF measures, default is the
average.

PRESS logical. If set to TRUE, the computationally expensive PRESS statistic will be
calculated.

... other parameters to be passed on to plot or pcrfit.

Details

The value defined under error is just the standard deviation added plainly to each y value from
the initial model, thus generating a dataset with homoscedastic error. With aid of errfun, the
distribution of the error along the y values can be altered and be used to generate heteroscedastic
error along the curve, i.e. as a function of the magnitude.

Example:
errfun = function(y) 1
same variance for all y, as is.

errfun = function(y) y
variance as a function of the y-magnitude.

errfun = function(y) 1/y
variance as an inverse function of the y-magnitude.

For the effect, see ’Examples’.

Value

A list containing the following items:

cyc same as in ’arguments’.

fluoMat a matrix with the simulated qPCR data in columns.

coefList a list with the coefficients from the fits for each model, as subitems.

gofList a list with the GOF measures for each model, as subitems.

statList a list with the GOF measures summarized by statfun for each model, as subitems.

modelMat if select = TRUE, a matrix with the best model for each GOF measure and each
simulation.

Author(s)

Andrej-Nikolai Spiess

56 plot.pcrfit

Examples

Generate initial model.
m1 <- pcrfit(reps, 1, 2, l4)

Simulate homoscedastic error
and test l4 and l5 on data.
res1 <- pcrsim(m1, error = 0.2, nsim = 20,

fitmodel = list(l4, l5))

Not run:
Use heteroscedastic noise typical for
qPCR: more noise at lower fluorescence.
res2 <- pcrsim(m1, error = 0.01, errfun = function(y) 1/y,

nsim = 20, fitmodel = list(l4, l5, l6))

Get 95% confidence interval for
the models GOF in question (l4, l5, l6).
res3 <- pcrsim(m1, error = 0.2, nsim = 20, fitmodel = list(l4, l5, l6),

statfun = function(y) quantile(y, c(0.025, 0.975)))
res3$statList

Count the selection of the 'true' model (l4)
for each of the GOF measures,
use PRESS statistic => SLOW!
BIC wins!!
res4 <- pcrsim(m1, error = 0.05, nsim = 20, fitmodel = list(l3, l4, l5),

select = TRUE, PRESS = TRUE)
apply(res4$modelMat, 2, function(x) sum(x == 2))

End(Not run)

plot.pcrfit Plotting qPCR data with fitted curves/confidence bands/error bars

Description

A plotting function for data of class ’pcrfit’ (single curves), ’modlist’ (batch curves) or ’replist’
(replicate curves) displaying the data points, the fitted curve and (if desired) confidence/prediction
bands/error bars on replicates. Four different plot types are available, namely plotting all curves in
a 2D graph, a 2D plot matrix, a 3D graph or a heatmap-like image plot.

Usage

S3 method for class 'pcrfit'
plot(x, which = c("all", "single", "3D", "image"),

fitted = TRUE, add = FALSE, col = NULL,
confband = c("none", "confidence", "prediction"),
errbar = c("none", "sd", "se", "conf"), par3D = list(),
par2D = list(), parCI = list(), parSD = list(), ...)

plot.pcrfit 57

Arguments

x an object of class ’pcrfit’, ’modlist’ or ’replist’.

which plots all curves in 2D ("all"), a plot matrix with many curves ("single"), a
3D plot ("3D") or a heatmap-like image plot (image).

fitted should the fitted lines be displayed?

add should the curve be added to an existing plot?

col an optional color vector for the individual curves. Is recycled to the number of
runs in x.

confband should confidence/prediction bands be displayed? See confint.

errbar the type of error bar on the plot if replicates exist. See ’Examples’.

par3D a list containing graphical parameters to change the 3D-plot: plot3d, points3d,
lines3d, axis3d or mtext3d.

par2D a list containing graphical parameters to change the 2D-plots: plot, points or
lines.

parCI a list containing graphical parameters to change the confidence band: lines.

parSD a list containing graphical parameters to change the error bars: arrows.

... other parameters to be passed to predict.

Details

Uses the ’rgl’ package for 3D plots. If the ’modlist’ contains runs that failed to fit, these are dis-
played with RED asterisked names. Additionally, if an outlier method from KOD was applied on
the ’modlist’ with option remove = FALSE, outlier runs will be displayed in BLUE with double
asterisked names. This approach makes the identification of failed runs easy and works only with
which = "single". See ’Examples’.
For high-throughput data, the user of this function is encouraged to use the "image" kind of plot,
as one can see quite nicely the differences in the amplification profiles of several hundred runs. Of
course, this plot type does not display the fitted curve. See ’Examples’.

Value

A 2D, multiple 2D, 3D or heatmap-like qPCR plot. If object was of class ’replist’, colour coding
of the curves is done automatically (but can be overridden).

Author(s)

Andrej-Nikolai Spiess

Examples

Single plot.
m1 <- pcrfit(reps, 1, 2, l5)
plot(m1)

Add another plot in blue
with 99% confidence interval.

58 predict.pcrfit

m2 <- pcrfit(reps, 1, 12, l5)
plot(m2, add = TRUE, col = 4, confband = "confidence", level = 0.99)

Plot a 'modlist' batch with coloring of replicates.
ml1 <- modlist(reps, 1, 2:13, model = l4)
plot(ml1, col = gl(3,4))

Subset of data.
plot(ml1, type = "n", col = rep(1:3, each = 4),

par2D = list(xlim = c(10, 30)))

Plot a 'replist'.
rl1 <- replist(ml1, group = gl(3, 4))
plot(rl1)

Standard deviation instead of
replicate points; suppress plotting
of point symbols.
plot(rl1, type = "l", errbar = "sd",

par2D = list(pch = ""))

95% confidence values.
plot(rl1, errbar = "conf",

par2D = list(pch = ""))

Plot single curves for diagnostics.
plot(ml1, which = "single", col = rep(1:3, each = 4))

3D plots of 'modlist's or 'replist's.
plot(ml1, which = "3D", col = rep(1:3, each = 4))
rgl.close()
plot(rl1, which = "3D")
rgl.close()

Not run:
Example for "image" type when
using large data.
ml2 <- modlist(vermeulen2)
plot(ml2, which = "image")

Example for outlier identification:
RED/*name* indicates failed fitting,
BLUE/**name** indicates sigmoidal outlier
using 'testdat' set.
ml3 <- modlist(testdat, model = l5)
plot(ml3, which = "single")

End(Not run)

predict.pcrfit Value prediction from a fitted qPCR model

predict.pcrfit 59

Description

After fitting the appropriate model, either the raw fluorescence values can be predicted from the
cycle number or vice versa.

Usage

S3 method for class 'pcrfit'
predict(object, newdata, which = c("y", "x"),

interval = c("none", "confidence", "prediction"),
level = 0.95, ...)

Arguments

object an object of class ’pcrfit’.

newdata a dataframe containing the values to estimate from, using the same variable
naming as in the fitted model.

which either "y" (default) for prediction of the raw fluorescence or "x" for prediction
of the cycle number.

interval if not "none", confidence or prediction intervals are calculated.

level the confidence level.

... some methods for this generic require additional arguments. None are used in
this method.

Details

y-values (Fluorescence) are estimated from object$MODEL$expr, x-values (Cycles) are estimated
from object$MODEL$inv. Confidence intervals are calculated from the gradient of the function and
the variance-covariance matrix of object by ∇f(x) · cov(y) · ∇f(x) and are based on asymptotic
normality (t-distribution).

Value

A dataframe containing the estimated values and (if chosen) standard error/upper confidence limit/lower
confidence limit. The gradient is attached to the dataframe and can be accessed with attr.

Note

The estimation of x (cycles) from fluorescence data if which = "x" is problematic in the asymptotic
regions of the sigmoidal curves (often gives NaN, due to logarithmation of negative values) and
works fairly well in the ascending part.

Author(s)

Andrej-Nikolai Spiess

60 PRESS

Examples

m1 <- pcrfit(reps, 1, 2, l5)

Which raw fluorescence value at cycle number = 17?
predict(m1, newdata = data.frame(Cycles = 17))

Cycle numbers 20:25, with 95% confidence?
predict(m1, newdata = data.frame(Cycles = 20:25), interval = "confidence")

Which cycle at Fluo = 4, with 95% prediction?
predict(m1, newdata = data.frame(Fluo = 4), which = "x", interval = "prediction")

PRESS Allen’s PRESS (Prediction Sum-Of-Squares) statistic, aka P-square

Description

Calculates the PRESS statistic, a leave-one-out refitting and prediction method, as described in
Allen (1971). Works for any regression model with a call slot, an update and a predict function,
hence all models of class lm, glm, nls and drc (and maybe more...). The function also returns the
PRESS analog to R-square, the P-square.

Usage

PRESS(object, verbose = TRUE)

Arguments

object a fitted model.

verbose logical. If TRUE, iterations are displayed on the console.

Details

From a fitted model, each of the predictors xi, i = 1 . . . n is removed and the model is refitted to
the n − 1 points. The predicted value ŷi,−i is calculated at the excluded point xi and the PRESS
statistic is given by:

n∑
i=1

(yi − ŷi,−i)2

The PRESS statistic is a surrogate measure of crossvalidation of small sample sizes and a measure
for internal validity. Small values indicate that the model is not overly sensitive to any single data
point. The P-square value, the PRESS equivalent to R-square, is given by

P 2 =

∑n
i=1 ε̂

2
−i∑n

i=1(yi − ȳ)2

with ε̂−i = yi − ŷ−i.

PRESS 61

Value

A list with the following components:

stat The PRESS statistic.

residuals a vector containing the PRESS residuals for each xi.

P.square the P-square value. See ’Details’.

Note

There is also a PRESS function in library ’MPV’ that works solely for lm models using the hat
matrix.

Author(s)

Andrej-Nikolai Spiess

References

The relationship between variable selection and data augmentation and a method for prediction.
Allen DM.
Technometrics (1974), 16: 25-127.

The Prediction Sum of Squares as a Criterion for Selecting Predictor Variables.
Allen DM.
Technical Report Number 23 (1971), Department of Statistics, University of Kentucky.

Classical and Modern Regression with Applications.
Myers RH.
Second Edition (1990), Duxbury Press (PWS-KENT Publishing Company), 299-304.

Examples

Example for PCR analysis.
m1 <- pcrfit(reps, 1, 2, l7)
PRESS(m1)

Compare PRESS statistic in models
with fewer parameters.
m2 <- pcrfit(reps, 1, 2, l5)
PRESS(m2)
m3 <- pcrfit(reps, 1, 2, l4)
PRESS(m3)

Example for linear regression.
x <- 1:10
y <- rnorm(10, x, 0.1)
mod <- lm(y ~ x)
PRESS(mod)

Example for NLS fitting.
DNase1 <- subset(DNase, Run == 1)
fm1DNase1 <- nls(density ~ SSlogis(log(conc), Asym, xmid, scal), DNase1)

62 propagate

res <- PRESS(fm1DNase1)

PRESS residuals plot.
barplot(res$residuals)

propagate Error propagation using different methods

Description

A general function for the calculation of error propagation by Monte Carlo simulation, permutation
and first/second-order Taylor expansion including covariances. Can be used for qPCR data, but any
data that should be subjected to error propagation analysis will do. The different methods can be
used for any expression based on either replicate or summary data (mean & standard deviation).

Usage

propagate(expr, data, type = c("raw", "stat"), second.order = TRUE,
do.sim = FALSE, dist.sim = c("norm", "tnorm"), use.cov = FALSE,
nsim = 10000, do.perm = FALSE, perm.crit = NULL, ties = NULL,
nperm = 2000, alpha = 0.05, plot = TRUE, logx = FALSE,
verbose = FALSE, ...)

Arguments

expr an expression, such as expression(x/y).

data a dataframe or matrix containing either a) the replicates in columns or b) the
means in the first row and the standard deviations in the second row. The variable
names must be defined in the column headers.

type either raw if replicates are given, or stat if means and standard deviations are
supplied.

second.order logical. If TRUE, error propagation will be calculated with first AND second-
order Taylor expansion. See ’Details’.

do.sim logical. Should Monte Carlo simulation be applied?

dist.sim "norm" will use a multivariate normal distribution, "tnorm" a multivariate trun-
cated normal distribution. See ’Details’.

use.cov logical or variance-covariance matrix with the same column descriptions and
column order as data. If TRUE together with replicates, the covariances are
calculated from these and used within Monte Carlo simulation and error propa-
gation. If type = "stat", a square variance-covariance matrix can be supplied
in the right dimensions (n x n, n = number of variables). If FALSE, Monte Carlo
simulation and error propagation use only the diagonal (variances).

nsim the number of simulations to be performed, minimum is 5000.

do.perm logical. Should permutation error analysis be applied?

propagate 63

perm.crit a character string of one or more criteria defining the null hypothesis for the
permutation p-value. See ’Details’.

ties a vector defining the columns that should be tied together for the permutations.
See ’Details’.

nperm the number of permutations to be performed.

alpha the confidence level.

plot logical. Should histograms with confidence intervals (in blue) be plotted for all
methods?

logx logical. Should the x-axis of the graphs have logarithmic scale?

verbose logical. If TRUE, a longer output is given including the simulated data, deriva-
tives, covariance matrix, etc.

... other parameters to be supplied to hist, boxplot or abline.

Details

The implemented methods are:

1) Monte Carlo simulation:
For each variable in data, simulated data with nsim samples is generated from a multivariate (trun-
cated) normal distribution using mean µ and standard deviation σ of each variable. All data is
coerced into a new dataset that has the same covariance structure as the initial data. Each row
of the simulated dataset is evaluated and summary statistics are calculated. In scenarios that are
nonlinear in nature the distribution of the result values can be skewed, mainly due to the simulated
values at the extreme end of the normal distribution. Setting dist.sim = "tnorm" will fit a mul-
tivariate normal distribution, calculate the lower/upper 2.5% quantile on each side for each input
variable and use these as bounds for simulating from a multivariate truncated normal distribution.
This will (in part) remove some of the skewness in the result distribution.

2) Permutation approach:
The original data is permutated nperm times by binding observations together according to ties.
The ties bind observations that can be independent measurements from the same sample. In qPCR
terms, this would be a real-time PCR for two different genes on the same sample. If ties are
omitted, the observations are shuffled independently. In detail, two datasets are created for each
permutation: Dataset1 samples the rows (replicates) of the data according to ties. Dataset2 is
obtained by sampling the columns (samples), also binding columns as defined in ties. For both
datasets, the permutations are evaluated and statistics are collected. A confidence interval is cal-
culated from all evaluations of Dataset1. A p-value is calculated from all permutations that follow
perm.crit, whereby init reflects the permutations of the initial data and perm the permutations
of the randomly reallocated samples. Thus, the p-value gives a measure against the null hypothesis
that the result in the initial group is just by chance. See also ’Examples’.
The criterion for the permutation p-value (perm.crit) has to be defined by the user. For example,
let’s say we calculate some value 0.2 which is a ratio between two groups. We would hypothe-
size that by randomly reallocating the values between the groups, the mean values are not equal
or smaller than in the initial data. We would thus define perm.crit as "perm < init" meaning that
we want to test if the mean of the initial data (init) is frequently smaller than by the randomly
allocated data (perm). The default (NULL) is to test all three variants "perm > init", "perm == init"
and "perm < init".

64 propagate

3) Error propagation:
The propagated error is calculated by first and second-order Taylor expansion using matrix algebra.
Often omitted, but important in models where the variables are correlated, is the second covariance
term:

σ2
y =

N∑
i=1

(
∂f

∂xi

)2

σ2
i︸ ︷︷ ︸

variance

+ 2

N∑
i=1
i6=j

N∑
j=1
j 6=i

(
∂f

∂xi

)(
∂f

∂xj

)
σij

︸ ︷︷ ︸
covariance

propagate calculates the propagated error either with or without covariances using matrix algebra
for first- and second-order (since version 1.3-8) Taylor expansion.
First-order:
E(y) = f(x̄i)
Cy = ∇xCx∇Tx
Second-order:
E(y) = f(x̄i) + 1

2 [tr(HxxCx)]
Cy = ∇xCx∇Tx + 1

2 [tr(HxxCxHxxCx)]

with E(y) = expectation of y, Cy = variance of y, ∇x = the p x n gradient matrix with all partial
first derivatives, Cx = the p x p covariance matrix, Hxx the Hessian matrix with all partial second
derivatives and tr(·) = the trace (sum of diagonal) of the matrix. For a detailed derivation, see ’Ref-
erences’.
The second-order Taylor expansion (second.order = TRUE) corrects for bias in nonlinear expres-
sions as the first-order Taylor expansion assumes linearity around x̄i.
Depending on the input formula, the error propagation may result in an error that is not normally
distributed. The Monte Carlo simulation, starting with normal distributions of the variables, can
clarify this. A high tendency from deviation of normality is encountered in formulas in which the
error of the denominator is relatively high or in exponential models where the exponent has a high
error. This is one of the problems that is inherent in real-time PCR analysis, as the classical ratio
calculation with efficiencies (i.e. by the delta-ct method) is of an exponential type.

Value

A plot containing histograms of the Monte Carlo simulation, the permutation values and error prop-
agation. Additionally inserted are a boxplot, median values in red and confidence intervals as blue
borders.

A list with the following components (if verbose = TRUE):

data.Sim the Monte Carlo simulated data with evaluations in the last column.

data.Perm the data of the permutated observations and samples with corresponding evalu-
ations and the decision according to perm.crit.

data.Prop nsim values generated from a normal distribution with mean and s.d. as calcu-
lated from the propagated error.

gradient the evaluated gradient vector∇x of partial first derivatives.

hessian the evaluated hessian matrix Hxx of partial second derivatives.

covMat the covariance matrix Cx used for Monte Carlo simulation and error propaga-
tion.

propagate 65

summary a summary of the collected statistics, given as a dataframe. These are: mean,
s.d. median, mad, lower/upper confidence interval and permutation p-values.

Author(s)

Andrej-Nikolai Spiess

References

Error propagation (in general):
An Introduction to error analysis.
Taylor JR.
University Science Books (1996), New York.

Evaluation of measurement data - Guide to the expression of uncertainty in measurement.
JCGM 100:2008 (GUM 1995 with minor corrections).
http://www.ifcc.org/pdf/GUM_JCGM_100_2008_E.pdf.

Higher-order Taylor expansion:
On higher-order corrections for propagating uncertainties.
Wang CM & Iyer HK.
Metrologia (2005), 42: 406-410.

Accuracy of error propagation exemplified with ratios of random variables.
Winzer PJ.
Rev Sci Instrum (2000), 72: 1447-1454.

Matrix algebra for error propagation:
An Introduction to Error Propagation: Derivation, Meaning and Examples of Equation Cy = Fx-
CxFx^t.
www.nada.kth.se/~kai-a/papers/arrasTR-9801-R3.pdf.

Second order nonlinear uncertainty modeling in strapdown integration using MEMS IMUs.
Zhang M, Hol JD, Slot L, Luinge H.
2011 Proceedings of the 14th International Conference on Information Fusion (FUSION) (2011).

Error propagation (in qPCR):
Error propagation in relative real-time reverse transcription polymerase chain reaction quantifica-
tion models: The balance between accuracy and precision.
Nordgard O, Kvaloy JT, Farmen RK, Heikkila R.
Anal Biochem (2006), 356: 182-193.

qBase relative quantification framework and software for management and analysis of real-time
quantitative PCR data.
Hellemans J, Mortier G, De Paepe A, Speleman F, Vandesompele J.
Genome Biol (2007), 8: R19.

http://www.ifcc.org/pdf/GUM_JCGM_100_2008_E.pdf
www.nada.kth.se/~kai-a/papers/arrasTR-9801-R3.pdf

66 propagate

Multivariate normal distribution:
Stochastic Simulation.
Ripley BD.
Stochastic Simulation (1987). Wiley. Page 98.

Testing for normal distribution:
Testing for Normality.
Thode Jr. HC.
Marcel Dekker (2002), New York.

Approximating the Shapiro-Wilk W-test for non-normality.
Royston P.
Stat Comp (1992), 2: 117-119.

See Also

Function ratiocalc for error analysis within qPCR ratio calculation.

Examples

From summary data just calculate
Monte-Carlo and propagated error.
EXPR <- expression(x/y)
x <- c(5, 0.01)
y <- c(1, 0.01)
DF <- cbind(x, y)
RES1 <- propagate(expr = EXPR, data = DF, type = "stat",

do.sim = TRUE, verbose = TRUE)

Do Shapiro-Wilks test on Monte Carlo evaluations
!maximum 5000 datapoints can be used!
=> p.value on border to non-normality
shapiro.test(RES1$data.Sim[1:5000, 3])
How about a graphical analysis:
qqnorm(RES1$data.Sim[, 3])

Using raw data
If data is of unequal length,
use qpcR:::cbind.na to avoid replication!
Do permutations (swap x and y values)
and simulations.
EXPR <- expression(x*y)
x <- c(2, 2.1, 2.2, 2, 2.3, 2.1)
y <- c(4, 4, 3.8, 4.1, 3.1)
DF <- qpcR:::cbind.na(x, y)
RES2 <- propagate(EXPR, DF, type = "raw", do.perm = TRUE,

do.sim = TRUE, verbose = TRUE)
RES2$summary

For replicate data, using relative

qpcR.news 67

quantification ratio from qPCR.
How good is the estimation of the propagated error?
Done without using covariance in the
calculation and simulation.
cp's and efficiencies are tied together
because they are two observations on the
same sample!
As we are using an exponential type function,
better to logarithmize the x-axis.
EXPR <- expression((E1^cp1)/(E2^cp2))
E1 <- c(1.73, 1.75, 1.77)
cp1 <- c(25.77,26.14,26.33)
E2 <- c(1.72,1.68,1.65)
cp2 <- c(33.84,34.04,33.33)
DF <- cbind(E1, cp1, E2, cp2)
RES3 <- propagate(EXPR, DF, type = "raw", do.sim = TRUE,

do.perm = TRUE, verbose = TRUE, logx = TRUE)
STRONG deviation from normality!
shapiro.test(RES3$data.Sim[1:5000, 5])
qqnorm(RES3$data.Sim[, 5])

Same setup as above but also
using a permutation approach
for resampling the confidence interval.
Cp's and efficiencies are tied together
because they are two observations on the
same sample!
Similar to what REST2008 software does.
RES4 <- propagate(EXPR, DF, type = "raw", do.sim = TRUE,

perm.crit = NULL, do.perm = TRUE,
ties = c(1, 1, 2, 2), logx = TRUE, verbose = TRUE)

RES4$summary
p-value of 0 in perm < init indicates that not a single
exchange of group memberships resulted in a smaller ratio!

Proof that covariance of Monte-Carlo
simulated dataset is the same as from
initial data.
RES4$covMat
cov(RES4$data.Sim[, 1:4])
all.equal(RES4$covMat, cov(RES4$data.Sim[, 1:4]))

qpcR.news Display news and changes of qpcR package versions

Description

Displays the latest changes (new functions, bug fixes etc.) of the different package versions in a text
window.

68 qpcR_datasets

Usage

qpcR.news(...)

Arguments

... arguments to be passed to file.show. Usually needs no entry.

Value

None.

Author(s)

Andrej-Nikolai Spiess

Examples

qpcR.news()

qpcR_datasets The (published) datasets implemented in qpcR

Description

A compilation of published datasets for method evaluation/comparison.

Usage

batsch1
batsch2
batsch3
batsch4
batsch5
boggy
competimer
dil4reps94
dyemelt
guescini1
guescini2
htPCR
karlen1
karlen2
karlen3
lievens1
lievens2
lievens3
reps

qpcR_datasets 69

reps2
reps3
reps384
rutledge
testdat
vermeulen1
vermeulen2

Details

batsch1-5:
Setup: Five 4-fold dilutions with 3 replicates.
Annotation: FX.Y (X = dilution number, Y = replicate number).
Hardware: Lightcycler 1.0 (Roche).
Details:
batsch1: Primers for rat SLC6A14, Taqman probes.
batsch2: Primers for human SLC22A13, Taqman probes.
batsch3: Primers for pig EMT, Taqman probes.
batsch4: Primers for chicken ETT, SybrGreen.
batsch5: Primers for human GAPDH, SybrGreen.

boggy:
Setup: Six 10-fold dilutions with 2 replicates.
Annotation: FX.Y (X = dilution number, Y = replicate number).
Hardware: Chromo4 (BioRad).
Details:
Primers for a synthetic template, consisting of a secondary structure-optimized random sequence
(129 bp), Syto-13 dye.

competimer
Setup: 7 concentrations of inhibitor, six 4-fold dilutions, 3 replicates.
Annotation: X_Y_Z (X = inhibitor concentration, Y = dilution number, Z = replicate number).
X: % competimer
A 0%, B 5%, C 10%, D 20%, E 30%, F 40%, G 50%.
Y: dilution factor (-fold)
A 64, B 16, C 4, D 1, E 0.25, F 0.0625, G NTC.
Hardware: Lightcycler 480 (Roche).
Details:
Primers for human AluSx repeats, competitive primers, SybrGreen I dye. NTCs are included.

dil4reps94
Setup: Four 10-fold dilutions with 94 replicates.
Annotation: FX_Y (X = copy number, Y = replicate number).
Hardware: CFX384 (BioRad).
Details:
Primers for the human MYCN gene, synthetic MYCN oligo used as template, SybrGreen I dye.
NTCs were removed.

dyemelt:
Setup: Melting curves of a 4-plex qPCR with different fluorescence dyes.
Annotation: T0 (Temperature), EvaGreen, T1 (Temperature), SybrGreen.I, T2 (Temperature), Syto13.

70 qpcR_datasets

Hardware: Lightcycler 1.0 (Roche).
Details:
A melting curve analysis of a 4-plex real-time PCR on genomic DNA with AZF deletion-specific
primers. The dyes used were EvaGreen, SybrGreen I and Syto-13.

guescini1-2:
Setup: Seven 10-fold dilutions with 12 replicates (guescini1). Five decreasing steps of PCR mix
with 12 replicates (guescini2).
Annotation: FX.Y (X = dilution number, Y = replicate number).
Hardware: Lightcycler 480 (Roche).
Details:
Primers for NADH dehydrogenase 1, SybrGreen I dye, data is background subtracted.

htPCR:
Setup: High throughput experiment containing 8858 runs from a 95 x 96 PCR grid.
Annotation: PX.Y (X = plate number, Y = well number).
Hardware: Biomark HD (Fluidigm).
Details:
Proprietary primers, EvaGreen dye, data is ROX normalized.

karlen1-3:
Setup: 4 (5) dilutions (1-, 10-, 50-, 100-, (1000)-fold) with 5 (4) replicates in 4 samples.
Annotation: FX.Y.Z (X = sample number, Y = dilution number, Z = replicate number).
Hardware: ABI Prism 7700 (Applied Biosystems).
Details:
Primers for Caveolin (karlen1), Fibronectin (karlen2) and L27 (karlen3), SybrGreen I dye, data
is background subtracted.

lievens1-3:
Setup: Five 5-fold dilutions with 18 replicates (lievens1). Five different concentrations of iso-
propanol (2.5%, 0.5%, 0.1%, 0.02% and 0.004% (v/v)) with 18 replicates (lievens2). Five differ-
ent amounts of tannic acid per reaction (5 ng, 1 ng, 0.2 ng, 0.04 ng and 0.008 ng) and 18 replicates
(lievens3).
Annotation: SX.Y (X = dilution number, Y = replicate number) (lievens1). SX.Y (X = concentra-
tion step, Y = replicate number) (lievens2 & lievens3).
Hardware: ABI7300 (ABI) or Biorad IQ5 (Biorad).
Details:
Primers for the soybean lectin endogene Le1, SybrGreen I dye.

reps, reps2, reps3:
Setup: Seven 10-fold dilutions with 4 replicates (reps). Five 4-fold dilutions with 3 replicates, 2
different cDNAs (reps2). Seven 4-fold dilutions with 3 replicates (reps3).
Annotation: FX.Y (X = dilution number, Y = replicate number) (reps & reps3). FX.Y.Z (X =
cDNA number, Y = dilution number, Z = replicate number) (reps2).
Hardware: Lightcycler 1.0 (Roche) (reps) or MXPro3000P (Stratagene) (reps2 & reps3).
Details:
Primers for the S27a housekeeping gene, SybrGreen I dye, reps3 was ROX-normalized.

reps384
Setup: A data frame with 379 replicate runs of a 384 microtiter plate.
Annotation: A_A_X (X = replicate number).
Hardware: CFX384 (BioRad).
Details:

qpcR_datasets 71

Primers for the human MYCN gene, synthetic MYCN oligo used as template (15000 copies), Sybr-
Green I dye. NTCs were removed.

rutledge:
Setup: Six 10-fold dilutions with 4 replicates in 5 individual batches.
Annotation: X.RY.Z (X = dilution number, Y = batch number, Z = replicate number).
Hardware: Opticon 2 (MJ Research).
Details:
Primers for a 102 bp amplicon, SybrGreen I dye, data is background subtracted.

testdat:
Setup: Six 10-fold dilutions with 4 replicates.
Annotation: FX.Y (X = dilution number, Y = replicate number).
Hardware: Lightcycler 1.0 (Roche).
Details:
Same as reps, but each FX.3 has noisy data which fails to fit with the l5 model, each FX.4 passes
fitting but fails in sigmoidal structure detection by KOD. Used for evaluating quality checking meth-
ods.

vermeulen1-2:
Setup: A subset of the first 20 samples for each of 64 genes (vermeulen1) and the corresponding
dilution data for all 64 genes with five 10-fold dilutions and 3 replicates (vermeulen2).
Annotation: X.Y (X = gene name, Y = sample name) (vermeulen1), X.STD_Y.Z (X = gene name,
Y = copy number, Z = replicate number) (vermeulen2).
Hardware: Lightcycler 480 (Roche).
Details:
Primers for AHCY, AKR1C1, ALUsq(Eurogentec), ARHGEF7, BIRC5, CAMTA1, CAMTA2,
CD44, CDCA5, CDH5, CDKN3, CLSTN1, CPSG3, DDC, DPYSL3, ECEL1, ELAVL4, EPB41L3,
EPHA5, EPN2, FYN, GNB1, HIVEP2, HMBS, HPRT1, IGSF4, INPP1, MAP2K4, MAP7, MAPT,
MCM2, MRPL3, MTSS1, MYCN(4), NHLH2, NM23A, NRCAM, NTRK1, ODC1, PAICS, PDE4DIP,
PIK3R1, PLAGL1, PLAT, PMP22, PRAME, PRDM2, PRKACB, PRKCZ, PTN, PTPRF, PTPRH,
PTPRN2, QPCT, SCG2, SDHA(1), SLC25A5, SLC6A8, SNAPC1, TNFRSF, TYMS, UBC(2),
ULK2 and WSB1. SybrGreen I dye.
Originally, raw data was available at http://medgen.ugent.be/jvermeulen, but site is down.
The complete (vermeulen_all) and smaller (vermeulen_sub) datasets can be downloaded from
http://www.dr-spiess.de/qpcR/datasets.html.

Author(s)

Andrej-Nikolai Spiess

References

batsch1-5:
Simultaneous fitting of real-time PCR data with efficiency of amplification modeled as Gaussian
function of target fluorescence.
Batsch A, Noetel A, Fork C, Urban A, Lazic D, Lucas T, Pietsch J, Lazar A, Schoemig E & Gruen-
demann D.
BMC Bioinformatics (2008), 9: 95. Additional File 5 to the paper.

boggy:
A Mechanistic Model of PCR for Accurate Quantification of Quantitative PCR Data.

http://medgen.ugent.be/jvermeulen
http://www.dr-spiess.de/qpcR/datasets.html

72 qpcR_datasets

Boggy GJ & Woolf PJ.
PLOS One (2010), 5: e12355. Additional File S1 to the paper.

dyemelt:
A one-step real-time multiplex PCR for screening Y-chromosomal microdeletions without down-
stream amplicon size analysis.
Kozina V, Cappallo-Obermann H, Gromoll J & Spiess AN.
PLOS One (2011), 6: e23174. Figure 2 to the paper.

guescini1-2:
A new real-time PCR method to overcome significant quantitative inaccuracy due to slight amplifi-
cation inhibition.
Guescini M, Sisti D, Rocchi MB, Stocchi L & Stocchi V.
BMC Bioinformatics (2008), 9: 326. Supplemental Data 1 to the paper.

htPCR:
Kindly supplied by Roman Bruno.

karlen1-3:
Karlen Y, McNair A, Perseguers S, Mazza C & Mermod N.
Statistical significance of quantitative PCR.
BMC Bioinformatics (2007), 20: 131. Supplemental Data 2 to the paper.

lievens1-3:
Enhanced analysis of real-time PCR data by using a variable efficiency model: FPK-PCR.
Lievens A, Van Aelst S, Van den Bulcke M & Goetghebeur E.
Nucleic Acids Res (2012), 40: e10. Supplemental Data to the paper.

reps, reps2, reps3:
Andrej-Nikolai Spiess & Nadine Mueller, Institute for Hormone and Fertlity Research, Hamburg,
Germany.

competimer, dil4reps94, reps384:
Evaluation of qPCR curve analysis methods for reliable biomarker discovery: Bias, resolution,
precision, and implications.
Ruijter JM, Pfaffl MW, Zhao S, Spiess AN, Boggy G, Blom J, Rutledge RG, Sisti D, Lievens A, De
Preter K, Derveaux S, Hellemans J, Vandesompele J.
Methods (2012), [Epub ahead of print] PubMed PMID: 22975077.

rutledge:
Sigmoidal curve-fitting redefines quantitative real-time PCR with the prospective of developing
automated high-throughput applications.
Rutledge RG.
Nucleic Acids Research (2004), 32: e178. Supplemental Data 1 to the paper.

vermeulen1-2:
Predicting outcomes for children with neuroblastoma using a multigene-expression signature: a
retrospective SIOPEN/COG/GPOH study.
Vermeulen J, De Preter K, Naranjo A, Vercruysse L, Van Roy N, Hellemans J, Swerts K, Bravo S,
Scaruffi P, et. al.
Lancet Oncol (2009), 10:663-671.

Examples

Not run:

qpcR_functions 73

'reps' dataset.
g1 <- gl(7, 4)
ml1 <- modlist(reps, model = l5)
plot(ml1, col = g1)

'rutledge' dataset.
g2 <- gl(6, 20)
ml2 <- modlist(rutledge, model = l5)
plot(ml2, col = g2)

'lievens1' dataset.
g3 <- gl(5, 18)
ml3 <- modlist(lievens1, model = l5)
plot(ml3, col = g3)

End(Not run)

qpcR_functions The nonlinear/mechanistic models implemented in qpcR

Description

A summary of all available models implemented in this package.

Usage

l7
l6
l5
l4
b7
b6
b5
b4
expGrowth
expSDM
linexp
mak2
mak2i
mak3
mak3i
lin2
cm3
spl3

74 qpcR_functions

Details

The following nonlinear sigmoidal models are implemented:

l7:
f(x) = c+ k1 · x+ k2 · x2 +

d− c
(1 + exp(b(log(x)− log(e))))f

l6:
f(x) = c+ k · x+

d− c
(1 + exp(b(log(x)− log(e))))f

l5:
f(x) = c+

d− c
(1 + exp(b(log(x)− log(e))))f

l4:
f(x) = c+

d− c
1 + exp(b(log(x)− log(e)))

b7:
f(x) = c+ k1 · x+ k2 · x2 +

d− c
(1 + exp(b(x− e)))f

b6:
f(x) = c+ k · x+

d− c
(1 + exp(b(x− e)))f

b5:
f(x) = c+

d− c
(1 + exp(b(x− e)))f

b4:
f(x) = c+

d− c
1 + exp(b(x− e))

The following nonlinear models for subsets of the curve are implemented:

expGrowth:
f(x) = a · exp(b · x) + c |n1≤x≤n2

expSDM:
f(x) = a · exp(b · x) + c |1≤x≤SDM

linexp:
f(x) = a · exp(b · x) + (k · x) + c |1≤x≤SDM

lin2:

f(x) = η · log
(
exp

(
a1 · x− τ

η

)
+ exp

(
a2 · x− τ

η

))
+ c

∣∣∣∣
1≤x≤SDM

qpcR_functions 75

The following mechanistic models are implemented:

mak2 & mak2i:

Fn = Fn−1 + k · log
(

1 +

(
Fn−1
k

))
+ Fb

∣∣∣∣
1≤x≤SDM

mak3 & mak3i:

Fn = Fn−1 + k · log
(

1 +

(
Fn−1
k

))
+ (slope · n+ Fb)

∣∣∣∣
1≤x≤SDM

cm3:

Fn = Fn−1 ·
(

1 +

(
max− Fn−1

max

)
−
(

Fn−1
Kd+ Fn−1

))
+ Fb

Other models:

spl3:
S : [a, b]→ Real, a = n0 < n1 < . . . < nk−1 < nk = b

mak2 and mak3 are two mechanistic models developed by Gregory Boggy (see references). The
mechanistic models are a completely different approach in that the response value (Fluorescence) is
not a function of the predictor value (Cycles), but a function of the preceeding response value, that
is, Fn = f(Fn−1). These are also called ’recurrence relations’ or ’iterative maps’. The implemen-
tation of these models in the ’qpcR” package is the following:
1) In case of mak2/mak2i or mak3/mak3i, all cycles up from the second derivative maximum (SDM)
of a four-parameter log-logistic model (l4) are chopped off. This is because these two models do
not fit to a complete sigmoidal curve. An offset criterion from the SDM can be defined in pcrfit,
see there.
2) For mak2i/mak3i, a grid of sensible starting values is created for all parameters in the model.
For mak2/mak3 the recurrence function is fitted directly (which is much faster, but may give con-
vergence problems), so proceed to 7).
3) For each combination of starting parameters, the model is fit.
4) The acquired parameters are collected in a parameter matrix together with the residual sum-of-
squares (RSS) of the fit.
5) The parameter combination is selected that delivered the lowest RSS.
6) These parameters are transferred to pcrfit, and the data is refitted.
7) ParameterD0 can be used directly to calculate expression ratios, hence making the use of thresh-
old cycles and efficiencies expendable.
cm3 is a mechanistic model by Carr & Moore (see references). In contrast to the mak models, cm3
models the complete curve, which might prove advantageous as no decision on curve subset selec-
tion has to be done. As in the mak models, D0 is the essential parameter to use.
spl3 is a cubic spline function that treats each point as being exact. It is just implemented for com-
parison purposes.
lin2 is a bilinear model developed by P. Buchwald (see references). These are essentially two linear
functions connected by a transition region.

The functions are defined as a list containing the following items:
$expr the function as an expression for the fitting procedure.
$fct the function defined as f(x, parm).

76 qpcR_functions

$ssfct the self-starter function.
$d1 the first derivative function.
$d2 the second derivative function.
$inv the inverse function.
$expr.grad the function as an expression for gradient calculation.
$inv.grad the inverse functions as an expression for gradient calculation.
$parnames the parameter names.
$name the function name.
$type the function type as a character string.

Note

For models l6, l7, b6, b7 there are no explicit solutions to the inverse function. The calculation
of x from y (Cycles from Fluorescence) is done using uniroot by minimizing model$fct(x, parm)
- y in the interval [1, 100].

Author(s)

Andrej-Nikolai Spiess

References

4-parameter logistic:
Validation of a quantitative method for real time PCR kinetics.
Liu W & Saint DA.
Biochem Biophys Res Commun (2002), 294:347-53.

Standardized determination of real-time PCR efficiency from a single reaction set-up.
Tichopad A, Dilger M, Schwarz G & Pfaffl MW.
Nucleic Acids Res (2003), 31:e122.

Sigmoidal curve-fitting redefines quantitative real-time PCR with the prospective of developing
automated high-throughput applications.
Rutledge RG.
Nucleic Acids Res (2004), 32:e178.

A kinetic-based sigmoidal model for the polymerase chain reaction and its application to high-
capacity absolute quantitative real-time PCR.
Rutledge RG & Stewart D.
BMC Biotechnol (2008), 8:47.

Evaluation of absolute quantitation by nonlinear regression in probe-based real-time PCR.
Goll R, Olsen T, Cui G & Florholmen J.
BMC Bioinformatics (2006), 7:107

Comprehensive algorithm for quantitative real-time polymerase chain reaction.
Zhao S & Fernald RD.
J Comput Biol (2005), 12:1047-64.

4-parameter log-logistic; 5-parameter logistic/log-logistic:
qpcR: an R package for sigmoidal model selection in quantitative real-time polymerase chain reac-
tion analysis.

ratiobatch 77

Ritz C & Spiess AN.
Bioinformatics (2008), 24:1549-51.

Highly accurate sigmoidal fitting of real-time PCR data by introducing a parameter for asymmetry.
Spiess AN, Feig C & Ritz C.
BMC Bioinformatics (2008), 29:221.

exponential model:
Standardized determination of real-time PCR efficiency from a single reaction set-up.
Tichopad A, Dilger M, Schwarz G & Pfaffl MW.
Nucleic Acids Research (2003), 31:e122.

Comprehensive algorithm for quantitative real-time polymerase chain reaction.
Zhao S & Fernald RD.
J Comput Biol (2005), 12:1047-64.

mak2, mak2i, mak3, mak3i:
A Mechanistic Model of PCR for Accurate Quantification of Quantitative PCR Data.
Boggy GJ & Woolf PJ.
PLoS ONE (2010), 5:e12355.

lin2:
A general bilinear model to describe growth or decline time profiles.
Buchwald P.
Math Biosci (2007), 205:108-36.

cm3:
Robust quantification of polymerase chain reactions using global fitting.
Carr AC & Moore SD.
PLoS One (2012), 7:e37640.

Examples

m1 <- pcrfit(reps, 1, 2, b4)
m2 <- pcrfit(reps, 1, 2, b5)
m3 <- pcrfit(reps, 1, 2, l6)
m4 <- pcrfit(reps, 1, 2, l7)

Get the second derivative
curve of m2.
d2 <- b5$d2(m2$DATA[, 1], coef(m2))
plot(m2)
lines(d2, col = 2)

ratiobatch Calculation of ratios in a batch format for multiple genes/samples

Description

For multiple qPCR data from type ’pcrbatch’, this function calculates ratios between samples, using
normalization against one or more reference gene(s), if supplied. Multiple reference genes can
be averaged according to Vandesompele et al. (2002). The input may be single qPCR data or

78 ratiobatch

(more likely) data containing replicates. This is essentially a version of ratiocalc that can handle
multiple reference genes and genes-of-interest with multiple (replicated) samples as found in large-
scale qPCR runs such as 96- or 384-Well plates. A boxplot representation for all Monte-Carlo
simulations, permutations and error propagations including 95% confidence intervals is calculated
for each ratio calculation.

Usage

ratiobatch(data, group = NULL, plot = TRUE,
combs = c("same", "across", "all"),
type.eff = "mean.single", which.cp = "cpD2",
which.eff = "sli", refmean = FALSE,
dataout = NULL, verbose = TRUE, ...)

Arguments

data multiple qPCR data generated by pcrbatch.

group a character vector defining the replicates (if any) of control/treatment samples
and reference genes/genes-of-interest. See ’Details’.

plot logical. If TRUE, plots are displayed for the diagnostics and analysis.

combs type of combinations between different samples (i.e. r1s1:g1s2). See ’Details’.

type.eff type of efficiency averaging used. Same as in ratiocalc.

which.eff efficiency obtained from which method. Same as in ratiocalc.

which.cp threshold cycle obtained from which method. Same as in ratiocalc.

dataout an optional file path where to store the result dataframe.

refmean logical. If TRUE, multiple reference are averaged before calculating the ratios.
See ’Details’.

verbose logical. If TRUE, the steps of analysis are shown in the console window

... other parameters to be passed to ratiocalc.

Details

Similar to ratiocalc, the replicates of the ’pcrbatch’ data columns are to be defined as a character
vector with the following abbreviations:

"g1s1": gene-of-interest #1 in treatment sample #1
"g1c1": gene-of-interest #1 in control sample #1
"r1s1": reference gene #1 in treatment sample #1
"r1c1": reference gene #1 in control sample #1

There is no distinction between the different technical replicates so that three different runs of gene-
of-interest #1 in treatment sample #2 are defined as c("g1s2", "g1s2", "g1s2").

Example:
1 control sample with 2 genes-of-interest (2 technical replicates), 2 treatment samples with 2 genes-
of-interest (2 technical replicates):
"g1c1", "g1c1", "g2c1", "g2c1", "g1s1", "g1s1", "g1s2", "g1s2", "g2s1", "g2s1", "g2s2", "g2s2"

ratiobatch 79

The ratios are calculated for all pairwise ’rc:gc’ and ’rs:gs’ combinations according to:
For all control samples i = 1 . . . I and treatment samples j = 1 . . . J , reference genes k = 1 . . .K
and genes-of-interest l = 1 . . . L, calculate

Without reference genes:
E(glci)

cp(glci)

E(glsj)cp(glsj)

With reference genes:
E(glci)

cp(glci)

E(glsj)cp(glsj)
/
E(rkci)

cp(rkci)

E(rksj)cp(rksj)

For the mechanistic models makX/cm3 the following is calculated:

Without reference genes:
D0(glsj)

D0(glci)

With reference genes:
D0(glsj)

D0(glci)
/
D0(rksj)

D0(rkci)

Efficiencies can be taken from the individual curves or averaged from the replicates as described in
the documentation to ratiocalc. It is also possible to give external efficiencies (i.e. acquired by
some calibration curve) to the function. See ’Examples’. The different combinations of type.eff,
which.eff and which.cp can yield very different results in ratio calculation. We observed a rela-
tively stable setup which minimizes the overall variance using the combination

type.eff = "mean.single" # averaging efficiency across replicates
which.eff = "sli" # taking efficiency from the sliding window method
which.cp = "sig" # using the second derivative maximum of a sigmoidal fit

This is also the default setup in the function. The lowest variance can be obtained for the threshold
cycles if the asymmetric 5-parameter l5 model is used in the pcrbatch function.

There are three different combination setups possible when calculating the pairwise ratios:
combs = "same": reference genes, genes-of-interest, control and treatment samples are the same,
i.e. i = k,m = o, j = n, l = p.
combs = "across": control and treatment samples are the same, while the genes are combinated,
i.e. i 6= k,m 6= o, j = n, l = p,.
combs = "all": reference genes, genes-of-interest, control and treatment samples are all combi-
nated, i.e. i 6= k,m 6= o, j 6= n, l 6= p.

The last setting rarely makes sense and is very time-intensive. combs = "same" is the most common
setting, but combs = "across" also makes sense if different genes-of-interest and reference gene
combinations should be calculated for the same samples.

From version 1.3-6, ratiobatch has the option of averaging several reference genes, as described in
Vandesompele et al. (2002). Threshold cycles and efficiency values for any i reference genes with
j replicates are averaged before calculating the ratios using the averaged value µr for all reference
genes in a control/treatment sample. The overall error σr is obtained by error propagation. The
whole procedure is accomplished by function refmean, which can be used as a stand-alone function,
but is most conveniently used inside ratiobatch setting refmean = TRUE. See in ’Examples’. For

80 ratiobatch

details about reference gene averaging by refmean, see there. If none or only one per sample is
found, the data is analyzed without using reference gene averaging/error propagation.

Value

A list with the following components:

resList a list with the results from the combinations as list items.

resDat a dataframe with the results in colums.

Both resList and resDat have as names the combinations used for the ratio calculation. If
plot = TRUE, a boxplot matrix from the Monte-Carlo simulations, permutations and error propa-
gations is given including 95% confidence intervals as coloured horizontal lines.

Note

This function can be used quite conveniently when the raw fluorescence data from the 96- or 384-
well runs come from Excel with ’Cycles’ in the first column and run descriptions as explained above
in the remaining column descriptions (such as ’r1c6’). Examples for a proper format can be found
under http://www.dr-spiess.de//qpcR//datasets.html. This data may then be imported into
R by dat <- pcrimport().

Author(s)

Andrej-Nikolai Spiess

References

Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple
internal control genes.
Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F.
Genome Biol (2002), 3: research0034-research0034.11.

Examples

Not run:
One reference gene, one gene of interest,
one control and one treatment sample with
4 replicates each => 1 x Ratio = 1.
DAT1 <- pcrbatch(reps, fluo = c(2:9, 2:9), model = l5)
GROUP1 <- c("g1c1", "g1c1", "g1c1", "g1c1",

"g1s1", "g1s1", "g1s1", "g1s1",
"r1c1", "r1c1", "r1c1", "r1c1",
"r1s1", "r1s1", "r1s1", "r1s1")

ratiobatch(DAT1, GROUP1, refmean = FALSE)

One reference gene, one gene of interest,
two control and two treatment samples with
2 replicates each => 4 x Ratio = 1.
DAT2 <- pcrbatch(reps, fluo = c(2:9, 2:9), model = l5)

http://www.dr-spiess.de//qpcR//datasets.html

ratiobatch 81

GROUP2 <- c("g1c1", "g1c1", "g1c2", "g1c2",
"g1s1", "g1s1", "g1s2", "g1s2",
"r1c1", "r1c1", "r1c2", "r1c2",
"r1s1", "r1s1", "r1s2", "r1s2")

ratiobatch(DAT2, GROUP2, refmean = FALSE)

Two reference genes, one gene of interest,
one control and one treatment samples with
4 replicates each => 2 x Ratio = 1.
DAT3 <- pcrbatch(reps, fluo = c(2:9, 2:9, 2:9), model = l5)
GROUP3 <- c("g1c1", "g1c1", "g1c1", "g1c1",

"g1s1", "g1s1", "g1s1", "g1s1",
"r1c1", "r1c1", "r1c1", "r1c1",
"r1s1", "r1s1", "r1s1", "r1s1",
"r2c1", "r2c1", "r2c1", "r2c1",
"r2s1", "r2s1", "r2s1", "r2s1")

ratiobatch(DAT3, GROUP3, refmean = FALSE)

Two reference genes, one gene of interest,
one control and one treatment samples with
4 replicates each.
Reference genes are averaged => 1 x Ratio = 1.
DAT4 <- pcrbatch(reps, fluo = c(2:9, 2:9, 2:9), model = l5)
GROUP4 <- c("g1c1", "g1c1", "g1c1", "g1c1",

"g1s1", "g1s1", "g1s1", "g1s1",
"r1c1", "r1c1", "r1c1", "r1c1",
"r1s1", "r1s1", "r1s1", "r1s1",
"r2c1", "r2c1", "r2c1", "r2c1",
"r2s1", "r2s1", "r2s1", "r2s1")

ratiobatch(DAT4, GROUP4, refmean = TRUE)

Same as above, but use same efficiency E = 2.
ratiobatch(DAT4, GROUP4, which.eff = 2)

No reference genes, two genes-of-interest,
two control and two treatment samples with
2 replicates each, efficiency from sigmoidal model.
DAT6 <- pcrbatch(reps, fluo = 2:17, model = l5)
GROUP6 <- c("g1s1", "g1s1", "g1s2", "g1s2",

"g2s1", "g2s1", "g2s2", "g2s2",
"g1c1", "g1c1", "g1c2", "g1c2",
"g2c1", "g2c1", "g2c2", "g2c2")

ratiobatch(DAT6, GROUP6, which.eff = "sig")

Same as above, but using a mechanistic model (mak3).
BEWARE: type.eff must be "individual"!
DAT7 <- pcrbatch(reps, fluo = 2:17, model = l5,

methods = c("sigfit", "mak3"))
GROUP7 <- c("g1s1", "g1s1", "g1s2", "g1s2",

"g2s1", "g2s1", "g2s2", "g2s2",
"g1c1", "g1c1", "g1c2", "g1c2",
"g2c1", "g2c1", "g2c2", "g2c2")

ratiobatch(DAT7, GROUP7, which.eff = "mak",

82 ratiocalc

type.eff = "individual")

Using external efficiencies from a
calibration curve. Can be supplied by the
user from external calibration (or likewise),
but in this example acquired by function 'calib'.
ml1 <- modlist(reps, fluo = 2:25, model = l5)
DIL <- rep(10^(5:0), each = 4)
EFF <- calib(refcurve = ml1, dil = DIL)$eff
DAT8 <- pcrbatch(ml1)
GROUP8 <- c(rep("g1s1", 4), rep("g1s2", 4),

rep("g1s3", 4), rep("g1s4", 4),
rep("g1s5", 4), rep("g1c1", 4))

ratiobatch(DAT8, GROUP8, which.eff = EFF)

End(Not run)

ratiocalc Calculation of ratios from qPCR runs with/without reference genes

Description

For multiple qPCR data from type ’pcrbatch’, this function calculates ratios between two samples
(control/treatment) of a gene-of-interest, using normalization against a reference gene, if supplied.
The input can be single qPCR data or (more likely) data containing replicates. Errors and confi-
dence intervals for the obtained ratios can be calculated by Monte-Carlo simulation, a permutation
approach similar to the popular REST software and by error propagation. Statistical significance
for the ratios is calculated by a permutation approach of randomly reallocated vs. non-reallocated
data. See ’Details’.

Usage

ratiocalc(data, group = NULL,
which.eff = c("sig", "sli", "exp", "mak", "cm3", "ext"),
type.eff = c("individual", "mean.single", "median.single",

"mean.pair", "median.pair"),
which.cp = c("cpD2", "cpD1", "cpE", "cpR", "cpT", "Cy0", "ext"),
...)

Arguments

data multiple qPCR data generated by pcrbatch.

group a character vector defining the replicates (if any) of control/treatment samples
and reference genes/genes-of-interest. See ’Details’.

which.eff efficiency calculated by which method. Defaults to sigmoidal fit. See output
of pcrbatch. Alternatively, a numeric value for all runs, a vector of external
efficiencies with one element per run or directly transferred from ratioPar.

type.eff type of efficiency pre-processing prior to error analysis. See ’Details’.

ratiocalc 83

which.cp type of threshold cycles to be used for the analysis. See output of efficiency.
Alternatively, a vector of external threshold cycles with one element per run or
directly transferred from ratioPar.

... other parameters to be passed to propagate.

Details

The replicates for the data columns are to be defined as a character vector with the following abbre-
viations:

"gs": gene-of-interest in treatment sample
"gc": gene-of-interest in control sample
"rs": reference gene in treatment sample
"rc": reference gene in control sample

There is no distinction between the different runs of the same sample, so that three different runs
of a gene-of-interest in a treatment sample are defined as c("gs", "gs", "gs"). The error analysis
calculates statistics from ALL replicates, so that a further sub-categorization of runs is superfluous.
NOTE: If the setup consists of different sample or gene combinations, use ratiobatch!

Examples:
No replicates: NULL.
2 runs with 2 replicates each, no reference gene: c("gs", "gs", "gs", "gs", "gc", "gc", "gc", "gc").
1 run with two replicates each and reference gene: c("gs", "gs", "gc", "gc", "rs", "rs", "rc", "rc").

type.eff defines the pre-processing of the efficiencies before being transferred to propagate. The
qPCR community sometimes uses single efficiencies, or averaged over replicates etc., so that dif-
ferent settings were implemented. In detail, these are the following:

"individual": The individual efficiencies from each run are used.
"mean.single": Efficiencies are averaged over all replicates.
"median.single": Same as above but median instead of mean.
"mean.pair": Efficiencies are averaged from all replicates of treatment sample AND control.
"median.pair": Same as above but median instead of mean.

Efficiencies can be taken from the individual curves or averaged from the replicates as described
in the documentation to ratiocalc. The different combinations of type.eff, which.eff and
which.cp can yield very different results in ratio calculation. We observed a relatively stable setup
which minimizes the overall variance using the combination

type.eff = "mean.single" # averaging efficiency across replicates
which.eff = "sli" # taking efficiency from the sliding window method
which.cp = "sig" # using the second derivative maximum of a sigmoidal fit

The ratios are calculated according to the following formulas:
Without reference gene:

E(gc)cp(gc)

E(gs)cp(gs)

84 ratiocalc

With reference gene:
E(gc)cp(gc)

E(gs)cp(gs)
/
E(rc)cp(rc)

E(rs)cp(rs)

The permutation approach permutates threshold cycles and efficiency replicates within treatment
and control samples. The treatment/control samples (and their respective efficiencies) are tied to-
gether, which is similar to the popular REST software approach ("pairwise-reallocation test"). Ra-
tios are calculated for each permutation and compared to ratios obtained if samples were randomly
reallocated from the treatment to the control group. Three p-values are calculated from all permuta-
tions that gave a higher/equal/lower ratio than the original data. The resulting p-values are thus an
indication for the significance in any direction AGAINST the null hypothesis that ratios calculated
by permutation are just by chance.

If the mechanistic mak2/mak2i/mak3/mak3i/cm3 models are used in pcrbatch, set which.eff = "mak"
for ratio calculations from the D0 values of the model:
Without reference gene:

D0(gs)

D0(gc)

With reference gene:
D0(gs)

D0(gc)
/
D0(rs)

D0(rc)

Confidence values are returned for all three methods (Monte Carlo, permutation, error propagation)
as follows:
Monte-Carlo: From the evaluations of the Monte-Carlo simulated data.
Permutation: From the evaluations of the within-group permutated data.
Propagation: From the propagated error, assuming normality.

Value

A list with the following components:
data: the data that was transferred to propagate for the error analysis.
data.Sim, data.Perm, data.Prop, derivs, covMat: The complete output from propagate.
summary: a summary of the results obtained from the Monte Carlo simulation, permutation and
error propagation.

Note

The error calculated from qPCR data by propagate often seems quite high. This largely depends on
the error of the base (i.e. efficiency) of the exponential function. The error usually decreases when
setting use.cov = TRUE in the ... part of the function. It can be debated anyhow, if the variables
’efficiency’ and ’threshold cycles’ have a covariance structure. As the efficiency is deduced at the
second derivative maximum of the sigmoidal curve, variance in the second should show an effect on
the first, such that the use of a var-cov matrix might be feasible. It is also commonly encountered
that the propagated error is much higher when using reference genes, as the number of partial
derivative functions increases.

Author(s)

Andrej-Nikolai Spiess

ratiocalc 85

References

Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta
C(T)) method.
Livak KJ & Schmittgen TD.
Methods (2001), 25: 402-428.

Standardized determination of real-time PCR efficiency from a single reaction set-up.
Tichopad A, Dilger M, Schwarz G, Pfaffl MW.
Nucleic Acids Res (2003), 31: e122.

Validation of a quantitative method for real time PCR kinetics.
Liu W & Saint DA.
Biochem Biophys Res Commun (2002), 294: 347-53.

Relative expression software tool (REST) for group-wise comparison and statistical analysis of
relative expression results in real-time PCR.
Pfaffl MW, Horgan GW, Dempfle L.
Nucl Acids Res (2002), 30: e36.

See Also

The function ratioPar, which is a much better and simpler way if only external threshold cy-
cles/efficiencies should be used.

Examples

Only treatment sample and control,
no reference gene, 4 replicates each.
Individual efficiencies for error calculation.
DAT1 <- pcrbatch(reps, fluo = 2:9, model = l4)
GROUP1 <- c("gs", "gs", "gs", "gs", "gc", "gc", "gc", "gc")
RES1 <- ratiocalc(DAT1, group = GROUP1, which.eff = "sli",

type.eff = "individual", which.cp = "cpD2")
RES1$summary

Not run:
Gets even better using averaged efficiencies
over all replicates.
p-value indicates significant upregulation in
comparison to randomly reallocated
samples (similar to REST software)
RES2 <- ratiocalc(DAT1, GROUP1, which.eff = "sli",

type.eff = "mean.single", which.cp = "cpD2")
RES2$summary

Using reference data.
Toy example is same data as above
but replicated as reference such
that the ratio should be 1.

86 ratiocalc

DAT3 <- pcrbatch(reps, fluo = c(2:9, 2:9), model = l4)
GROUP3 <- c("gs", "gs", "gs", "gs",

"gc", "gc", "gc", "gc",
"rs", "rs", "rs", "rs",
"rc", "rc", "rc", "rc")

RES3 <- ratiocalc(DAT3, GROUP3, which.eff = "sli",
type.eff = "mean.single", which.cp = "cpD2")

RES3$summary

Using one of the mechanistic models
=> ratios are calculated from the replicate
D0 values, without reference genes.
DAT4 <- pcrbatch(reps, fluo = 2:9,

methods = c("sigfit", "sliwin", "mak3"))
GROUP4 <- c("gs", "gs", "gs", "gs", "gc", "gc", "gc", "gc")
RES4 <- ratiocalc(DAT4, GROUP4, which.eff = "mak")
RES4$summary

Example without replicates
=> no Monte-Carlo simulations
and hence no plots.
DAT5 <- pcrbatch(reps, fluo = 2:5, model = l4)
GROUP5 <- c("gs", "gc", "rs", "rc")
RES5 <- ratiocalc(DAT5, GROUP5, which.eff = "sli",

type.eff = "individual", which.cp = "cpD2")
RES5$summary

Using external efficiencies.
DAT6 <- pcrbatch(reps, fluo = 2:9, model = l5)
GROUP6 <- c("gs", "gs", "gs", "gs", "gc", "gc", "gc", "gc")
EFF6 <- rep(c(1.72, 1.76), c(4, 4))
RES6 <- ratiocalc(DAT6, GROUP6, which.eff = EFF6,

type.eff = "individual", which.cp = "cpD2")
RES6$summary

Using external efficiencies AND
external threshold cycles.
DAT7 <- pcrbatch(reps, fluo = 2:9, model = l5)
GROUP7 <- c("gs", "gs", "gs", "gs", "gc", "gc", "gc", "gc")
EFF7 <- rep(c(1.72, 1.76), c(4, 4))
CP7 <- c(15.44, 15.33, 14.84, 15.34, 18.89, 18.71, 18.13, 17.22)
RES7 <- ratiocalc(DAT7, GROUP7, which.eff = EFF7,

type.eff = "individual", which.cp = CP7)
RES7$summary

Compare 'ratiocalc' to REST software
using the data from the REST 2008
manual (http://rest.gene-quantification.info/).
We supply the threshold cycles/efficiencies from the
manual as external data to 'dummy' pcrbatch data.
BETTER: use 'ratioPar' function!
cp.rc <- c(26.74, 26.85, 26.83, 26.68, 27.39, 27.03, 26.78, 27.32)
cp.rs <- c(26.77, 26.47, 27.03, 26.92, 26.97, 26.97, 26.07, 26.3, 26.14, 26.81)

ratioPar 87

cp.gc <- c(27.57, 27.61, 27.82, 27.12, 27.76, 27.74, 26.91, 27.49)
cp.gs <- c(24.54, 24.95, 24.57, 24.63, 24.66, 24.89, 24.71, 24.9, 24.26, 24.44)
eff.rc <- rep(1.97, 8)
eff.rs <- rep(1.97, 10)
eff.gc <- rep(2.01, 8)
eff.gs <- rep(2.01, 10)
CP8 <- c(cp.rc, cp.rs, cp.gc, cp.gs)
EFF8 <- c(eff.rc, eff.rs, eff.gc, eff.gs)
DAT8 <- pcrbatch(rutledge, 1, 2:37, model = l4)
GROUP8 <- rep(c("rc", "rs", "gc", "gs"), c(8, 10, 8, 10))
RES8 <- ratiocalc(DAT8, GROUP8, which.eff = EFF8, which.cp = CP8)
RES8$summary
=> Confidence interval: 2.983/9.996
REST 2008 manual, page 10: 2.983/9.996

End(Not run)

ratioPar Calculation of ratios in a batch format from external PCR parameters

Description

Starting from external PCR parameters such as threshold cycles/efficiency values commonly ob-
tained from other programs, this function calculates ratios between samples, using normalization
against one or more reference gene(s), if supplied. By default, multiple reference genes are aver-
aged according to Vandesompele et al. (2002). The input can be single qPCR data or (more likely)
data containing replicates. It is similar to ratiobatch and can handle multiple reference genes and
genes-of-interest with multiple (replicated) samples as found in large-scale qPCR runs such as 96-
or 384-Well plates. The results are automatically stored as a file or copied into the clipboard. A box-
plot representation for all Monte-Carlo simulations, permutations and error propagations including
95% confidence intervals is also given.

Usage

ratioPar(group = NULL, effVec = NULL, cpVec = NULL,
type.eff = "individual", plot = TRUE,
combs = c("same", "across", "all"),
refmean = FALSE, verbose = TRUE, ...)

Arguments

group a character vector defining the replicates (if any) of control/treatment samples
and reference genes/genes-of-interest. See ’Details’.

effVec a vector of efficiency values with the same length of group.

cpVec a vector of threshold cycle values with the same length of group.

type.eff type of efficiency averaging used. Same as in ratiocalc.

plot logical. If TRUE, plots are displayed for the diagnostics and analysis.

88 ratioPar

combs type of combinations between different samples (i.e. r1s1:g1s2). See ’Details’.

refmean logical. If TRUE, multiple reference are averaged before calculating the ratios.
See ’Details’.

verbose logical. If TRUE, the steps of analysis are shown in the console window

... other parameters to be passed to ratiocalc.

Details

As in ratiobatch, the replicates are to be defined as a character vector with the following abbrevi-
ations:

"g1s1": gene-of-interest #1 in treatment sample #1
"g1c1": gene-of-interest #1 in control sample #1
"r1s1": reference gene #1 in treatment sample #1
"r1c1": reference gene #1 in control sample #1

There is no distinction between the different technical replicates so that three different runs of gene-
of-interest #1 in treatment sample #2 are defined as c("g1s2", "g1s2", "g1s2").

Example:
1 control sample with 2 genes-of-interest (2 technical replicates), 2 treatment samples with 2 genes-
of-interest (2 technical replicates):
"g1c1", "g1c1", "g2c1", "g2c1", "g1s1", "g1s1", "g1s2", "g1s2", "g2s1", "g2s1", "g2s2", "g2s2"

The ratios are calculated for all pairwise ’rc:gc’ and ’rs:gs’ combinations according to:
For all control samples i = 1 . . . I and treatment samples j = 1 . . . J , reference genes k = 1 . . .K
and genes-of-interest l = 1 . . . L, calculate

Without reference genes:
E(glci)

cp(glci)

E(glsj)cp(glsj)

With reference genes:
E(glci)

cp(glci)

E(glsj)cp(glsj)
/
E(rkci)

cp(rkci)

E(rksj)cp(rksj)

For the mechanistic models makX/cm3 the following is calculated:

Without reference genes:
D0(glsj)

D0(glci)

With reference genes:
D0(glsj)

D0(glci)
/
D0(rksj)

D0(rkci)

Efficiencies can be taken from the individual samples or averaged from the replicates as described
in the documentation to ratiocalc. Different settings in type.eff can yield very different results
in ratio calculation. We observed a relatively stable setup which minimizes the overall variance
using the type.eff = "mean.single".

There are three different combination setups possible when calculating the pairwise ratios:
combs = "same": reference genes, genes-of-interest, control and treatment samples are the same,

ratioPar 89

i.e. i = k,m = o, j = n, l = p.
combs = "across": control and treatment samples are the same, while the genes are combinated,
i.e. i 6= k,m 6= o, j = n, l = p,.
combs = "all": reference genes, genes-of-interest, control and treatment samples are all combi-
nated, i.e. i 6= k,m 6= o, j 6= n, l 6= p.

The last setting rarely makes sense and is very time-intensive. combs = "same" is the most common
setting, but combs = "across" also makes sense if different genes-of-interest and reference gene
combinations should be calculated for the same samples.

ratioPar has an option of averaging several reference genes, as described in Vandesompele et
al. (2002). Threshold cycles and efficiency values for any i reference genes with j replicates
are averaged before calculating the ratios using the averaged value µr for all reference genes in
a control/treatment sample. The overall error σr is obtained by error propagation. The whole
procedure is accomplished by function refmean, which can be used as a stand-alone function, but
is most conveniently used inside ratioPar setting refmean = TRUE. For details about reference
gene averaging by refmean, see there.

Value

A list with the following components:

resList a list with the results from the combinations as list items.

resDat a dataframe with the results in colums.

Both resList and resDat have as names the combinations used for the ratio calculation. If
plot = TRUE, a boxplot matrix from the Monte-Carlo simulations, permutations and error propa-
gations is given including 95% confidence intervals as coloured horizontal lines.

Note

This function can be used quite conveniently when the PCR parameters are from 96- or 384-well
runs plates and exported to a tab-delimited file.

Author(s)

Andrej-Nikolai Spiess

References

Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple
internal control genes.
Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F.
Genome Biol (2002), 3: research0034-research0034.11.

Examples

One control sample, two treatment samples,
one gene-of-interest, two reference genes,
two replicates each. Replicates are averaged,
but reference genes not, so that we have 4 ratios.

90 ratioPar

GROUP1 <- c("r1c1", "r1c1", "r2c1", "r2c1", "g1c1", "g1c1",
"r1s1", "r1s1", "r1s2", "r1s2", "r2s1", "r2s1",
"r2s2", "r2s2", "g1s1", "g1s1", "g1s2", "g1s2")

EFF1 <- c(1.96, 2.03, 1.60, 1.67, 1.91, 1.97, 1.53, 1.61, 1.87,
1.92, 1.52, 1.58, 1.84, 1.90, 1.49, 1.56, 1.83, 1.87)

CP1 <- c(15.44, 15.33, 14.84, 15.34, 18.89, 18.71, 18.13, 17.22, 22.06,
21.85, 21.03, 20.92, 25.34, 25.12, 25.00, 24.62, 28.39, 28.28)

RES1 <- ratioPar(group = GROUP1, effVec = EFF1, cpVec= CP1, refmean = FALSE)

Not run:
Same as above, but now we average the two
reference genes, so that we have 2 ratios.
RES2 <- ratioPar(group = GROUP1, effVec = EFF1, cpVec= CP1, refmean = TRUE)

Two control samples, one treatment sample,
one gene-of-interest, one reference gene,
no replicates. Reference gene has efficiency = 1.8,
gene-of-interest has efficiency = 1.9.
GROUP3 <- c("r1c1", "r1c2", "g1c1", "g1c2",

"r1s1", "g1s1")
EFF3 <- c(1.8, 1.8, 1.9, 1.9, 1.8, 1.9)
CP3 <- c(17.25, 17.38, 22.52, 23.18, 21.42, 19.83)
RES3 <- ratioPar(group = GROUP3, effVec = EFF3, cpVec= CP3, refmean = TRUE)

One control sample, one treatment sample,
three genes-of-interest, no reference gene,
three replicates. Using efficiency from sigmoidal model.
GROUP4 <- c("g1c1", "g1c1", "g1c1", "g2c1", "g2c1", "g2c1", "g3c1", "g3c1", "g3c1",

"g1s1", "g1s1", "g1s1", "g2s1", "g2s1", "g2s1", "g3s1", "g3s1", "g3s1")
EFF4 <- c(1.79, 1.71, 1.83, 1.98, 1.85, 1.76, 1.76, 1.91, 1.84, 1.80, 1.79, 1.91,

1.88, 1.79, 1.78, 1.89, 1.86, 1.81)
CP4 <- c(15.68, 15.84, 14.47, 14.96, 18.97, 19.04, 17.65, 16.76, 22.11, 22.03, 20.43,

20.36, 25.29, 25.29, 24.27, 23.99, 28.34, 28.38)
RES4 <- ratioPar(group = GROUP4, effVec = EFF4, cpVec= CP4, refmean = TRUE)

Compare to REST software using the data from the
REST 2008 manual (http://rest.gene-quantification.info/)
cp.rc <- c(26.74, 26.85, 26.83, 26.68, 27.39, 27.03, 26.78, 27.32)
cp.rs <- c(26.77, 26.47, 27.03, 26.92, 26.97, 26.97, 26.07, 26.3, 26.14, 26.81)
cp.gc <- c(27.57, 27.61, 27.82, 27.12, 27.76, 27.74, 26.91, 27.49)
cp.gs <- c(24.54, 24.95, 24.57, 24.63, 24.66, 24.89, 24.71, 24.9, 24.26, 24.44)
eff.rc <- rep(1.97, 8)
eff.rs <- rep(1.97, 10)
eff.gc <- rep(2.01, 8)
eff.gs <- rep(2.01, 10)
CP5 <- c(cp.rc, cp.rs, cp.gc, cp.gs)
EFF5 <- c(eff.rc, eff.rs, eff.gc, eff.gs)
GROUP5 <- rep(c("r1c1", "r1s1", "g1c1", "g1s1"), c(8, 10, 8, 10))
RES5 <- ratioPar(group = GROUP5, effVec = EFF5, cpVec = CP5)
RES5$resDat

End(Not run)

refmean 91

refmean Averaging of multiple reference genes

Description

This function averages the expression of several reference genes before calculation of gene expres-
sion ratios by ratiocalc or ratiobatch. The method is similar to that described in Vandesompele
et al. (2002), but uses arithmetic averaging of threshold cycles/efficiencies and not geometric
averaging of relative expression values. This is equivalent, as discussed in ’Details’ and as shown
in ’Examples’. An essential extension of this method is, that if replicates for the reference genes
are supplied, the threshold cycles and efficiencies are subjected to error propagation prior to ratio
calculation. The propagated error is then included in the calculation of the gene expression ratios,
as advocated in Nordgard et al. (2006).

Usage

refmean(data, group, which.eff = c("sig", "sli", "exp", "mak", "ext"),
type.eff = c("individual", "mean.single"),
which.cp = c("cpD2", "cpD1", "cpE", "cpR", "cpT", "Cy0", "ext"),
verbose = TRUE, ...)

Arguments

data multiple qPCR data generated by pcrbatch.

group a character vector defining the replicates (if any) of control/treatment samples
and reference genes/genes-of-interest. See ’Details’

which.eff efficiency calculated by which method. Defaults to sigmoidal fit. Can also be a
value such as 1.8, as shown in ’Examples’. See ratiocalc.

type.eff using individual or averaged efficiencies for the replicates of a reference gene.
See ’Details’.

which.cp type of threshold cycles to be used for the analysis. Defaults to cpD2. See
ratiocalc.

verbose logical. If TRUE, the steps of analysis are shown in the console window.

... parameters to be supplied to propagate.

Details

As in ratiobatch, the samples are to be defined as a character vector in the style of "g1s1", "g1c1",
"r1s1" and "r1c1" etc. If refmean is used as a standalone function or switched on in ratiobatch
using refmean = TRUE, different reference genes per control/treatment samples are averaged when
supplied either as single runs or as replicates.

Examples (omitting genes-of-interest in control/treatment samples):
2 reference genes, 2 replicates each:
c("r1s1", "r1s1, "r2s1", "r2s1", "r1c1", "r1c1, "r2c1", "r2c1", ...).

92 refmean

3 reference genes, no replicates:
c("r1s1", "r2s1, "r3s1", "r1c1", "r2c1, "r3c1", ...)

Averaging of multiple reference genes is accomplished the following way:
Given i reference genes with j replicates in a sample, all replicates rij are used for calculating mean
µri and standard deviation σri of the threshold cycles and efficiencies. The overall (grand) mean µr
and propagated error σr is calculated using propagate with first-order Taylor expansion including
covariance: σr = FriCriF

T
ri . Finally, a vector of length L = n(rij) containing equidistant numbers

X = (x1, x2, x3, . . . xL) with mean µr and standard deviation σr is generated for a new overall
reference gene r1. This is done using the internal function qpcR:::makeStat which calculates a
shifted (µr) and scaled (σr) Z-transformation on a vector x1 . . . xL:

Zi = µr +
(xi − X̄)

σX
· σr

The new Zi threshold cycle and efficiency values replace all values of rij in data. When using
ratiobatch, this modified data is then used for the ratio calculation, again using propagate to
calculate errors for ratios using the Zi values as mentioned above.
By using logarithmic identities (http://en.wikipedia.org/wiki/Logarithmic_identities),
it can be shown that the geometric mean can be transformed to the arithmetic mean by logarith-
mation (assuming constant E):(

n∏
i=1

Exi

) 1
n

=
1

n
· logE

(
n∏
i=1

Exi

)
=

1

n

n∑
i=1

xi

Hence, arithmetic averaging of the threshold cycles BEFORE ratio calculation is the same as
doing geometric averaging on relative quantities AFTER ratio calculation. This is demonstrated in
’Examples’ and also mentioned in the geNorm manual (http://medgen.ugent.be/~jvdesomp/
genorm/geNorm_manual.pdf) in Q8 (page 12).

When setting type.eff = "individual" (default), all efficiencies from replicates of a reference
gene in a control/treatment sample E(rij) are used for calculating mean µE(ri) and standard devia-
tion σE(ri), the latter being used for calculating a propagated error for all reference gene efficiencies
σE(r). If type.eff = "mean.single", all E(rij) values from the replicates are set to the same
value µE(ri), that is, there is no variation assumed between the different E(rij). In this case,
σE(ri) = 0, so that no error of the replicates is propagated to σE(r). This results in smaller overall
errors of the output, but it can be debated if this is a realistic approach, hence both settings were
implemented.

which.eff can be supplied with an efficiency value such as 1.8, which is then used as the efficiency
for all reference runs E(rij).

Value

The same dataset data which was supplied to the function, but with modified threshold cycle/efficiency
values in which the values are created per sample in a way, that they have the mean of all averaged
reference genes and the same standard deviation as obtained by error propagation. See ’Details’
for a more thorough explanation. Furthermore, a modified label vector "NAME_mod" is written
to the global environment (if "NAME" was supplied for group) in which the different reference
gene labels are aggregated, i.e. c("r1c1", "r2c1", "r3c1") will become c("r1c1", "r1c1", "r1c1").
This new label vector is also attached as an attribute to the output data and can be obtained by
attr(RES1, "group").

http://en.wikipedia.org/wiki/Logarithmic_identities
http://medgen.ugent.be/~jvdesomp/genorm/geNorm_manual.pdf
http://medgen.ugent.be/~jvdesomp/genorm/geNorm_manual.pdf

refmean 93

Note

The function checks stringently if the same number of different reference genes are used for control
and treatment samples, although the number of replicates may differ.
Example:
GROUP <- c("r1c1", "r1c1", "r2c1", "r2c1", "r1s1", "r2s1") will work (2 reference genes in con-
trol/treatment samples), but GROUP <- c("r1c1", "r2c1", "r3c1", "r1s1", "r1s1", "r1s2", "r1s2",
"r2s1", "r2s1") will not work (3 reference genes in controls, only 2 in treatment samples). Also,
when no or only one reference genes are detected, the original data is not averaged and returned
unchanged.

Author(s)

Andrej-Nikolai Spiess

References

Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple
internal control genes.
Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F.
Genome Biol (2002), 3: research0034-research0034.11.

Error propagation in relative real-time reverse transcription polymerase chain reaction quantifica-
tion models: the balance between accuracy and precision.
Nordgard O, Kvaloy JT, Farmen RK, Heikkil? R.
Anal Biochem (2006), 356: 182-193.

See Also

In ratiobatch, reference gene averaging can be done automatically by setting refmean = TRUE.
See there.

Examples

Not run:
Replacing the reference gene values by
averaged ones in the original data.
=> RES1 is new dataset.
=> GROUP1_mod in global environment is
new labeling vector.
DAT1 <- pcrbatch(reps, fluo = 2:19, model = l5)
GROUP1 <- c("r1c1", "r1c1", "r2c1", "r2c1", "g1c1", "g1c1",

"r1s1", "r1s1", "r1s2", "r1s2", "r2s1", "r2s1",
"r2s2", "r2s2", "g1s1", "g1s1", "g1s2", "g1s2")

RES1 <- refmean(DAT1, GROUP1, which.eff = "sig", which.cp = "cpD2")

Using three reference genes without replicates
and then 'ratiobatch'.
This can also be called in 'ratiobatch' directly
with parameter 'refmean = TRUE'. See there.

94 replist

In this example, already averaged dataset and
new labeling vector are supplied to 'ratiobatch',
so one has to set 'refmean = FALSE'.
DAT2 <- pcrbatch(reps, fluo = 2:9, model = l5)
GROUP2 <- c("r1c1", "r2c1", "r3c1", "g1c1", "r1s1", "r2s1", "r3s1", "g1s1")
RES2 <- refmean(DAT2, GROUP2, which.eff = "sig", which.cp = "cpD2")
ratiobatch(RES2, GROUP2_mod, refmean = FALSE)

Comparison between 'refmean' ct-value arithmetic averaging
and 'geNorm' relative quantities geometric averaging
using data from the geNorm manual (2008), page 6.
We will use HK1-HK3 as in the manual (no replicates).
First we create a 'pcrbatch' dataset and then
override the ct values with those of the manual and all
efficiencies with E = 2. Sample A is considered as control sample.
DAT3 <- pcrbatch(reps, fluo = 2:17, model = l5)
DAT3[8, -1] <- c(32.10, 27.00, 34.90, 23.00,

33.30, 28.40, 36.10, 24.20,
31.00, 27.50, 34.00, 26.35,
30.50, 28.20, 33.00, 25.45)

DAT3[1, -1] <- 2
GROUP3 <- c("r1c1", "r2c1", "r3c1", "g1c1",

"r1s1", "r2s1", "r3s1", "g1s1",
"r1s2", "r2s2", "r3s2", "g1s2",
"r1s3", "r2s3", "r3s3", "g1s3")

RES3 <- refmean(DAT3, GROUP3, which.eff = "sig", which.cp = "cpD2")
ratiobatch(RES3, GROUP3_mod, which.cp = "cpD2",

which.eff = "sig", refmean = FALSE)
Results:
r1c1:g1c1:r1s1:g1s1 refmean 1.0497
geNorm 1.0472 (2.351/2.245)
r1c1:g1c1:r1s2:g1s2 refmean 0.0693
geNorm 0.0695 (0.156/2.245)
r1c1:g1c1:r1s3:g1s3 refmean 0.1081
geNorm 0.1074 (0.241/2.245)
Slight differences are due to rounding.

End(Not run)

replist Amalgamation of single data models into a model containing repli-
cates

Description

Starting from a ’modlist’ containing qPCR models from single data, replist amalgamates the
models according to the grouping structure as defined in group. The result is a ’replist’ with models
obtained from fitting the replicates by pcrfit. A kinetic outlier detection and removal option is
included.

replist 95

Usage

replist(object, group = NULL, check = "none",
checkPAR = parKOD(), remove = c("none", "KOD"),
names = c("group", "first"), doFit = TRUE, opt = FALSE,
optPAR = list(sig.level = 0.05, crit = "ftest"),
verbose = TRUE, ...)

Arguments

object an object of class ’modlist’.
group a vector defining the replicates for each group.
check which method to use for kinetic outlier detection. Either none or any of the

methods in KOD.
checkPAR parameters to be supplied to the check method, see KOD.
remove which runs to remove. Either none or those that failed from the method defined

in check.
names how to name the grouped fit. Either ’group_1, ...’ or the first name of the

replicates.
doFit logical. If set to FALSE, the replicate data is only aggregated without doing a

refitting. See ’Details’.
opt logical. Should model selection be applied to the final model?
optPAR parameters to be supplied to mselect.
verbose if TRUE, the analysis is printed to the console.
... other parameters to be supplied to mselect.

Details

As being defined by group, the ’modlist’ is split into groups of runs and these amalgamated into a
nonlinear model. Runs which have failed to be fitted by modlist are automatically removed and
group is updated (that is, the correpsonding entries also removed) prior to fitting the replicate model
by pcrfit. Model selection can be applied to the final replicate model by setting opt = TRUE and
changing the parameters in optPAR. If check is set to any of the methods in "KOD", kinetic outliers
are identified and optionally removed, if remove is set to "KOD".
If doFit = FALSE, the replicate data is only aggregated and no refitting is done. This is useful when
plotting replicate data by some grouping vector. See ’Examples’.

Value

An object of class ’replist’ containing the replicate models of class ’nls’/’pcrfit’.

Author(s)

Andrej-Nikolai Spiess

See Also

modlist, pcrfit.

96 resplot

Examples

Convert 'modlist' into 'replist'.
ml1 <- modlist(reps, model = l4)
rl1 <- replist(ml1, group = gl(7, 4))
plot(rl1)
summary(rl1[[1]])

Optimize model based on Akaike weights.
rl2 <- replist(ml1, group = gl(7, 4), opt = TRUE,

optPARS = list(crit = "weights"))
plot(rl2)

Not run:
Remove kinetic outliers,
use first replicate name for output.
ml3 <- modlist(reps, model = l4)
rl3 <- replist(ml3, group = gl(7, 4), check = "uni1",

remove = "KOD", names = "first")
plot(rl3, which = "single")

Just aggregation and no refitting.
ml4 <- modlist(reps, model = l4)
rl4 <- replist(ml4, group = gl(7, 4), doFit = FALSE)
plot(rl4, which = "single")

Scenario 1:
automatic removal of runs that failed to
fit during 'modlist' by using 'testdat' set.
ml5 <- modlist(testdat, model = l5)
rl5 <- replist(ml5, gl(6, 4))
plot(rl5, which = "single")

Scenario 2:
automatic removal of runs that failed to
fit during 'replist':
samples F3.1-F3.4 is set to 1.
dat1 <- reps
ml6 <- modlist(dat1)
ml6[[9]]$DATA[, 2] <- 1
ml6[[10]]$DATA[, 2] <- 1
ml6[[11]]$DATA[, 2] <- 1
ml6[[12]]$DATA[, 2] <- 1
rl6 <- replist(ml6, gl(7, 4))
plot(rl6, which = "single")

End(Not run)

resplot An (overlayed) residuals barplot

resplot 97

Description

A plotting function which displays a barplot of the (standardized) residuals. The bars are colour-
coded with heat colours proportional to the residual value. As default, the residuals are displayed
together with the points of the fitted PCR curve.

Usage

resplot(object, overlay = TRUE, ylim = NULL, ...)

Arguments

object an object of class ’pcrfit.

overlay logical. If TRUE, the residuals are plotted on top of the fitted curve, else alone.

ylim graphical ylim values for tweaking the scale and position of the barplot overlay.

... any other parameters to be passed to barplot.

Details

If replicate data is present in the fitted curve, the residuals from all replicates i, j are summed up
from the absolute values: Yi =

∑
|ε̂i,j |.

Value

A plot as described above.

Author(s)

Andrej-Nikolai Spiess

Examples

Create l5 model and plot
standardized residuals.
m1 <- pcrfit(reps, 1, 2, l5)
resplot(m1)

Not run:
Using replicates.
m2 <- pcrfit(reps, 1, 2:5, l5)
resplot(m2)

End(Not run)

98 resVar

resVar Residual variance of a fitted model

Description

Calculates the residual variance for objects of class nls, lm, glm, drc or any other models from
which coef and residuals can be extracted.

Usage

resVar(object)

Arguments

object a fitted model.

Details

resV ar =

∑n
i=1(yi − ŷi)2

n− p

where n is the number of response values and p the number of parameters in the model.

Value

The residual variance of the fit.

Author(s)

Andrej-Nikolai Spiess

Examples

m1 <- pcrfit(reps, 1, 2, l5)
resVar(m1)

RMSE 99

RMSE Root-mean-squared-error of a fitted model

Description

Calculates the root-mean-squared-error (RMSE) for objects of class nls, lm, glm, drc or any other
models from which residuals can be extacted.

Usage

RMSE(object, which = NULL)

Arguments

object a fitted model.

which a subset of the curve to be used for RMSE calculation. If not defined, the com-
plete curve is used.

Details

RMSE =

√
(yi − ŷi)2

Value

The root-mean-squared-error from the fit or a part thereof.

Author(s)

Andrej-Nikolai Spiess

Examples

For a curve subset.
m1 <- pcrfit(reps, 1, 2, l5)
RMSE(m1, 10:15)

100 Rsq

Rsq R-square value of a fitted model

Description

Calculates the R2 value for objects of class nls, lm, glm, drc or any other models from which
fitted and residuals can be extracted. Since version 1.2-9 it calculates a weighted R2 if the
object has an item object$weights containing weighting values.

Usage

Rsq(object)

Arguments

object a fitted model.

Details

Uses the most general definition of R2:

R2 ≡ 1− RSS

TSS

where

RSS =

n∑
i=1

wi · (yi − ŷi)2

and

TSS =

n∑
i=1

wi · (yi − ȳ)2

using the weighted mean

ȳ =

∑n
i=1 wixi∑n
i=1 wi

Value

The R2 value of the fit.

Author(s)

Andrej-Nikolai Spiess

Examples

m1 <- pcrfit(reps, 1, 2, l5)
Rsq(m1)

Rsq.ad 101

Rsq.ad Adjusted R-square value of a fitted model

Description

Calculates the adjusted R2
adj value for objects of class nls, lm, glm, drc or any other models from

which fitted, residuals and coef can be extracted.

Usage

Rsq.ad(object)

Arguments

object a fitted model.

Details

R2
adj = 1− n− 1

n− p
· (1−R2)

with n = sample size, p = number of parameters.

Value

The adjusted R2
adj value of the fit.

Author(s)

Andrej-Nikolai Spiess

Examples

Single model.
m1 <- pcrfit(reps, 1, 2, l7)
Rsq.ad(m1)

Compare different models with increasing
number of parameters.
ml1 <- lapply(list(l4, l5, l6), function(x) pcrfit(reps, 1, 2, x))
sapply(ml1, function(x) Rsq.ad(x))

102 sliwin

RSS Residual sum-of-squares of a fitted model

Description

Calculates the residual sum-of-squares for objects of class nls, lm, glm, drc or any other models
from which residuals can be extacted. From version 1.3-6, this function uses weights, if object
has an item $weights.

Usage

RSS(object)

Arguments

object a fitted model.

Details

RSS =

n∑
i=1

wi · (yi − ŷi)2

Value

The (weighted) residual sum-of-squares from the fit.

Author(s)

Andrej-Nikolai Spiess

Examples

m1 <- pcrfit(reps, 1, 2, l5)
RSS(m1)

sliwin Calculation of qPCR efficiency by the ’window-of-linearity’ method

Description

A linear model of Cycles versus log(Fluorescence) is fit within a sliding window of defined size(s)
and within a defined border. Regression coefficients are calculated for each window, and at the
point of maximum regression (log-linear range) or least variation in slope, parameters such as PCR
efficiency and initial template fluorescence are calculated. From version 1.3-5, an approach "not
unlike" to Ruijter et al. (2009) has been implemented, in which baseline values can be iteratively
subtracted from the data prior to fitting the sliding window. See ’Details’ for more information.

sliwin 103

Usage

sliwin(object, wsize = 6, basecyc = 1:6, base = 0, border = NULL,
type = c("rsq", "slope"), plot = TRUE, verbose = TRUE, ...)

Arguments

object an object of class ’pcrfit’.

wsize the size(s) of the sliding window(s), default is 6. A sequence such as 4:6 can be
used to optimize the window size.

basecyc if base != 0, which cycles to use for an initial baseline estimation based on the
averaged fluorescence values.

base either 0 for no baseline optimization, or a scalar defining multiples of the stan-
dard deviation of all baseline points obtained from basecyc. These are itera-
tively subtracted from the raw data. See ’Details’ and ’Examples’.

border either NULL (default) or a two-element vector which defines the border from
the take-off point to points nearby the upper asymptote (saturation phase). See
’Details’.

type selection of the window with best baseline + maximumR2 ("rsq") or best base-
line + minimal variance in slope + maximum R2 ("slope").

plot if TRUE, the result is plotted with the logarithmized curve, sliding window, re-
gression line and baseline.

verbose logical. If TRUE, more information is displayed in the console window.

... only used internally for passing the parameter matrix.

Details

To avoid fits with a high R2 in the baseline region, some border in the data must be defined. In
sliwin, this is by default (base = NULL) the region in the curve starting at the take-off cycle (top)
as calculated from takeoff and ending at the transition region to the upper asymptote (saturation
region). The latter is calculated from the first and second derivative maxima: asympt = cpD1 +
(cpD1− cpD2). If the border is to be set by the user, border values such as c(-2, 4) extend these
values by top+border[1] and asympt+border[2]. The log10 transformed raw fluorescence values
are regressed against the cycle number log10(F) = nβ + ε and the efficiency is then calculated by
E = 10slope. For the baseline optimization, 100 baseline values Fbi are interpolated in the range
of the data:

Fmin ≤ Fbi ≤ base · σ(Fbasecyc[1]...Fbasecyc[2])

and subtracted from Fn. If type = "rsq", the best window in terms of R2 is selected from all
iterations, as defined by wsize and border. If type = "slope", the baseline value delivering
the smallest variance in the slope of the upper/lower part of the sliding window and highest R2 is
selected. This approach is quite similar to the one in Ruijter et al. (2009) but has to be tweaked in
order to obtain the same values as in the ’LinRegPCR’ software. Especially the border value has
significant influence on the calculation of the best window’s efficiency value.

104 sliwin

Value

A list with the following components:

eff the optimized PCR efficiency found within the sliding window.

rsq the maximum R-squared.

init the initial template fluorescence F0.

base the optimized baseline value.

window the best window found within the borders.

parMat a matrix containing the parameters as above for each iteration.

Author(s)

Andrej-Nikolai Spiess

References

Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data.
Ramakers C, Ruijter JM, Deprez RH, Moorman AF.
Neurosci Lett (2003), 339: 62-65.

Amplification efficiency: linking baseline and bias in the analysis of quantitative PCR data.
Ruijter JM, Ramakers C, Hoogaars WM, Karlen Y, Bakker O, van den Hoff MJ, Moorman AF.
Nucleic Acids Res (2009), 37: e45

Examples

Sliding window of size 5 between
take-off point and upper asymptote,
no baseline optimization.
m1 <- pcrfit(reps, 1, 2, l4)
sliwin(m1, wsize = 5)

Not run:
Optimizing with window sizes of 4 to 6,
between 0/+2 from lower/upper border,
and baseline up to 2 standard deviations.
sliwin(m1, wsize = 4:6, border = c(0, 2), base = 2)

End(Not run)

takeoff 105

takeoff Calculation of the qPCR takeoff point

Description

Calculates the first significant cycle of the exponential region (takeoff point) using externally stu-
dentized residuals as described in Tichopad et al. (2003).

Usage

takeoff(object, pval = 0.05, nsig = 3)

Arguments

object an object of class ’pcrfit’.

pval the p-value for the takeoff test.

nsig the number of successive takeoff tests. See ’Details’.

Details

Takeoff points are calculated essentially as described in the reference below. The steps are:

1) Fitting a linear model to background cycles 1 : n, starting with n = 5.
2) Calculation of the external studentized residuals using rstudent, which uses the hat matrix of
the linear model and leave-one-out:

〈ε̂i〉 =
ε̂i

σ̂(i)
√

1− hii
, σ̂(i) =

√√√√√ 1

n− p− 1

n∑
j=1
j 6=i

ε̂2j

with hii being the ith diagonal entry in the hat matrix H = X(XTX)−1XT .
3) Test if the last studentized residual 〈ε̂n〉 is an outlier in terms of t-distribution:

1− pt(〈ε̂n〉, n− p) < 0.05

with n = number of residuals and p = number of parameters.
4) Test if the next nsig - 1 cycles are also outlier cycles.
5) If so, take cycle number from 3), otherwise n = n+ 1 and start at 1).

Value

A list with the following components:

top the takeoff point.

f.top the fluorescence at top.

106 update.pcrfit

Author(s)

Andrej-Nikolai Spiess

References

Standardized determination of real-time PCR efficiency from a single reaction set-up.
Tichopad A, Dilger M, Schwarz G & Pfaffl MW.
Nucleic Acids Research (2003), e122.

Examples

m1 <- pcrfit(reps, 1, 2, l5)
res1 <- takeoff(m1)
plot(m1)
abline(v = res1$top, col = 2)
abline(h = res1$f.top, col = 2)

update.pcrfit Updating and refitting a qPCR model

Description

Updates and re-fits a model of class ’pcrfit’.

Usage

S3 method for class 'pcrfit'
update(object, ..., evaluate = TRUE)

Arguments

object a fitted model of class ’pcrfit’.

... arguments to alter in object.

evaluate logical. If TRUE, model is re-fit; otherwise an unevaluated call is returned.

Value

An updated model of class ’pcrfit’ and ’nls’.

Author(s)

Andrej-Nikolai Spiess

See Also

The function pcrfit in this package.

update.pcrfit 107

Examples

m1 <- pcrfit(reps, 1, 2, l4)

Update model.
update(m1, model = l5)

Update qPCR run.
update(m1, fluo = 20)

Update data.
update(m1, data = guescini1)

Index

∗Topic IO
pcrimport, 48
pcrimport2, 52

∗Topic distribution
propagate, 62

∗Topic documentation
qpcR.news, 67

∗Topic file
pcrimport, 48
pcrimport2, 52

∗Topic htest
propagate, 62

∗Topic models
AICc, 3
akaike.weights, 4
calib, 5
Cy0, 7
eff, 8
efficiency, 10
evidence, 13
expcomp, 14
expfit, 15
fitchisq, 17
getPar, 18
is.outlier, 20
KOD, 21
llratio, 23
LOF.test, 24
LRE, 26
maxRatio, 28
meltcurve, 30
midpoint, 32
modlist, 34
mselect, 37
parKOD, 39
pcrbatch, 40
pcrboot, 43
pcrfit, 45
pcrGOF, 47

pcropt1, 53
pcrsim, 54
plot.pcrfit, 56
predict.pcrfit, 58
PRESS, 60
qpcR_datasets, 68
qpcR_functions, 73
replist, 94
resplot, 96
resVar, 98
RMSE, 99
Rsq, 100
Rsq.ad, 101
RSS, 102
sliwin, 102
takeoff, 105
update.pcrfit, 106

∗Topic nonlinear
AICc, 3
akaike.weights, 4
calib, 5
Cy0, 7
eff, 8
efficiency, 10
evidence, 13
expcomp, 14
expfit, 15
fitchisq, 17
getPar, 18
is.outlier, 20
KOD, 21
llratio, 23
LOF.test, 24
LRE, 26
maxRatio, 28
meltcurve, 30
midpoint, 32
modlist, 34
mselect, 37

108

INDEX 109

parKOD, 39
pcrbatch, 40
pcrboot, 43
pcrfit, 45
pcrGOF, 47
pcropt1, 53
pcrsim, 54
plot.pcrfit, 56
predict.pcrfit, 58
PRESS, 60
qpcR_datasets, 68
qpcR_functions, 73
ratiobatch, 77
ratiocalc, 82
ratioPar, 87
refmean, 91
replist, 94
resplot, 96
resVar, 98
RMSE, 99
Rsq, 100
Rsq.ad, 101
RSS, 102
sliwin, 102
takeoff, 105
update.pcrfit, 106

∗Topic utilities
qpcR.news, 67

AIC, 3, 5, 24
AICc, 3
akaike.weights, 4, 38
anova, 38
arima, 35
arrows, 57
axis3d, 57

b4 (qpcR_functions), 73
b5 (qpcR_functions), 73
b6 (qpcR_functions), 73
b7 (qpcR_functions), 73
barplot, 97
batsch1 (qpcR_datasets), 68
batsch2 (qpcR_datasets), 68
batsch3 (qpcR_datasets), 68
batsch4 (qpcR_datasets), 68
batsch5 (qpcR_datasets), 68
boggy (qpcR_datasets), 68

calib, 5
cm3 (qpcR_functions), 73
coef, 98, 101
coefficients, 3
competimer (qpcR_datasets), 68
confint, 57
Cy0, 7

dil4reps94 (qpcR_datasets), 68
dyemelt (qpcR_datasets), 68

eff, 8, 10, 12, 28
efficiency, 10, 16, 19, 21, 40, 41, 43, 53, 83
evidence, 13
expcomp, 14
expfit, 14, 15, 19, 21, 40
expGrowth, 15
expGrowth (qpcR_functions), 73
expSDM (qpcR_functions), 73

file.show, 68
filter, 9, 28
fitchisq, 17, 38, 47
fitted, 100, 101

getPar, 18
guescini1 (qpcR_datasets), 68
guescini2 (qpcR_datasets), 68

htPCR (qpcR_datasets), 68

integrate, 31
is.outlier, 20, 22, 23

karlen1 (qpcR_datasets), 68
karlen2 (qpcR_datasets), 68
karlen3 (qpcR_datasets), 68
KOD, 20, 21, 34, 39, 40, 57, 71, 95

l4 (qpcR_functions), 73
l5, 71
l5 (qpcR_functions), 73
l6 (qpcR_functions), 73
l7 (qpcR_functions), 73
lievens1 (qpcR_datasets), 68
lievens2 (qpcR_datasets), 68
lievens3 (qpcR_datasets), 68
lin2 (qpcR_functions), 73
lines, 57
lines3d, 57

110 INDEX

linexp, 15
linexp (qpcR_functions), 73
llratio, 23, 38
lm, 31
LOF.test, 24
logLik, 3, 5, 23, 24
lowess, 35
LRE, 26, 40

mahalanobis, 21, 22
mak2 (qpcR_functions), 73
mak2i (qpcR_functions), 73
mak3 (qpcR_functions), 73
mak3i (qpcR_functions), 73
maxRatio, 9, 11, 28
meltcurve, 30
midpoint, 32
modlist, 22, 34, 40–42, 45, 95
mselect, 35, 37, 41, 53, 95
mtext3d, 57

nlsLM, 45

optim, 45

parKOD, 21, 22, 39
pcrbatch, 18, 36, 40, 78, 79, 82, 84, 91
pcrboot, 43
pcrfit, 35, 45, 46, 49, 55, 75, 94, 95, 106
pcrGOF, 47, 53
pcrimport, 48, 52
pcrimport2, 51
pcropt1, 53
pcrsim, 54
plot, 28, 31, 55, 57
plot.pcrfit, 7, 10, 56
plot3d, 57
points, 7, 57
points3d, 57
predict, 57, 60
predict.lm, 31
predict.pcrfit, 58
PRESS, 47, 55, 60
princomp, 22
propagate, 62, 83, 84, 91, 92

qpcR.news, 67
qpcR_datasets, 68
qpcR_functions, 73

ratiobatch, 34, 35, 41, 77, 83, 87, 88, 91–93
ratiocalc, 36, 42, 66, 78, 79, 82, 83, 87, 88,

91
ratioPar, 82, 83, 85, 87
read.delim, 49
read.table, 52
refmean, 79, 80, 89, 91
replist, 45, 94
reps, 52
reps (qpcR_datasets), 68
reps2 (qpcR_datasets), 68
reps3 (qpcR_datasets), 68
reps384 (qpcR_datasets), 68
residuals, 3, 98–102
resplot, 96
resVar, 98
RMSE, 99
Rsq, 100
Rsq.ad, 101
RSS, 102
rstudent, 105
rutledge (qpcR_datasets), 68

sliwin, 19, 21, 26, 40, 102
smooth.spline, 35
spl3 (qpcR_functions), 73
splinefun, 31
supsmu, 31, 35

takeoff, 16, 26, 103, 105
testdat (qpcR_datasets), 68
tryCatch, 18

uniroot, 76
update, 60
update.pcrfit, 106

vermeulen1 (qpcR_datasets), 68
vermeulen2 (qpcR_datasets), 68

	AICc
	akaike.weights
	calib
	Cy0
	eff
	efficiency
	evidence
	expcomp
	expfit
	fitchisq
	getPar
	is.outlier
	KOD
	llratio
	LOF.test
	LRE
	maxRatio
	meltcurve
	midpoint
	modlist
	mselect
	parKOD
	pcrbatch
	pcrboot
	pcrfit
	pcrGOF
	pcrimport
	pcrimport2
	pcropt1
	pcrsim
	plot.pcrfit
	predict.pcrfit
	PRESS
	propagate
	qpcR.news
	qpcR_datasets
	qpcR_functions
	ratiobatch
	ratiocalc
	ratioPar
	refmean
	replist
	resplot
	resVar
	RMSE
	Rsq
	Rsq.ad
	RSS
	sliwin
	takeoff
	update.pcrfit
	Index

