Package ‘phalen’

July 2, 2014
Type Package
Title Phalen Algorithms and Functions
Version 1.0
Date 2013-08-16
Author Robert P. Bronaugh
Maintainer Robert P. Bronaugh <robertbronaugh@gmail.com>

Description The phalen package contains (1) clustering and
partitioning algorithms; (2) penalty functions for numeric
vectors; (3) a ranking function; and (4) color palettes and functions.

License GPL-2

Depends graphics, grDevices, stats, utils
Imports sqldf

NeedsCompilation no

Repository CRAN

Date/Publication 2013-09-12 08:00:13

R topics documented:

basher L 2
epclaims 3
glpenalty Lo 4
ipadmits L e e e e 5
kdpec e 6
kparts L 9
qarank . ..o oL e e e 11
wash 12
washout 15
Index 18

2 basher

basher Basher Penalty

Description

Growth and decay penalties for numeric vectors.

Usage

basher(X, A, K)

Arguments

X A numeric vector.

A The value at which the penalty starts.

K The asymptotic ceiling or floor of penalized vector X.
Details

To create a growth penalty, where values greater than A are penalized, K must be greater than A. The
growth penalty is K(1-exp(-r(X-M)))) for all values of X greater than A.

To create a decay penalty, where values less than A are penalized, K must be less than A. The decay
penalty is K(1+exp(r(X-M))) for all values of X less than A.

Value

basher returns an object of class "basher."

y The numeric vector X with penalities applied.
A The value at which the penalty starts.
K The asymptotic ceiling or floor of penalized vector X (i.e., y).
r The growth or decay rate of the penalty.
M An extra parameter set so that y = X at A.
penalty The type of penalty applied.
Author(s)

Robert P. Bronaugh

epclaims

Examples

get the inpatient cost per day, sorted
data(ipadmits)

attach(ipadmits)

ipc = sort(ipadmits$cost)

plot(ipc,type = "1",col = wash("gry"”,0.8),1wd=3)

apply penalty starting 2000. Penalized value not to exceed 4500
ipc.bash = basher(X = ipc, A = 2000, K = 4500)
lines(ipc.bash$y,col = wash("blul”,1),1lwd = 3)

plot(ipc,ipc,type = "1",col = wash("gry”,0.8),1wd=3)
lines(ipc,ipc.bash$y,col = wash(”"blul”,1),1lwd = 3)

apply lower penalty ending at 1500. Penalized value floor = 500
ipc.bash = basher(X = ipc, A = 1500, K = 500)

plot(ipc,type = "1",col = wash("gry"”,0.8),1lwd=3)
lines(ipc.bash$y,col = wash("blul”,1),1lwd = 3)

plot(ipc,ipc,type = "1",col = wash("gry",0.8),1lwd=3)
lines(ipc,ipc.bash$y,col = wash("blul”,1),1lwd = 3)

combine above ceiling and floor penalties
ipc.bash = basher(X = ipc, A = 2000, K = 4500)
ipc.bash = basher(X = ipc.bash$y, A = 1500, K = 500)

plot(ipc,type = "1",col = wash("gry"”,0.8),1lwd=3)
lines(ipc.bash$y,col = wash("blul”,1),1lwd = 3)
plot(ipc,ipc,type = "1",col = wash("gry",0.8),1lwd=3)
lines(ipc,ipc.bash$y,col = wash("blul”,1),1lwd = 3)
detach(ipadmits)

epclaims Episodic Claims

Description

Fictitious claims data used to illustrate kdpec.

Format

PatientID Number to identify each patient.

ClaimNumber A number to identify each claim.

Diagnosis A character (A or B) identifying two fictitious diagnoses.
ServiceStart The claim’s service start date.

ServiceEnd The claim’s service end date.

4 glpenalty

glpenalty Generalized Logistic Penalty

Description

Flexible generalized logistic function.

Usage

glpenalty(X, x@ = NA, x1 = NA, p = NA, b = NA, type = NA,
plotpenalty = TRUE, allowed.error = 0.005, invert = FALSE)

Arguments

X A numeric vector.

X0 optional: The value(s) where glpentalty is within the allowed.error of 0.

X1 optional: The value(s) where glpenalty is within the allowed.error of 1.

p optional: A percent of X over which the penalty is applied. p must be between
0 and 1 for single sided glpenalty and between @ and @.5 for double sided
glpenalty.

b optional: A positive valued rate at which glpenalty grows or decays.

type optional: A character value accepting "growth"”, "decay"”, or "both”

plotpenalty If TRUE, the glpenalty is plotted. The default is TRUE.

allowed.error The allowed difference between glpenalty and @ or 1 at x@ or x1 respectively.
The default is 0.005.

invert If TRUE, the glpenalty is inverted. The default is FALSE.

Details

The parameter arguments (i.e., the arguements required to parametrize glpenalty) are x9, x1, p,
b, and side. Only certian combinations of these parameter arguments are required. If more than
the needed number of parameter arguments are given, then glpenalty will use only the first two
supplied. The following combinations of parameter arguments are accepted:

1. {x0, x13}: The function will grow (if x@ < x1) or decay (if x@ > x1) between the supplied values.
For both growth and decay, supply 2 values to both x@ and x1 where x@[1] < x1[1] < x1[2] < x@[2].

2. {x1,b,side}: The function will grow or decay starting at x1 and at rate b.

3. {p,b,side}: The function will grow or decay starting at p percent of the vector X and at rate b.

Value

Returns the numeric penalty vector.

ipadmits 5

Examples

create a vector of numbers
X = seq.int(1,100)

specify x near @ (x@) and x near 1 (x1), growth is computed
glpenalty(x,x0 = 20,x1 = 50)

#How the plot might look when numbers aren't consecutive
glpenalty(sort(sample(x,40)),x0 = 20,x1 = 50)

decay when x near @ (x@) is greater than x near 1 (x1)
glpenalty(x,x0 = 50,x1 = 20)

adjust shrink allowed.error at x@ and x1. Smaller allowed.error
makes for "steeper” rates of growth or decay.
glpenalty(x,x0 = 50,x1 = 20,allowed.error = 0.0001)

combine growth and decay by specifying 2 x@ and 2 x1
growth from 10 to 35 and decay from 50 to 90.
glpenalty(x,x0 = c(10,90),x1 = c(35,50))

invert

glpenalty(x,x0 = c(10,90),x1 = c(35,50),invert=TRUE)

specify x1 and growth rate.

glpenalty(x,x1 = 30,b = 0.4, type = "growth")
glpenalty(x,x1 = 20,b = 0.5, type = "decay")
glpenalty(x,x1 = 30,b = 0.3, type = "both")

specify percent of vector to be penalized
and growth rate.

glpenalty(x,p = 0.6,b = 0.4, type = "growth")

glpenalty(x,p = 0.6,b = 0.5, type = "decay")

glpenalty(x,p = 0.4,b = 0.3, type = "both")
ipadmits Inpatient Admissions Dataset

Description
A dataset of fictional inpatient admissions designed to demonstrate several functions in the phalen
package.

Format

HospID Hospital unique identifier.
Age Age of patient.

6 kdpec

isReadmission Readmissions are coded as 1.

cost Per day cost of inpatient stay.

kdpec K-Dimensional Partitioned Episodic Clustering

Description

Overlapping or sudo-overlapping observation clustering within k-dimensional partitions.

Usage

kdpec(id, kdim, startdate, enddate,
slack = @, restartindex = FALSE)

Arguments
id A vector or data.frame representing a unique identifier or key.
kdim A vector or data.frame representing a "k-dimensional" index across which clus-
ters cannot be formed.
startdate A date vector of each observation’s start date.
enddate A date vector of each observation’s end date.
slack a positive numeric value representing the gap in days over which a cluster can

be formed. the default is 0.

restartindex If TRUE, the squential cluster IDs will restart at 1 within each k-dimensional
partition.

Value

kdpec returns a data.frame with the column or group of columns used to uniquely identify each
observation along with the following:

kdimidx K-Dimensional Index. A sequential ID indexing each k-dimensional set.
episode A sequential ID indexing each episodic cluster.
Author(s)

Robert P. Bronaugh

kdpec

Examples

Not run:

merge a patient's claims for a specific diagnosis together:

use kdim to prevent episode clustering across patient and diagnosis

(i.e.,) the combination of PatientID and Diagnosis become a partition

across which episodic clusters cannot be formed).

restartindex = TRUE starts the episode index over at 1 for each k-dimensional partition

data(epclaims)

attach(epclaims)

require(sqldf)

kd = kdpec(id = epclaims$ClaimNumber,kdim = cbind(epclaims$PatientID,epclaims$Diagnosis)
,startdate = epclaims$ServiceStart,enddate = epclaims$ServiceEnd
,restartindex=TRUE)

print the id, k-dimensional partition index (kdimidx), and the episodes
print(kd)

restartindex = FALSE

kd = kdpec(epclaims$ClaimNumber,cbind(epclaims$PatientID,epclaims$Diagnosis),
epclaims$ServiceStart,epclaims$ServiceEnd, restartindex=FALSE)

print(kd)

merge episode indexes with original data
ep.2 = sqldf("SELECT ep.PatientID
,ep.ClaimNumber
,ep.Diagnosis
,ep.ServiceStart
,ep.ServiceEnd
,kd.kdimidx
,kd.episode
FROM epclaims ep
INNER JOIN kd
ON ep.ClaimNumber = kd.id")

plot time spans of original records
washcol = wash("gry”,0.8)
for (i in T:nrow(epclaims)) {
if (1 =1) {
plot(c(epclaims$ServiceStart[i],epclaims$ServiceEnd[i]),rep(i,2)
,type="1", col = washcol, lwd = 3
,xlim = c(min(epclaims$ServiceStart)-3
,max(epclaims$ServiceStart)+3)
,ylim = c(0,15)
,xlab = "length of service”
,ylab = "claim record index")
} else if (i <6) {
lines(c(epclaims$ServiceStart[i],epclaims$ServiceEnd[i])
,rep(i,2),col = washcol, 1lwd = 3)
} else if (1 <10) {
lines(c(epclaims$ServiceStart[i],epclaims$ServiceEnd[i])
,rep(i,2),col = washcol, 1lwd = 3)

kdpec

} else if (i == 10) {
lines(c(epclaims$ServiceStart[i],epclaims$ServiceEnd[i])
,rep(i,2),col = washcol, 1lwd = 3)
} else {
lines(c(epclaims$ServiceStart[i],epclaims$ServiceEnd[i])
,rep(i,2),col = washcol, 1lwd = 3)
}
}

plot time spans of original records. Color by assigned k-dim index
washcol = c(wash("blul”,1),wash("grn2",1),wash("org"”,1),wash("red1"”,1))
for (i in T:nrow(ep.2)) {
if (i ==1) {
plot(c(ep.2%$ServiceStart[i],ep.2$ServiceEnd[i]),rep(i,?2)
,type="1", col = washcoll[ep.2%kdimidx[i]], lwd = 3
,x1lim = c(min(ep.2$ServiceStart)-3,max(ep.2$ServiceStart)+3)
,ylim = c(0,15)
,xlab = "length of service”
,ylab = "claim record index")
} else if (i <6) {
lines(c(ep.2%$ServiceStart[i],ep.2%$ServiceEnd[i]),rep(i,?2)
,col = washcol[ep.2%kdimidx[i]], lwd = 3)
} else if (i <10) {
lines(c(ep.2%$ServiceStart[i],ep.2%$ServiceEnd[i]),rep(i,?2)
,col = washcol[ep.2%kdimidx[i]], lwd = 3)
} else if (i == 10) {
lines(c(ep.2%$ServiceStart[i],ep.2%$ServiceEnd[i]),rep(i,?2)
,col = washcol[ep.2%kdimidx[i]], lwd = 3)
} else {
lines(c(ep.2%$ServiceStart[i],ep.2%$ServiceEnd[i]),rep(i,?2)
,col = washcol[ep.2%kdimidx[i]], lwd = 3)
}
}

merge records to get the full length of each episode
ep.episodes = data.frame("kdimidx" = tapply(ep.2$kdimidx,ep.2$episode,min),
"episodeStart” = as.Date(tapply(ep.2%$ServiceStart
,ep.2%episode,min),origin = "1970-01-01"),
"episodeEnd” = as.Date(tapply(ep.2%$ServiceEnd
,ep.2%episode,max),origin = "1970-01-01"))

plot the length of service of each episode. kdimidx, not claim

records, are on the y axis colors represent each kdimidx

washcol = c(wash("blu1”,1),wash("grn2",1),wash("org"”,1),wash("red1"”,1))

i=1

for (i in 1:nrow(ep.episodes)) {

if (1 ==1) {
plot(c(ep.episodess$episodeStart[i],ep.episodes$episodeEnd[i])

,rep(ep.episodes$kdimidx[i],2)
,type="1", col = washcol[ep.episodes$kdimidx[i]], Iwd = 3

,x1lim = c(min(ep.2$ServiceStart)-3,max(ep.2$ServiceStart)+3)
,ylim = c(0,4)
,xlab = "length of episode”

kparts

,ylab = "k-dimensional index")
} else if (i <6) {
lines(c(ep.episodes$episodeStart[i],ep.episodes$episodeEnd[i])
,rep(ep.episodes$kdimidx[i],2)
,col = washcol[ep.episodes$kdimidx[i]], 1lwd = 3)
} else if (i <10) {
lines(c(ep.episodes$episodeStart[i],ep.episodes$episodeEnd[i])
,rep(ep.episodes$kdimidx[i],2)
,col = washcol[ep.episodes$kdimidx[i]], lwd = 3)
} else if (i == 10) {
lines(c(ep.episodes$episodeStart[i],ep.episodes$episodeEnd[i])
,rep(ep.episodes$kdimidx[i],2)
,col = washcol[ep.episodes$kdimidx[i]], lwd = 3)
} else {
lines(c(ep.episodes$episodeStart[i],ep.episodes$episodeEnd[i])
,rep(ep.episodes$kdimidx[i],2)
,col = washcol[ep.episodes$kdimidx[i]], 1lwd = 3)
}
}
detach(epclaims)

End(Not run)

kparts

K-Partitions Clustering

Description

Unsupervised vector partitioning.

Usage

kparts(x, y, parts, maxiter = 50, trials = 3,

nblind = FALSE, trialprint = TRUE, iterprint = FALSE)

Arguments

X The numeric vector to be partitioned.

y The numeric response variable vector used to partition vector x.

parts The desired number of partitions.

maxiter The maximum number of iterations allowed for each trial. If convergence
does not occur, the trail will stop after the specified number of iterations is
reached. The default is 50 iterations.

trials The number of times the algorithm is run with new, randomly assigned parti-
tions. The default number of trialsis 3.

nblind If TRUE, the algorithm will ignore the sum of squares within each unique value

of x. The default is FALSE.

10 kparts

trialprint If TRUE, the trial number and the sum of squares will print while the algorithm
is running. The default is TRUE.

iterprint If TRUE, the iteration number and sum of squares will print while the algorithm
is running. The default is FALSE.

Details

kparts finds the best contiguous partitions for x by minimizing the sum of squares of y.

The sum of squares for a unique value of x cannot be partitioned, which has the effect of weighting
unique values of x by the number observations at those values. Using nblind = "FALSE" cause
kparts to ignore the number of observations and treat all x values as equally weighted.

kparts can take a long time to process datasets with large numbers of unique x values. To gain
efficiency, pre-processing vector x by binning is recommended.

Value
partitions A data frame naming the index of the partition and the range x over which the
partition extends.
data A data frame containing the partition index (parts), the unique values of x, the
average of y and the range of the partition.
Note

In later versions, kparts will be updated to allow for a matrix of data as y input.

Author(s)
Robert P. Bronaugh

Examples

plot readmission rates against age.

data(ipadmits)
attach(ipadmits)
ipadmits.summary = data.frame(”AvgReadmission” = tapply(ipadmits$isReadmission
,ipadmits$Age
,mean)
,"AvgCost"” = tapply(ipadmits$cost
,ipadmits$Age
,mean))

plot(ipadmits.summary$AvgReadmission,xlab = "Age"”,ylab = "AvgReadmission")

find the best partitions of age against readmission rate.

run kparts with 4 trials with 5 partitions

kp = kparts(x = ipadmits$Age,y = ipadmits$isReadmission,parts = 5,trials = 4)
list value range for each partition

kp$partitions

plot(kp)

run with 7 partitions and ignore number of samples per age

qqrank 11

when computing error

kp = kparts(ipadmits$Age,ipadmits$isReadmission,parts = 7,trials = 5,nblind = TRUE)
kp$partitions

plot(kp)

detach(ipadmits)

ggrank Load-Deviance Ranking

Description

Rank by size and deviance from the hypothesized mean.

Usage

gqrank(X, INDEX, alternative = c("two.sided”, "less", "greater"),
absrank = TRUE, N = NA, b = NA, plotpenalty = TRUE,
allowed.error = 0.005)

Arguments

X A numeric vector.

INDEX A factor of length X.

alternative The alternative hypothesis. Accepts "two.sided"”, "less”, or "greater”.

absrank If TRUE, INDEX means greater than or less than the population mean will produce
a positive qgscore. If FALSE, INDEX means greater than the population mean
will have a positive qqscore and INDEX means less than the population mean
will have a negative qgqscore. The default is TRUE.

N The number of observations below which a growth penalty is applied. N is
passed to x1 argument of glpenalty.

b A positive numeric value representing the growth rate of the glpenalty.

plotpenalty If TRUE, the glpenalty is plotted. The default is TRUE.
allowed.error The allowed difference between glpenalty and 1 at N. The default is 0. 005.
Details

gqrank ranks by size and deviance from the hypothesized mean using either the Binomial Test or
Welch’s t-Test. Restated, qgrank is a function of a size penalty, test statistic or variant thereof, and
p-value.

Value

ggrankmatrix A data frame containing the size, mean, standard deviation, and qqrank of each

INDEX.
test.used The statistical test used to measure deviance from the mean.
pop.mean The mean of X.

pop.sd The standard deviation of X.

12 wash

Author(s)
Robert P. Bronaugh

See Also

glpenalty t.test binom. test

Examples

which hospital has the "worst"” readmissions? (note: the average
readmission rate is 17.13%

data(ipadmits)
attach(ipadmits)

ip.ag = data.frame('sum’ tapply(ipadmits$isReadmission, ipadmits$HospID, sum),

avg' = tapply(ipadmits$isReadmission,ipadmits$HospID,mean))

hospital 9 has the most readmissions (1,094), but the percent of readmissions
is low at 14%, less than the population average.
ip.aglorder(-ip.ag$sum),1[1,]

hostpital 80 has the highest percentage of readmissions 87.5%, but only
7 readmissions over all.
ip.aglorder(-ip.ag$avg),1[1,]

using qgrank and penalizing samples less than N = 250 at a growth
rate of b = 0.05, Hospital 39 has 1606 readmissions with a readmission
percent of 38%.
qqr = qqrank(ipadmits$isReadmission,ipadmits$HospID

,alternative = "greater”,N = 250, b = 0.05)
round(qqr$rankmatrix, 2)

relax sample penalty and rank on both sides of the mean
Hospital 21 has the "best” readmission track record.
qqr = qqrank(ipadmits$isReadmission,ipadmits$HospID
,alternative = "two.sided”,absrank = FALSE,N = 30, b = 0.1)
round(qqr$rankmatrix,2)
detach(ipadmits)

wash Wash Color Palette

Description

Color Palette for R.

Usage

wash(color, grade)

wash 13

Arguments
color Name of the color or color vector to be returned. Run wash.showall() or see
details for a complete list of accepted color arguments.
grade A positive numeric value. For grade between @ and 1, a single color of gradient
grade will be returned. For grade between 1 and 61, a character vector of N
equidistant grandients will be returned.
Details

Use wash. showall() to see the list of colors available and to return 15 of the 61 color gradients.
Below is a list of all colors:

"grd1” green to red, vibrant
"grd2" green to red, pale
"blul” blue

"blu2" dark blue

"grn1” lime green
"grn2" green

"ylw" yellow

"org" orange

"red1” orange to red
"red2" pink to red
"prp1” purple

"prp2"” dark purple
"cyn"” cyan

"grb" grey blue

"gry" grey

Value

A color or vector of colors.

See Also

washout

Examples

show all colors
wash. showall()

Specify the color then specify a gradient 0-1.

14

wash

Here is purple2 at 30%
washcol = wash('prp2',0.3)
plot(1,1,col = washcol,cex = 21,pch=16,axes = FALSE,xlab = "" ,ylab = "")

purple2 at 100%
washcol = wash('prp2',1)

plot(1,1,col = washcol,cex = 21,pch=16,axes = FALSE,xlab = "",ylab = "")

Chose a vector of colors:

Specify the color then specify the number of

gradients (1-61) to include in the vector. Here
are 5 shades of bluel.

washcol = wash("blul”,5)

plot(seq.int(1,5),rep(1,5),col = washcol,pch=15,cex = 10
,axes = FALSE,xlim = ¢(0.5,5.5),xlab = "",ylab = "")
chose 5 different colors
washcol = c(wash("blul”,1),
wash("grn2",1),
wash("ylw",1),
wash("org",1),
wash("red2",1))
plot(seq.int(1,5),rep(1,5),col = washcol,pch=15,cex = 10
,axes = FALSE,xlim = c¢(0.5,5.5),xlab = "",ylab = "")

61 shades of greenredl (for heat maps)
washcol = wash("grd1"”,61)
plot(seq.int(1,61),rep(1,61),col = washcol,pch=15,cex = 21

,xlim= c(-4,54),axes = FALSE,xlab = "",ylab = "")

Expand a color vector to match data

plot readmission by age, no color

data(ipadmits)
attach(ipadmits)
ipadmits.summary = data.frame("”AvgReadmission” = tapply(ipadmits$isReadmission
,ipadmits$Age
,mean)
,"AvgCost"” = tapply(ipadmits$cost
,ipadmits$Age

,mean))

plot(ipadmits.summary$AvgReadmission
,xlab = "Age"”,ylab = "AvgReadmission")

get vector of 9 greenredl colors then expand color vector
to match readmission data with color gradient increasing by

washout 15

value of avg readmission
washcol = wash("grd1",9)
washoutcol = washout(ipadmits.summary$AvgReadmission,washcol,method = "value"”)
plot(ipadmits.summary$AvgReadmission, col=washoutcol
,pch=16,xlab = "Age",ylab = "AvgReadmission")

increase gradient by the index of the vector Age of value
washoutcol = washout(ipadmits.summary[,1],washcol,method = "index")
plot(ipadmits.summary$AvgReadmission, col=washoutcol

,pch=16,xlab = "Age"”,ylab = "AvgReadmission")

increase gradient by average cost
washoutcol = washout(ipadmits.summary$AvgCost[1:60]
,washcol, method = "value")
plot(ipadmits.summary$AvgReadmission[1:60], col=washoutcol
, pch=16,xlab = "Age", ylab = "AvgReadmission")
detach(ipadmits)

washout Wash Out

Description

Fit color vector to data.

Usage
washout(x, washcol, method = "index")
Arguments
X A vector. For method = "value", a numeric vector must be supplied.
washcol A vector of colors.
method Accepts "index" or "value”. The default is "index".
Details
washout assigns a washcol color to each element in vector x. For method = "index", each
color element in washcol is evenly applied to vector x based on the index of vector x. For
method = "value”, each color element in washcol is evenly applied to vector x based on the

value of vector x.

Value

washout returns a character color vector of length x.

See Also

wash

16 washout

Examples

show all colors
wash. showall()

Specify the color then specify a gradient 0-1.

Here is purple2 at 30%

washcol = wash('prp2',0.3)

plot(1,1,col = washcol,cex = 21,pch=16,axes = FALSE,xlab = "" ylab = "")

purple2 at 100%
washcol = wash('prp2',1)
plot(1,1,col = washcol,cex

21,pch=16,axes = FALSE,xlab = "" ,ylab = "")

Specify the color then specify the number of

gradients (1-61) to include in the vector. Here

are 5 shades of bluel.

washcol = wash("blul”,5)

plot(seq.int(1,5),rep(1,5),col = washcol,pch=15,cex = 10
,axes = FALSE,xlim = c¢(0.5,5.5),xlab = "",ylab = "")

chose 5 different colors
washcol = c(wash("blul”,1),
wash("grn2",1),
wash("ylw",1),
wash("org",1),
wash("red2",1))
plot(seq.int(1,5),rep(1,5),col = washcol,pch=15,cex = 10
,axes = FALSE,xlim = c(0.5,5.5),xlab = "",ylab = "")

61 shades of greenredl (for heat maps)
washcol = wash("grd1"”,61)
plot(seq.int(1,61),rep(1,61),col = washcol,pch=15,cex = 21

,x1lim= c(-4,54),axes = FALSE,xlab = "",ylab = "")

Expand a color vector to match data

plot readmission by age, no color

data(ipadmits)

attach(ipadmits)

ipadmits.summary = data.frame("”AvgReadmission” = tapply(ipadmits$isReadmission
,ipadmits$Age
,mean)

washout

,"AvgCost"” = tapply(ipadmits$cost
,ipadmits$Age
,mean))

plot(ipadmits.summary$AvgReadmission
,xlab = "Age"”,ylab = "AvgReadmission")

get vector of 9 greenredl colors then expand color vector
to match readmission data with color gradient increasing by
value of avg readmission
washcol = wash("grd1",9)
washoutcol = washout(ipadmits.summary$AvgReadmission,washcol,method = "value")
plot(ipadmits.summary$AvgReadmission, col=washoutcol
,pch=16,xlab = "Age",ylab = "AvgReadmission")

increase gradient by the index of the vector Age of value
washoutcol = washout(ipadmits.summary[,1],washcol,method = "index")
plot(ipadmits.summary$AvgReadmission, col=washoutcol

,pch=16,xlab = "Age"”,ylab = "AvgReadmission")

increase gradient by average cost
washoutcol = washout(ipadmits.summary$AvgCost[1:60]
,washcol, method = "value")
plot(ipadmits.summary$AvgReadmission[1:60], col=washoutcol
, pch=16,xlab = "Age", ylab = "AvgReadmission")
detach(ipadmits)

Index

+Topic clustering
kparts, 9
*Topic colors
wash, 12
washout, 15
*Topic color
wash, 12
washout, 15
*Topic datasets
epclaims, 3
ipadmits, 5
xTopic decay
basher, 2
+Topic growth
basher, 2
«Topic palette
wash, 12
washout, 15
xTopic penalty
basher, 2
+Topic unsupervised
kparts, 9
*Topic washout
wash, 12
xTopic wash
washout, 15

basher, 2
binom. test, 12

epclaims, 3
glpenalty, 4, 12
ipadmits, 5

kdpec, 6
kparts, 9

plot.kparts (kparts), 9

18

qgrank, 11
t.test, /12

wash, 12, 15
washout, /3, 15

	basher
	epclaims
	glpenalty
	ipadmits
	kdpec
	kparts
	qqrank
	wash
	washout
	Index

