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beamchaos Chaotic beam data

Description

A flexible thin steel beam was mounted vertically to a electromechanical shaker which provided
a transverse sinusoidal excitation. The beam tip was placed near two rare earth magnets so as
to provide nonlinear buckling forces. The beam was treated with a viscoelastic strip adhered to
one side to provide a little damping. The addition of the damping treatment helps to form a more
distinguishable fractal structure in phase space embeddings. A laser vibrometer was used to record
the beam tip velocity and the analog signal streamed to a National Instruments data acquisition
board. The data was sampled at 1000 Hz. The gain of excitation was adjusted until (seemingly)
chaotic motion was observed.



chaoticlnvariant 3

References

William Constantine (1999), Ph.D. Dissertation: Wavelet Techniques for Chaotic and Fractal Dy-
namics, Mechanical Engineering Department, University of Washington.

See Also

ecgrr, eegduke, lorenz, pd5si.

Examples

plot(beamchaos)

chaoticInvariant Class for chaotic invariant objects

Description

Class constructor for chaoticInvariant.

S3 METHODS

eda.plot plots an extended data analysis plot, which graphically summarizes the process of obtain-

plot

ing a correlation dimension estimate. A time history, phase plane embeddding, correlation
summation curves, and the slopes of correlation summation curves as a function of scale are
plotted.

plots the correlation summation curves on a log-log scale. The following options may be used
to adjust the plot components:

type Character string denoting the type of data to be plotted. The "stat” option plots the
correlation summation curves while the "dstat"” option plots a 3-point estimate of the
derivatives of the correlation summation curves. The "slope” option plots the estimated
slope of the correlation summation curves as a function of embedding dimension. De-
fault: "stat".

fit Logical flag. If TRUE, a regression line is overlaid for each curve. Default: TRUE.

grid Logical flag. If TRUE, a grid is overlaid on the plot. Default: TRUE.

legend Logical flag. If TRUE, a legend of the estimated slopes as a function of embedding
dimension is displayed. Default: TRUE.

... Additional plot arguments (set internally by the par function).

print prints a qualitiative summary of the results.

See Also

infoDim, corrDim, lyapunov.
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Examples

## create a faux object of class chaoticInvariant
faux.data <- list(matrix(rnorm(1024), ncol=2), matrix(1:512))
chaoticInvariant(faux.data,

dimension = 1:2,

n.embed =10,

n.reference = 50,

n.neighbor = 35,

tlag =10,

olag = 15,

resolution = 2,

series.name = "my series”,

series =1:10,

ylab = "log2(C2)",

xlab = "log2(scale)”,

metric = Inf,

invariant = "correlation dimension")

corrDim Correlation dimension

Description

Estimates the correlation dimension by forming a delay embedding of a time series, calculating
correlation summation curves (one per embedding dimension), and subsequently fitting the slopes
of these curves on a log-log scale using a robust linear regression model. If the slopes converge at
a given embedding dimension F, then FE is the correct embedding dimension and the (convergent)
slope value is an estimate of the correlation dimension for the data.

Usage

corrDim(x, dimension=5,
tlag=timelLag(x, method="acfdecor"”), olag=0, resolution=2)

Arguments
X a vector containing a uniformly-sampled real-valued time series or a matrix con-
taining an embedding with each column representing a different coordinate. If
the latter, the dimension input is set to the number of columns and the tlag
input is ignored.
dimension the maximal embedding dimension. Default: 5.
olag the number of points along the trajectory of the current point that must be ex-

ceeded in order for another point in the phase space to be considered a neighbor
candidate. This argument is used to help attenuate temporal correlation in the
the embedding which can lead to spuriously low correlation dimension esti-
mates. The orbital lag must be positive or zero. Default: length(x)/10 or 500,
whichever is smaller.
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resolution an integer representing the spatial resolution factor. A value of P increases the
number of effective scales by a factor of P at a cost of raising the £, norm to the
Pth power. For example, setting the resolution to 2 will double the number of
scales while imposing and additional multiplication operation. The resolution
must exceed unity. Default: 2.

tlag the time delay between coordinates. Default: timeLag(x, method="acfdecor"),
the decorrelation time of the autocorrelation function.

Details

To estimate the correlation dimension, correlation summation curves must be generated and subse-
quently fit with a robust linear regression model to obtain the slopes of these curves on a log-log
plot. The dimension at which these slope estimates (appear to) converge reveals the proper embed-
ding dimension for the data and the slope at this (and higher) embedding dimensions is an estimate
of the correlation dimension. The function used to fit the correlation summation curves is 1msreg
which fits a robust linear model to the data using the method of least median of squares regression.
See the on-line help documentation for help on the 1msreg function: in R, Imsreg is found in the
MASS package while in S-PLUS it is indigenous and appears in the splus database.

The correlation summation at scale € for a given embedding dimension is defined as

Co(e) = = ’Y)N po— Z Z O(e — I1X; — X)),

i=1 j=i+vy+1
where O(-) is the Heavyside function

0, ifx<0;
otherwise

O(z) = {

)

and X is the ¢th point of a collection of N points in the phase space. The parameter +y is the orbital
lag.

The algorithm used to calculate the correlation summation is made computationally efficient by
using:

1 The /., norm to calculate the distance between neighbors in the phase space as opposed to (say)
the ¢ norm which involves taking computationally intense square root and power of two
operations. The /., norm of the distance between two points in the phase space is the absolute
value of the maximal difference between any of the points’ respective coordinates, i.e. if
X = [21, 29, 23]T then || X||o = max; |2].

2 Bitwise masking and shift operations to reveal the radix-2 exponent of the ¢, norm. This direct
means of obtaining the exponent immediately yields the associated scale of the distance be-
tween neighbors in the phase space while avoiding costly log operations. The bitwise mask
and shift factors are based on the IEEE standard 754 for binary floating-point arithmetic. Ini-
tial tests are performed in the code to verify that the current machine follows this standard.

3 acomputationally efficient routine to calculate the resulting value of a float raised to a positive in-
teger power. Specifically, the ¢, norm is raised to an integer power (p) to effectively increase
the spatial resolution by a factor of p.
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The correlation summation curves Cy(E, €) where E is the embedding dimension and ¢ is the scale,
the correlation dimension curves Dy (FE, ) can be calculated by
InCy(E,2e) —InCy(E,e/2) 1 1 Cy(FE, 2¢)
= = — 10 — -
% Cao(B.e/2)

In2e —Ine/2 2
This formulation is used to help suppress numerical instabilities that are present in other numerical
derivative schemes such as a first order difference.

DQ(E,E)

As a caveat to the user, the slope estimates of the correlation summation curves will typically
display a fair amount of variability and the range of scales over which the slopes are approximately
linear may be small. Inasmuch, the correlation dimension estimate should always be interpretted
as a subjective summary statistic, even when the original times series is representative of a truly
noise-free chaotic response.

Value

an object of class chaoticInvariant.

S3 METHODS

eda.plot plots an extended data analysis plot, which graphically summarizes the process of obtain-
ing a correlation dimension estimate. A time history, phase plane embeddding, correlation
summation curves, and the slopes of correlation summation curves as a function of scale are
plotted.

plot plots the correlation summation curves on a log-log scale. The following options may be used
to adjust the plot components:

type Character string denoting the type of data to be plotted. The "stat"” option plots the
correlation summation curves while the "dstat"” option plots a 3-point estimate of the
derivatives of the correlation summation curves. The "slope” option plots the estimated
slope of the correlation summation curves as a function of embedding dimension. De-
fault: "stat".

fit Logical flag. If TRUE, a regression line is overlaid for each curve. Default: TRUE.

grid Logical flag. If TRUE, a grid is overlaid on the plot. Default: TRUE.

legend Logical flag. If TRUE, a legend of the estimated slopes as a function of embedding
dimension is displayed. Default: TRUE.

... Additional plot arguments (set internally by the par function).

print prints a qualitiative summary of the results.

References
Peter Grassberger and Itamar Procaccia (1983), Measuring the strangeness of strange attractors,
Physica D, 9, 189-208.

Holger Kantz and Thomas Schreiber (1997), Nonlinear Time Series Analysis, Cambridge University
Press.

Peter Grassberger and Itamar Procaccia (1983), Characterization of strange attractors, Physical
Review Letters, 50(5), 346-349.

Rousseeuw, P. J. (1984). Least median of squares regression. Journal of the American Statistical
Association, 79, 871-88.
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See Also

infoDim, embedSeries, timelLag, chaoticInvariant, lyapunov, poincareMap, spaceTime, findNeighbors,
determinism.

Examples

## calculate the correlation dimension estimates

## for chaotic beam data using a delay

## embedding for dimensions 1 through 10, a

## orbital lag of 10, and a spatial resolution

## of 4.

beam.d2 <- corrDim(beamchaos, olag=10, dim=10, res=4)

## print a summary of the results
print(beam.d2)

## plot the correlation summation curves
plot(beam.d2, fit=FALSE, legend=FALSE)

## plot an extended data analysis plot
eda.plot(beam.d2)

determinism Detecting determinism in a time series

Description

Infers the existence of deterministic structure in a given time series. If fractal strucutre exists, this
function is useful in helping the user decide whether a deterministic chaotic model or stochastic
fractal time series model is appropriate for their data.

Usage

determinism(x, dimension=6, tlag=NULL,
olag=1, scale.min=NULL, scale.max=NULL,
resolution=NULL, method="ce",
n.realization=10, attach.summary=TRUE,
seed=0)

Arguments

X a numeric vector or matrix containing uniformly-sampled real-valued time se-
ries.

attach.summary a logical flag. If TRUE, a summary of the results is calculated and attached to
returned object as an attribute named "summary”. The summary statistics are
calculated using the summary method. Default: TRUE.

dimension an integer defining the maximum embedding dimension to use in analyzing the
data. Default: 6.
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method a character string representing the method to be used to generate surrogate data.
Choices are:

"aaft" Theiler’s Amplitude Adjusted Fourier Transform.
"phase” Theiler’s phase randomization.
"ce"” Davies and Harte’s Circulant Embedding.

"dh" Davison and Hinkley’s phase and amplitude randomization.
Default: "ce".

n.realization an integer denoting the number of surrogate realizations to create and analyze
for comparison to the ensmeble of E-statistics. Default: 10.

olag the number of points along the trajectory of the current point that must be ex-
ceeded in order for another point in the phase space to be considered a neighbor
candidate. This argument is used to help attenuate temporal correlation in the
the embedding which can lead to spuriously low correlation dimension esti-
mates. The orbital lag must be positive or zero. Default: 1length(x)/10 or 500,
whichever is smaller.

resolution a numeric value representing the spacing between scales (Euclidean bin size).
Default: diff(range(x))/1000.

scale.max a numeric value defining the maximum scale over which the results should be
returned. Default: diff(range(x)) * sqrt(dimension).

scale.min a numeric value defining the minimum scale over which the results should be
returned. Default: min(diff(sort(x)))/1000.

seed a positive integer representing the initial seed value for generating surrogate re-
alizations of the original input time series. These surrogates are used to collect
an ensemble of determinism statistics (see DETAILS section for more informa-
tion). If the specified seed value is positive, the seeds used for generating the
surrogate ensemble will be calculated via set. seed(seed);rsample(.Machine$integer.max, size=n.
This argument should only be used (by specifying a positive seed value) if the
user wishes to replicate a particular set of results, such as those illustrated in the
casebook examples. If seed=0, then the random seeds will be generated based
on the current time. Default: @ (generate the random seeds based on the current
time).

tlag the time delay between coordinates. Default: the decorrelation time of the auto-
correlation function.

Details

This function calculates the so-called delta-epsilon test for detecting deterministic structure in a
time series by exploiting (possible) continuity of orbits comprising a phase space topology created
by a time-delayed embedding of the original time series. This phase space continuity is non-existent
for stochastic white noise processes. The delta-epsilon test works by

1 an ensemble of randomized realizations of the original time series, i.e., surrogate data is created.

2 an appropriate phase space statistic (called the E-statistic) is calculated for both the time-delayed
embedding of the original time series and the ensemble of surrogates.
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3 acomparison of the E-statistic for the original series and the ensemble of surrogate data is made.
If there is a separation of the original E-statistic from that of the ensemble, it implies the exis-
tence of deterministic structure in the original time series. Conversely, an overlap of E-statstics
implies that the original series cannot be discriminated from the ensemble of randomized sur-
rogates and thus it is inferred that the original series is a realization of a random process.

The discriminating E-statistic is calculated as follows: Define
Ojk = |25 — 2kl

€k = Zjtn = Zktnl

e(r) =¢6x forj,kst.r <d;, <r+Ar

where d; 1, is the Euclidean distance (using an infinity-norm metric) between phase space points z;
and zy, and €; , is the corresponding separation distance between the points at a times < points in
the future along their respective orbits. These future points are referred to as images of the original
pair. The variable « is referred to as the orbital lag. The increment Ar is the width of a specificed
Euclidean bin size. Given Ar, the distance d; ;, is used solely to identify the proper bin in which to
store the image distance €; . The average of each bin forms the e(r) statistic. Finally, the E-statistic
is formed by calculating a cumulative summation over the the e(r) statistic, i.e.,

E(r)= Z@

If there exists a distinct separation of the E-statstics for the original time series and the ensemble of
surrogate data, it implies that the signal is deterministic. The orbital lag x should be chosen large
enough to sufficiently decorrelate the points evaluated along a given orbit.

Value

an object of class determinism.

S3 METHODS

eda.plot plots a barplot of the determinism level (expressed as a percentage on [0,100]) based on
the fraction of overlap between the E-statistics for the original series and that of the ensmeble
of surrogates. The amount of non-overlap is calculated relative to both the first quartile and
extreme values of the E-statistics for the surrogate ensemble.

plot plots the E-statistics at small scales of the original series overlaid with those of the ensmeble
of surrogates (illustrated using boxplots over a subsampled set of the surrogate E-statistics).

print print a sumamry of the analysis.

summary produces a summary of the E-statistics for use in the print, and plot, and eda.plot
methods.

References

Kaplan, D. (1994), Exceptional Events as Evidence for Determinism, Physica D, 73, 38—48.

See Also

embedSeries, timelLag, spaceTime, surrogate.
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Examples

## perform a determinism test for the beamchaos
## series. in order to do so, it is vitally

## important to provide the proper orbital lag,
## which can be estimated as the lag value

## associated with the first common maxima over
## all contours in a spaceTime plot.
plot(spaceTime(beamchaos))

## we esimate an appropriate olag of 30, and
## subsequently perform the deterrminism test
beam.det <- determinism(beamchaos, olag=30)
print(beam.det)

plot(beam.det)

eda.plot(beam.det)

## perform a similar analysis for a Gaussian white
## noise realization

rnorm.det <- determinism(rnorm(1024),olag=1)
print(rnorm.det)

plot(rnorm.det)

eda.plot(rnorm.det)

DFA Detrended fluctuation analysis

Description
Performs a detrended fluctuation analysis (DFA) and estimates the scaling exponent from the results.
DFA is used to characterize long memory dependence in stochastic fractal time series.

Usage

DFA(x, detrend="polyl1"”, sum.order=0, overlap=0,
scale.max=trunc(length(x)/2), scale.min=NULL,
scale.ratio=2, verbose=FALSE)

Arguments
X a vector containing a uniformly-sampled real-valued time series.
detrend a character string denoting the type of detrending to use on each block of the

time series. Supported types are:

"poly}\emph{K}\code{" specifies a polynomial fit where K is an integer de-
noting the order of the polynomial. For example, if detrend="poly2", a
second order polynomial of the form x; = by + b1t + byt? will be used to
fit the data in each block using least squares. The polynomial order must be
positive or zero.
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"bridge” specifies bridge detrending. A line connecting the endpoints of each
block is subtracted.

"none" instructs the function to not detrend the data.
Default: "poly1”.

overlap the overlap of blocks in partitioning the time data expressed as a fraction in [
0,1). A positive overlap will slow down the calculations slightly with the (pos-
sible) effect of generating less biased results. Default: 0.

scale.max an integer denoting the maximum block size to use in partitioning the data. De-
fault: trunc(length(x)/2).

scale.min an integer denoting the minimum block size to use in partitioning the data. De-
fault: for polynomial detrending the default value is 2*(K+1). For all other de-
trending techniques, the default value is 4 or length(x) /4, whichever is smaller.

scale.ratio the ratio of successive scales. This argument is used as an input to the logScale
function. Default: 2.

sum.order an integer denoting the number of differences or cumulative summations to per-
form on the original data before performing a DFA. Differences are specified by
negative integers and cumulative summations by positive integers. For example,
to perform a second order difference, set sum.order=-2. Default: 0.

verbose a logical value. If TRUE, the detrending model and processing progress informa-
tion is displayed. Default: FALSE.

Details

The DFA algorithm is implemented as follows:

1 DFA is useful for characterizing long-memory correlations in stochastic fractal time series, i.e.
sequences whose spectral density function S(f) obeys a power law S ~ | f|* at low frequen-
cies where 0 < f < 1/2is the normalized frequency variable and o < —1 is the long memory
(scaling) exponent. If the scaling exponent for an original time series is o > —1, then (possi-
bly multiple) cumulative summations of the original time series must be performed to increase
the scaling exponent (each cumulative summation decreases the exponent by 2). For exam-
ple, a (single) cumulative summation must be performed on a white noise realization since its
scaling exponent is zero. We also provide the user with the ability to perform (consecutive)
first order differencing operations on the original time series prior to a DFA. Each differencing
operation raises the scaling exponent by 2. Differencing a series is acceptable prior to DFA as
long as the resulting scaling exponent is less than -1.

2 The series resulting from stage one is uniformly partitioned into blocks of a specified minimum
size (scale.min), and each block is (optionally) detrended. The variance of the detrended
sequence in each block is calculated and the collection of variances is averaged to form the
scalar value F'2(scale.min) which summarizes the variability of the sequence at the current
scale.

3 Stage two is repeated using successively larger blocks until the largest scale (scale.max) has
been reached.

4 For long-memory processes, we expect to find a linear relation between log F'(scale) and log scale.
The slope of the line which best fits a plot of log F'(scale) versus log scale is defined as the
scaling exponent.
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Value

an object of class fractalBlock.

References
Peng C-K, Buldyrev SV, Havlin S, Simons M, Stanley HE, and Goldberger AL (1994), Mosaic
organization of DNA nucleotides, Physical Review E, 49, 1685-1689.

Peng C-K, Havlin S, Stanley HE, and Goldberger AL (1995), Quantification of scaling exponents
and crossover phenomena in nonstationary heartbeat time series, Chaos, 5, 82-87.

Goldberger AL, Amaral LAN, Glass L, Hausdorff JM, Ivanov PCh, Mark RG, Mietus JE, Moody
GB, Peng C-K, Stanley HE (2000, June 13), PhysioBank, PhysioToolkit, and Physionet: Compo-
nents of a New Research Resource for Complex Physiologic Signals, Circulation, 101(23), e215-
e220.

See Also

logScale, fractalBlock.

Examples

## calculate the scaling exponent for a random
## walk realization
DFA.walk <- DFA(rnorm(1024), detrend="poly1", sum.order=1)

## print the results
print(DFA.walk)

## plot a summary of the results
eda.plot(DFA.walk)

dispersion Dispersion analysis

Description

Dispersion analysis measures the standard deviation of aggregated means of a time series taken
over logarithmically distributed scales. Dispersion analysis is designed for the analysis of fractional
Gaussian noise and should not be used for analyzing fractional Brownian motion.

Usage

dispersion(x, front=FALSE)
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Arguments
X a numeric vector or signalSeries object containing a uniformly sampled real-
valued time series.
front a logical value. If TRUE, the aggregation is started from the beginning of the
time series so that the first points will be included in the result. Otherwise, the
aggregation is shifted to include the end of the series. Default: FALSE.
Value

a list containing the scale and dispersion analysis statistic vectors.

References

Bassingthwaighte, J. B., and G. M. Raymond. Evaluation of the dispersional analysis method for
fractal time series, Annals Biomedical Engineering, 23, 491-505, 1995.

See Also

DFA, RoversS.

Examples

set.seed(100)
z <- dispersion(rnorm(1024))
plot(log(z$scale),log(z$sd))

ecgrr Electrocardiogram R-R Interval Data

Description

These data are from the file rri1.txt in the ‘RR interval time series modeling: A challenge from
PhysioNet and Computers in Cardiology 2002’ site of PhysioNet. sponsored by NIH’s National
Center for Research Resources.

The data are the RR intervals (beat-to-beat intervals measured between successive peaks of the QRS
complex) for patients in normal sinus thythm (record 16265 of the MIT-BIH database).

See Also

beamchaos, eegduke, lorenz, pd5si.

Examples

plot(ecgrr)
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eda.plot Generic function for generating extended data analysis plots

Description

Data analysis plots are used to visually summarize the salient features of the output and typically
involve a combination of plots in a single plot frame.

Usage
eda.plot(x, ...)
Arguments
X any object. Missing values ( NAs) are allowed.
optional arguments to be passed directly to the inherited function without alter-
ation and with the original names preserved.
Note

An extended data analysis plot is shown.

See Also

wavMRD, determinism, chaoticInvariant, embedSeries, fractalBlock, KDE, spaceTime, surrogate.

Examples

methods(eda.plot)

eegduke Electroencephalogram Recordings of a Seizure

Description

EEG of a patient undergoing ECT therapy for clinical depression at the ECT Lab at Duke. The
data are fluctuations in electrical potential at a point on the patient’s scalp during seizure, one of
several recorded channels. They are measured in microvolts and represent measurements taken at
time intervals of roughly 1/40 of a second.

See Also

beamchaos, ecgrr, lorenz, pd5si.

Examples

plot (eegduke)
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embedSeries Creates a delay embedding of a single variable time series

Description

Given the time series X;, the embedding dimension F, and the time delay 7, the embedding coor-
dinates are defined as Xy, Xy +,..., Xy_(g—1)r-

Usage

embedSeries(x, dimension=NULL, tlag=NULL, series.name=NULL)

Arguments
X a vector containing a uniformly-sampled real-valued time series.
dimension the maximal embedding dimension. Default: 2.
series.name a character string defining the name of the input time series. Default: deparseText (substitute(x)).
tlag the time delay between coordinates. Default: the first zero crossing of the auto-
correlation function of x.
Value

an object of class embedSeries.

S3 METHODS

[ data access method. Usage: x[1:3,1].
as.matrix convert embedding into matrix object. Usage: as.matrix(x).

eda.plot creates an extended data analysis plot of the data summarizing many of its statistical
features. Usage: eda.plot(x).

plot plots the embedding. For embeddings higher than 3, a spin plot of the data is generated.
Use the buttons on the spin control panel to conrtol the display. Available options to the plot
function are:

dim The plot dimension. Must be less than or equal to the maximal embedding dimension
(number of columns in the embedding matrix). Default: the maximal embedding dimen-
sion.

... Additional plot arguments (set internally by the par function).

Usage: plot(x).

print prints a summary of the embedding. Available options are:
... Additional print arguments used by the standard print function.

Usage: print(x).

See Also

timelLag, FNN, corrDim, determinism.
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Examples

## embed the beamchaos series in 10 dimensions
## using a time lag of 15.
z <- embedSeries(beamchaos, tlag=15, dim=10)

## plot the attractor in the phase space
## Not run: plot(z)

## plot the embedding projected down to two
## dimensions
plot(z, dim=2)

FDSimulate Simulation of an FD process with time varying model parameters

Description

Creates a realization of a time-varying fractionally differenced (FD) process with a given vector of
FD parameters and corresponding vector of innovations variances.

Usage

FDSimulate(delta, innovations.var=1, method="ce", seed=0)

Arguments

delta a vector containing time-varying FD parameters.

innovations.var
a numeric vector or scalar containing (time-varying) FD innovations variances.
If a scalar, the value is replicated appropriately. Otherwise, the length of this
input should match the length of the delta vector. Default: 1.

method a character string defining the method to use in forming the FD realization.
Choices are "ce" (circulent emebdding) and "cholesky". Default: "ce".

seed a positive integer representing the initial seed value to use for the random num-
ber generator. If seed=0, the current time is used as a means of generating a
(unique) seed value. Otherwise, the specified seed value is used. Default: @.

Value

a vector containing a (time-varying) FD process realization corresponding to the input FD model
parameters.
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S3 METHODS

plot plot the output object. Optional arguments include:

simulation Plot the simulated series. Default: TRUE.
delta Plot the FD parameter as a function of time. Default: TRUE.
innovations.var Plot the innovations variance as a function of time. Default: TRUE.

print print the output object.

References

D. B. Percival and A. T. Walden, Wavelet Methods for Time Series Analysis, Cambridge University
Press, 2000.

D. B. Percival and W.L.B. Constantine, Exact Simulations of Time-Varying Fractionally Differenced
Processes, submitted to Journal of Computational and Graphical Statistics, 2002.

See Also

FDWhittle, wavFDPBlock, wavFDPTime.

Examples

## create a time-varying FD parameter, linearly
## varying from white to pink noise, then jump
## to a red noise plateau

delta <- c(seq(@, 0.5, by=0.01), rep(1,100))

## set the innovations variance to unity
innovation <- rep(1, length(delta))

## simulate a time-varying FD process

z <- FDSimulate(delta=delta, innovation=innovation)
print(z)

plot(z)

FDWhittle Estimate the Hurst coefficient by Whittle’s method

Description

Using an estimate of the spectral density function for an input time series, Whittle’s method fits the
parameters of a specified SDF model to the data by optimizing an appropriate functional. In this
case, the SDF for a fractionally differenced (FD) process model is used and an estimate of (¢), the
FD parameter, is returned.

Usage

FDWhittle(x, method="continuous", dc=FALSE, freq.max=0.5,
delta.min=-1,delta.max=2.5, sdf.method="direct"”, ...)
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Arguments

X

dc

delta.max

delta.min

freg.max

method

sdf .method

Value

FDWhittle

a vector containing a uniformly-sampled real-valued time series.

optional SDF estimation arguments passed directly to the SDF function. See help
documentation for the SDF function for more information.

a logical value. If FALSE, the DC component of the SDF (corresponding to
the sample mean of the series) is not used in optimizing the Whittle functional.
Default: FALSE.

the maximum value for the FD parameter to use in the constrained optimization
problem. Default: 2.5.

the minimum value for the FD parameter to use in the constrained optimization
problem. Default: -1.

the largerst normalized frequency of the SDFs use in the analysis. Default: 0. 25.

a character string indicating the method to be used in estimating the Hurst coef-
ficient (H). Choices are:

"continuous” Whittle’s method using a continuous model approach to form
the optimization functional. This functional is subsequently implemented
via a discrete form of the SDF for an FD process.

"discrete” Whittle’s method using (directly) a discrete form of the SDF for
an FD process.

Default: "continuous”.

a character string denoting the method to use in estimating the SDF. Choices are
"direct”, "lag window", "wosa" (Welch’s Overlapped Segment Averaging),
"multitaper”. See help documentation for the SDF function for more informa-

tion. Default: "direct”.

estimate of the FD parameter of the time series.

References

M. S. Taqqu and V. Teverovsky, On Estimating the Intensity of Long- Range Dependence in Finite
and Infinite Variance Time Series (1998), in A practical Guide to Heavy Tails: Statistical Techniques
and Applications, pp. 177-217, Birkhauser, Boston.

See Also

hurstSpec, FDSimulate.

Examples

set.seed(100)

walk <- cumsum(rnorm(1024))
FDWhittle(walk, method="discrete"”, sdf.method="multitaper")
FDWhittle(walk, method="continuous"”, sdf.method="multitaper")
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findNeighbors

Nearest neighbor search in a multidimensional space

Description

Finds a user specified number of nearest neighbors of a multivariate space defined by the coordinates
of the input matrix. Alternatively, the user can specify a maximum distance over which to search
for nearest neighbors.

Usage

findNeighbors(x, n.neighbor=NULL, metric=1, max.distance = 0.,
olag=0, sort.distances=TRUE)

Arguments

X

max.distance

metric

n.neighbor

olag

sort.distances

Details

an embedding matrix. Each column of the matrix respresents a single coordinate
of the embedding and each row denotes the coordinates of a single point in the
embedding.

used an alternative to n.neighbor, use this parameter to specify the maximum
distance to search relative to the current point in the phase space. The metric for
the distance is specified separately by the optional metric input argument. This
arguments must be positive and will only be used if n.neighbor is NULL, equal
to zero, or less than zero. Default: 0. 0.

the metric used to define the distance between points in the embedding. Choices
are limited to 1, 2, or Inf which represent an L1, Lo, and L., norm, respectively.
Default: 1.

the number of neighbors to find for each point in the embedding. If not NULL,
this argument overrides the max.distance argument. Default: 2.

an integer scalar representing the orbital lag, which defines the number of points
along a trajectory (both forwards and backwards) that are to be excluded as near-
est neighbor candidates. This argument helps to prevent temporally correlated
data samples from being considered as neighbors to a given point in the embed-
ding. This sitatuation can arise, for example, when a smooth trajectory has been
highly oversampled in time. An orbital lag of O implies that the reference point
itself may be considered a neighbor candidate. To exclude self-neighbors, set
olag greater than zero. Default: 0.

a logical flag. If TRUE, the neighbors for a given point are sorted by distance
from closest to farthest. Default: TRUE.

An efficient recursive algorithm is used to find all nearest neighbors. First a quadtree is developed to
form a recursive partitioning of the embedding matrix, returning row and column index vectors and
a list of medians which may be used to sort the embedding matrix. The quadtree is then traversed
as an efficient means to find nearest neighbors.
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Value

a list containing the indices of the original points (corresponding to rows of the embedding matrix),
the indices of the neighbors found, and the distance between them. The distance metric is based on
that specified by the optional metric input argument.

References

Friedman, J., Bentley, J. L., and Finkel, R. A., “An algorithm for finding best matches in logarithmic
expected time", ACM Transactions on Mathematical Software 3, 209-226, 1977.

See Also

FNN, FNS.

Examples

## Calculate the 10 nearest neighbors for each

## point of 3-dimensional delayed coordinate

## embedding of the beamchaos data. Exclude

## self-neighbors from the output.

embedding <- embedSeries( beamchaos, dim = 3, tlag = 10 )
nn <- findNeighbors( embedding, n.neighbor=10, olag=1 )

## Using the same data, find only those neighbors

## within a distance 0.1 of the original points

## based on an L-infinity metric

nn.dist <- findNeighbors( embedding, max.distance=0.1,
metric=Inf, olag=1 )

FNN Estimation of the proper embedding dimension for a single-variable
time series

Description
Invokes the method of False Nearest Neighbors (FNN) to estimate the minimal embedding dimen-
sion of a multivariate data set.

Usage

FNN(x, dimension=5, tlag=NULL, rtol=10, atol=2, olag=1)

Arguments
X a vector containing a uniformly-sampled real-valued time series.
atol neighbor tolerance based on attractor size. If the Euclidean distance between

two neighbor candidates is Atol times larger the estimated "size" of the attractor,
then those neighbors are declared as false neighbors. Default: 2.
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dimension

olag

rtol

tlag

Value
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the maximal embedding dimension. Default: 5.

orbital lag. The number of points along the trajectory (orbit) of the current
point that must be exceeded in order for another point in the phase space to
be considered a neighbor candidate. This argument is used to help attenuate
temporal correlation in the the embedding which can lead to spuriously low
minimal embedding dimension estimates. The orbital lag must be positive or
zero. Default: 0.

false neighbor Euclidean distance tolerance. If the ratio of the Euclidean dis-
tances between neighbor candidates in successive embedding dimensions ex-
ceeds Rtol, then those neighbors are declared as false neighbors. For example,
if Rtol=5 neighbor candidates that are separated five times more so than in the
previous embedding dimension are declared false neighbors. Default: 10.

the time delay between coordinates. Default: the decorrelation time of the auto-
correlation function.

an object of class FNN.

S3 METHODS

plot plots a summary of the results. Available options are:

xlab a character string defining the x-axis label. Default: "Embedding Dimension".

4

ylab a character string defining the y-axis label. Default: "FNN percentage”.

. Additional plot arguments (set internally by the par function).

print prints a summary of the results. Available options are:

... Additional print arguments used by the standard print function.

References

M. B. Kennel, R. Brown, and H. D. 1. Abarbanel (1992), Determining embedding dimension for
phase-space reconstruction using a geometrical construction, Physical Review A, 45(6), 3403-3411.

Fredkin, D. R., and Rice, J. A. (1995), Method of false nearest neighbors: A cautionary note,
Physical Review E, 51(4), 2950-2954.

See Also

FNS, embedSeries, infoDim, corrDim, timeLag, determinism.

Examples

## perform False Nearest Neighbors tests on
## chaotic beam data for embedding dimensions 1
## through 10, using a time delay embedding
## with a time lag of 10 and an orbital lag of

## 15

X <- FNN(beamchaos, tlag=10, olag=15 )
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ENS

## print the results

print(x)

## plot the results

plot(x)
FNS Estimation of the proper embedding dimension for a single-variable
time series
Description

Invokes the method of False Nearest Strands (FNS) to estimate the minimal embedding dimension
of a multivariate data set.

Usage

FNS(x, dimension=5, tlag=NULL, atol=1,
image.tol=1, olag=1)

Arguments

X
atol
dimension

image. tol

olag

tlag

a vector containing a uniformly-sampled real-valued time series.
NS statitstic threshold. Default: 1.
the maximal embedding dimension. Default: 5.

an integer defining the so-called iterate tolerance. Nearest neighbor pairs (i,J(i))
are separated in time by a point index span dindex = li-J(i)l, where J(i) represents
the index of the nearest neighbor to point i. If a point near i, say k points away
also has a nearest neighbor such that |k - J(k)| = dindex +/- M, where M is the
iterate tolerance, then the pair (k, J(k)) is added to the current strand. Typically,
M=0 or M=1. If M=0, then the difference in index must be exactly the same for
each pair included in the strand. If M=1, the index difference is allowed to be 1
point off from the reference pair. Default: 1.

orbital lag. The number of points along the trajectory (orbit) of the current
point that must be exceeded in order for another point in the phase space to
be considered a neighbor candidate. This argument is used to help attenuate
temporal correlation in the the embedding which can lead to spuriously low
minimal embedding dimension estimates. The orbital lag must be positive or
zero. Default: 1.

the time delay between coordinates. Default: the decorrelation time of the auto-
correlation function.
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Details

The statistic used for determining a false nearest strand (FNS) is based on a Euclidean tolerance
supplied by the user (atol). Let S(d) be the mean Euclidean distance in the projected (d + 1)th
coordinate between strand pairs found to be nearest neighbors in embedding dimension $d$. If
S(d)/A > atol, where A is the estimated attractor size, then the strand is considered to be a false
strand. A is typically calculated to be the sample standard deviation of the original time series. The
S(d) statistic is a measure of the average additional Euclidean distance we gain by embedding the
strand in the next dimension, and is used to assess when this extra distance has grown too large,
indicating a false strand.

Value

an single-dimensional matrix containing the FNS percentage as a function of embedding dimension.

References
M. B. Kennel and Henry D.I. Abarbanel (2002), False neighbors and false strands: A reliable
minimum embedding dimension algorithm, Physical Review E, 66, 026209, 1-19.

M. B. Kennel, R. Brown, and H. D. I. Abarbanel (1992), Determining embedding dimension for
phase-space reconstruction using a geometrical construction, Physical Review A, 45(6), 3403-3411.

Fredkin, D. R., and Rice, J. A. (1995), Method of false nearest neighbors: A cautionary note,
Physical Review E, 51(4), 2950-2954.

See Also

FNN, embedSeries, infoDim, corrDim, timeLag, determinism.

Examples

## perform False Nearest Strands tests on chaotic
## beam data for embedding dimensions 1 through
## 10, using a time delay embedding with a time
## lag of 10 and an orbital lag of 15

x <- FNS(beamchaos, dim=10, tlag=10, olag=15)

## print the results

print(x)
fractalBlock Class constructor for block-dependent estimators for stochastic fractal
time series
Description

Class constructor for fractalBlock.
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Usage

fractalBlock(domain,estimator, exponent, exponent.name,
scale, stat, stat.name, detrend, overlap,
data.name, sum.order, series, logfit, sdf=NULL)

Arguments
domain character string defining the domain in which the calculations took place, e.g.,
in the time or frequency domain.
estimator character string briefly describing the estimator.
exponent numerical value representing the scaling exponent.

exponent.name character string defining the name of the scaling exponent.

scale numeric vector containing the scales used in the analysis.

stat numeric vector containing the statistic calculated in the analysis.

stat.name character vector describing the name for the calculated statistic.

detrend character string describing any series detrending used as a preprocessive mea-
sure. NULL values are allowed and signify no detrending.

overlap numeric value on [0,1] defining the fraction of overlap used in adjacent blocks
of data during the aggregation process.

data.name character string defining the name of the input series.

sum.order integer representing the sum order.

series a numeric vector containing the input series.

logfit a linear regression model (such as that output by 1m, Imsreg, or 1tsreg) con-
taining the regression model of the log(scale) versus log(stat) data.

sdf spectral density function. Default: NULL.

S3 METHODS

eda.plot extended data analyis plot of the data. Available options are:
cex character expansion ala par. Default: 1.
col line color index ala par. Default: 2.

plot plots a summary of the results. Available options are:

pch plot character ala par. Default: 18.

col color index ala par for a plot of the data. the first two elements are used to color the data
and the regression line, respectively. Default: c(1,8).
Ity line types (ala par) for the data and regression line plot, respectively. Default: c(1,1).
grid list of grid objects whose default values are grid=1ist(lty=2, col=16, density=3), key=TRUE, add=FALSE,
... Additional plot arguments (set internally by the par function).
print prints the object. Available options are:
justify text justification ala prettPrintList. Default: "left".
sep header separator ala prettyPrintList. Default: ":".
n.digits number of digits ala prettyPrintList. Default: 5.
... Additional print arguments sent directly to the prettyPrintList function).
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See Also

hurstBlock, DFA.

Examples

## construct a fractalBlock object
xvar <- 2*(1:10)
yvar <- 0.3"(1:10)
z <- fractalBlock(domain="time", estimator="estimator"”, exponent=pi, exponent.name="PI",
scale=xvar, stat=yvar, stat.name="My Stat”,
detrend=NULL, overlap=0.2, data.name="My Series”,
sum.order=-1, series=rnorm(2*10),
logfit=Im(y ~ x, data=data.frame(x=log(xvar), y=log(yvar))))

## print the result
print(z)

## plot the result

plot(z)
HDEst Hurvich-Deo estimate of number of frequencies to use in a peri-
odogram regression
Description

Estimates the number of frequencies to use in a periodogram regression estimate of the Hurst pa-
rameter H of a long memory time series. Based on estimated spectrum of time series.

Usage

HDEst(NFT, sdf, A=0.3, delta=6/7)

Arguments
NFT number of points used in the Fourier transform to generate the spectrum.
sdf estimate of the spectrum of the time series (power, NOT dB).
A parameter A of Hurvich-Deo model. Default: 0.3 (recommended).
delta parameter delta of Hurvich-Deo model. Default: 6/7 (recommended).
Value

estimated optimum number of frequencies "m" to use in a periodogram regression estimate of the
Hurst parameter H.
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References

C.M. Hurvich and R.S. Deo (1999), Plug-in Selection of the Number of Frequencies in Regression
Estimates of the Memory Parameter of a Long Memory Time Series, J. Time Series Analysis, 20(3),
331-341.

See Also

hurstBlock.

Examples

S <- sapa::SDF (beamchaos)
HDEst (NFT=1length(S),as.vector(S))

henon Henon map

Description

Calculates the Henon map states using the specifed parameter set. The Henon map is defined as
_ 2
Tp =Qa— T, 1 + bynfl
Yn = Tn—-1
A parameter set of a = 1.4 and b = 0.3 is known to produce a deterministic chaotic response.

Usage

henon(start=rnorm(2), a=1.4, b=0.3, n.sample=2000, n.transient=10)

Arguments
start a two-element vector of numeric values denoting the starting values for the X
and Y Henon coordinates, respectively.
a the a parameter. Default: 1.4.
b the b parameter. Default: 0. 3.
n.sample an integer denoting the number of iterates to create beyond that specified by
n.transient. Default: 2000.
n.transient an integer denoting the number of transient points. These transients are removed
from the output. Default: 10.
Value

a list of vectors named x and y corresponding to the X- and Y states of the Henon map, respectively.
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See Also

lorenz, lorenz.ode.

Examples
plot(henon(),pch=".",6cex=0.1)
hurstACVF Estimate the Hurst coefficient by regression of scaled asinh plot of
ACVF vs log(lag)
Description

Estimates long memory parameters beta (ACVF decay exponent), alpha (Equivalent PPL model
spectral density exponent), and H (Equivalent Hurst parameter) by linear regression of scaled asinh
of ACVF versus log(lag) over intermediate lag values.

Usage

hurstACVF (x, Ascale=1000, lag.min=1, lag.max=64)

Arguments
X a vector containing a uniformly-sampled real-valued time series.
Ascale scale factor for use in the scaled asinh plot. Default: 1000.
lag.max maximum lag for use in linear regression. Default: 64.
lag.min minimum lag for use in linear regression. Default: 1.

Details

Evaluates autocovariance function (ACVF) of input time series by call to S-Plus function acf.
Constructs sequence asinh(Ascale * ACVF) / asinh(Ascale) and does linear regression (via S-Plus
function "Isfit") of this sequence versus log(lag) from lag.min to lag.max. Draws a plot of the
sequence and the fit line. Recommended usage: look at resulting plot. Is the intermediate range
approximately linear? If plot is too flat, decrease Ascale. If it decreases to zero too quickly, increase
Ascale. Values of Ascale from 10 to 10® have been found useful. If lag.min and lag.max do not
bound the range where the sequence is approximately linear then change them and rerun the function
to produce a better fit.

Value
a list with three components:
beta decay exponent of autocovariance function

alpha spectral density exponent of equivalent PPL. model

H Hurst exponent for equivalent ACVF decay rate
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hurstBlock

References

A. G. Gibbs and D. B. Percival, Forthcoming paper on the autocovariance of the PPL (pure power
law) model. A section of the paper discusses the usefulness of scaled asinh plots.

See Also

hurstBlock.

Examples

hurstACVF (wmtsa: :nile, Ascale=1000000, lag.min=3, lag.max=68)

hurstBlock Hurst coefficient estimation in the time domain

Description

Function to estimate the Hurst parameter H of a long memory time series by one of several methods
as specified in input. These methods all work directly with the sample values of the time series (not
the spectrum).

aggabs The series is partitioned into m groups. Within each group, the first absolute moment about

the mean of the entire series is evaluated. A measure of the variability of this statistic between
groups is calculated. The number of groups, m, is increased and the process is repeated.
The observed variability changes with increasing m in a way related by theory to the Hurst
parameter H of the input series. For the methods used here, a log-log plot of variability versus
number of groups is, ideally, linear, with a slope related to H, so H can be determined by linear
regression.

aggvar The series is partitioned into m groups. Within each group, the variance (relative to the

mean of the entire series) is evaluated. A measure of the variability of this statistic between
groups is calculated. The number of groups, m, is increased and the process is repeated.
The observed variability changes with increasing m in a way related by theory to the Hurst
parameter H of the input series. For the methods used here, a log-log plot of variability versus
number of groups is, ideally, linear, with a slope related to H, so H can be determined by linear
regression.

diffvar The series is partitioned into m groups. Within each group, the variance, relative to the

mean of the entire series, is evaluated. The first difference of the variances is then evaluated.
A measure of the variability of this statistic between groups is calculated. The number of
groups, m, is increased and the process is repeated. The observed variability changes with
increasing m in a way related by theory to the Hurst parameter H of the input series. For the
methods used here, a log-log plot of variability versus number of groups is, ideally, linear,
with a slope related to H, so H can be determined by linear regression.

higuchi The series is assumed to have the character of a noise, not a motion. The series is parti-

tioned into m groups. The cumulative sums of the series are evaluated to convert the series
from a noise to a motion. Absolute differences of the cumulative sums between groups are an-
alyzed to estimate the fractal dimension of the path. The number of groups, m, is increased and
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the process is repeated. The result changes with increasing m in a way related by Higuchi’s
theory to the Hurst parameter H of the input series. A log-log plot of the statistic versus num-
ber of groups is, ideally, linear, with a slope related to H, so H can be determined by linear
regression.

Usage

hurstBlock(x, method="aggAbs", scale.min=8, scale.max=NULL,
scale.ratio=2, weight=function(x) rep(1,length(x)), fit=1m)

Arguments

X a vector containing a uniformly-sampled real-valued time series.

fit a function representing the linear regression scheme to use in fitting the resulting
statistics (on a log-log scale). Supported functions are: 1m, Imsreg, and 1tsreg.
See the on-line help documentation for each of these for more information: in
R, these are found in the MASS package while in S-PLUS they are indigenous
and found in the splus database. Default: 1m.

method a character string indicating the method to be used to estimate the Hurst coeffi-
cient (H). Choices are:
"aggabs” Absolute Values of the Aggregated Series
"aggVar"” Aggregated Variance Method
"diffvar"” Differenced Variance Method
"higuchi” Higuchi’s Method
Default: "aggabs”.

scale.max an integer denoting the maximum scale (block size) to use in partitioning the
series. Default: length(x).

scale.min an integer denoting the minimum scale (block size) to use in partitioning the
series. Default: 8.

scale.ratio ratio of successive scales to use in partitioning the data. For example, if scale.min=8
and scale.ratio=2, the first scale will be 8, the second scale 16, the third scale
32, and so on. Default: 2.

weight a function with a single required variable (x) used to weight the resulting statis-
tics (x) for each scale during linear regression. Currently, only supported when
fit=1m. Default: function(x) rep(1,length(x)).

Value

an object of class fractalBlock.

References

T. Higuchi (1988), Approach to an irregular time series on the basis of the fractal theory, Physica
D, 31, 277-283.

M.S. Taqqu, V. Teverovsky, and W. Willinger, Estimators for Long- Range Dependence: an Empir-
ical Study (1995), Fractals, 3, pp. 785-798.
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M. S. Taqqu and V. Teverovsky, On Estimating the Intensity of Long- Range Dependence in Finite
and Infinite Variance Time Series (1998), in A practical Guide to Heavy Tails: Statistical Techniques
and Applications, pp. 177-217, Birkhauser, Boston.

See Also

fractalBlock, hurstSpec, 1m.

Examples

## create test series
set.seed(100)

X <= rnorm(1024)
walk <- cumsum(x)

## calculate the Hurst coefficient of a random

## walk series using various techniques

methods <- c("aggabs","aggvar”,"diffvar”,"higuchi")

z <- lapply(methods, function(method, walk){
hurstBlock(ifelsel(method=="higuchi”, diff(walk),walk), method=method)

},walk=walk )

names(z) <- methods

## plot results
old.plt <- splitplot(2,2,1)
for (1 in 1:4){
if (i>1)
splitplot(2,2,i)
plot(z[[i]], key=FALSE)
mtext(paste(attr(z[[il],"stat.name"), round(as.numeric(z[[i]]),3), sep=", H="),
line=0.5, adj=1)
3
par(old.plt)

hurstSpec Hurst coefficient estimation via spectral regression

Description

Function to estimate the Hurst parameter H of a time series by linear regression of the log(spectrum)
versus log(frequency) with frequency points accumulated into boxes of equal width on a logarithmic
scale and spectrum values averaged over each box.

standard Given an estimate of the SDF for the input time series, this function estimates the
Hurst coefficient of the time series by performing a linear regression of log(SDF) versus
log(frequency). The range of frequencies to be included in the regression is specified by
the dc and freq.max input arguments.
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smoothed Given an estimate of the SDF for the input time series, this function estimates the
Hurst coefficient of the time series by performing a linear regression of log(SDF) versus
log(frequency). The range of frequencies to be included in the regression is specified by
the dc and freq.max input arguments. Frequencies are partitioned into blocks of equal width
on a logarithmic scale and the SDF is averaged over each block. The number of blocks is
controlled by the n.block argument.

robinson Estimates the Hurst coefficient by Robinson’s SDF integration method. Given an esti-
mate of the SDF for the input time series, this function estimates the Hurst coefficient of a
time series by applying Robinson’s integral method (typically) to the low- frequency end of
the SDF. Use the freq.max argument to define the low-frequency cutoff.

Usage
hurstSpec(x, method="standard”, freq.max=0.25, dc=FALSE, n.block=NULL,
weight=function(x) rep(1,length(x)), fit=1lm, sdf.method="direct”, ...)
Arguments
X a vector containing a uniformly-sampled real-valued time series.

optional SDF estimation arguments passed directly to the sdf function. See help
documentation for the SDF function for more information.

dc a logical value. If FALSE, the DC component of the spectrum (corresponding
to the sample mean of the series) is not used in fitting the resulting statistics to
estimate the Hurst coefficient. Default: FALSE.

fit a function representing the linear regression scheme to use in fitting the result-
ing statistics (on a log-log scale). Supported functions are: 1m, lmsreg, and
ltsreg. See the on-line help documentation for each of these for more informa-
tion: in R, these are found in the MASS package while in S-PLUS they are indige-
nous and found in the splus database. Only used when method="standard" or
method="smoothed”. Default: 1m.

freq.max the largerst normalized frequency to include in the regression scheme. Default:
0.25.
method a character string indicating the method to be used in estimating the Hurst coef-

ficient (H). Choices are:

"standard” Regression of SDF estimate.

"smoothed"” Regression of block averages of the SDF estimate taken over dyadic
partitions in frequency.

"robinson” Robinson’s SDF integration method.

Default: "standard”.

n.block an integer denoting the number of logarithmic frequency divisions to use in par-
titioning the estimated SDF. This input argument is only used if method="smoothed".
Default: as.integer(floor(logb(length(x),base=2))), which corresponds
to the maximum number of decomposition levels possible for a discrete wavelet
transformation of the input time seres.
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sdf.method

weight

Value

hurstSpec

a character string denoting the method to use in estimating the SDF. Choices are
"direct”, "lag window"”, "wosa" (Welch’s Overlapped Segment Averaging),
"multitaper”. See help documentation for the sdf function for more informa-

tion. Default: "direct”.

a function with a single required variable (x) used to weight the resulting statis-
tics (x) for each scale during linear regression. Currently, only supported when

fit=1m and is only used when method="standard" or method="smoothed".
Default: function(x) rep(1,length(x)).

an object of class fractalBlock.

References

PM. Robinson (1994), Semiparametric analysis of long-memory time series, Annals of Statistics,

22, 515-539.

I. Lobato and P.M. Robinson (1996), Averaged periodogram estimation of long memory, Journal of
Econometrics, 73, 303-324.

J. Geweke and Susan Porter-Hudak (1983), The Estimation and Application of Long Memory Time
Series Models, Journal of Time Series Analysis, 4, 221-237.

Murad S. Taqqu, Vadim Teverovsky, and Walter Willinger (1995), Estimators for Long-Range De-
pendence: An Empirical Study, Fractals, 3, 785-798.

See Also

hurstBlock, fractalBlock, HDEst, 1m.

Examples

## create test series

set.seed(100)
x <= rnorm(1024)
walk <- cumsum(x)

## calculate the Hurst coefficient of a random
## walk series using various techniques. use a

## multitaper SDF

methods <- c("standard"”,"smoothed")
z <- lapply(methods, function(method, walk){
hurstSpec(walk, method=method, sdf.method="multitaper")

},walk=walk )

names(z) <- methods

## plot results

old.plt <- par("plt")

for (i in 1:2){
splitplot(2,1
plot(z[[il1)

»1)
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par(plt=old.plt)
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## Robinson's method
hurstSpec(walk, method="robinson"”, sdf.method="multitaper")

infoDim

Information dimension

Description

This function estimates the information dimension by forming a delay embedding of a time series,
calculating related statistical curves (one per embedding dimension), and subsequently fitting the
slopes of these curves on a log-log scale using a robust linear regression model. If the slopes
converge at a given embedding dimension F, then F is the correct embedding dimension and the
(convergent) slope value is an estimate of the information dimension for the data.

Usage

infoDim(x, dimension=5, tlag=NULL,
0lag=0, n.density=100, metric=Inf,
max.neighbors=as.integer(min(c(round(length(x) / 3), 100))),
n.reference=as.integer(round(length(x) / 20)))

Arguments

X
dimension

max.neighbors

metric

a vector containing a uniformly-sampled real-valued time series.
the maximal embedding dimension. Default: 5.

letp = k/N for 0 < p < 1 be the mass density where N is the number of points
in the embedding and k is the number of neighbors found near an arbitrary
reference point in the embedding. The max.neighbors parameter defines the
maximum value for k, regardless of the required density. In the case where the
number of neighbors k required to meet the density p exceeds max.neighbors,
then k is limited to max.neighbors and (instead) [V is decreased accordingly to
N’ = | max.neighbors/p]|. It is important to note that only the database of neigh-
bors (formed by an efficient kd-tree algorithm) is reduced to N’ points while all
N points in the embedding are considered as neighbor candidates for any given
reference point. The point of all this is to reduce the computational burden. Set-
ting max.neighbors to a larger value than the default will increase the compu-
tational burden but will lessen the error in estimating the average neighborhood
radius of all reference points with a (specified) constant neighborhood density.
Default: min(c(round(length(x) / 3), 100)).

the metric used to define the distance between points in the embedding. Choices
are limited to 1, 2, or Inf which represent an L1, Lo, and L., norm, respectively.
Default: Inf.
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n.density the number of points to create in developing the density vector. For a given
reference point in the phase space, the density is defined by the relation p = k/N
where k is the number of neighbors in the phase space and NV is the total number
of points in the embedding. To obtain the informaiton dimension statistics, the
density is varied logarithmically from 1/N to 1.0. Default: 100.

n.reference the number of reference points to use in forming the information dimension
statistic. This argument directly specifies the number of equi-dense neighbor-
hoods to average in forming the average neighborhood radius statistic. As with
the max.neighbors argument, increasing n. reference beyond the default will
increase the computational burden at the benefit of obtaining (perhaps) less vari-
able statistics. Default: round(length(x) / 20).

olag the number of points along the trajectory of the current point that must be ex-
ceeded in order for another point in the phase space to be considered a neighbor
candidate. This argument is used to help attenuate temporal correlation in the
the embedding which can lead to spuriously low correlation dimension esti-
mates. The orbital lag must be positive or zero. Default: length(x)/10 or 500,
whichever is smaller.

tlag the time delay between coordinates. Default: the decorrelation time of the auto-
correlation function.

Details

The information dimension (D1) is one of an infinite number of fractal dimensions of a chaotic sys-
tem. For generalized fractal dimension estimations, correlation integral moments are determined
as an average of the contents of neighbohoods in the phase space of equal radius eps. Using
this approach. the information dimension for a given embedding dimension E is estimated via
Dy(F) =< In(p) > /In(e) in the limit as £ approaches zero, where ¢ is the radius of an E-
dimensional hypersphere, p is the density (also known as the mass fraction), and < In(p) > is the
average Shannon information needed to specify an arbitrary point in the phase space with accuracy
E.

Alternatively, the neighborhoods can be constructed with variable radii but with constant density.
The scaling behavior of the average radii of these neighborhoods as a function of density is then
used to estimate the fractal dimensions. In this function, we use this constant density approach to
calculate the statistics for estimating the information dimension.

For single variable time series, the phase space is approximated with a delay embedding and D, (E)
is thus estimated over statistics gathered for dimensions 1, . .., E. For chaotic systems, these statis-
tics will ‘saturate’ at a finite embedding dimension, revealing both the (estimated) information
dimension and an appropriate embedding dimension for the system. A linear regression scheme
should be to estimate the D; (E) using the statistics returned by this function.

Value

an object of class chaoticInvariant.

S3 METHODS

eda.plot plots an extended data analysis plot, which graphically summarizes the process of obtain-
ing a information dimension estimate. A time history, phase plane embeddding, information
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dimension curves, and the slopes of information dimension curves as a function of scale are
plotted.

plot plots the information dimension curves on a log-log scale. The following options may be used
to adjust the plot components:

type Character string denoting the type of data to be plotted. The "stat” option plots the
information dimension curves while the "dstat” option plots a 3-point estimate of the
derivatives of the information dimension curves. The "slope"” option plots the estimated
slope of the information dimension curves as a function of embedding dimension. De-
fault: "stat".

fit Logical flag. If TRUE, a regression line is overlaid for each curve. Default: TRUE.
grid Logical flag. If TRUE, a grid is overlaid on the plot. Default: TRUE.

legend Logical flag. If TRUE, a legend of the estimated slopes as a function of embedding
dimension is displayed. Default: TRUE.

... Additional plot arguments (set internally by the par function).

print prints a qualitiative summary of the results.

References

Peter Grassberger and Itamar Procaccia (1983), Measuring the strangeness of strange attractors,
Physica D, 9, 189-208.

Holger Kantz and Thomas Schreiber (1997), Nonlinear Time Series Analysis, Cambridge University
Press.

See Also

corrDim, embedSeries, timelLag, chaoticInvariant, lyapunov, poincareMap, spaceTime, findNeighbors,
determinism.

Examples

## calculate the information dimension estimates
## for chaotic beam data using a delay

## embedding for dimensions 1 through 10

beam.d1 <- infoDim(beamchaos, dim=10)

## print a summary of the results
print(beam.d1)

## plot the information dimension curves without
## regression lines
plot(beam.d1, fit=FALSE, legend=FALSE)

## plot an extended data analysis plot
eda.plot(beam.d1)
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KDE Nonparametric multidimensional probability density function estima-
tion

Description

Given a training matrix, this function estimates a multidimensional probability density function
using the Epanechnikov kernel as a smoother. The density function is estimated at a specified and
arbitrary set of points, i.e., at points not necessarily members of the training set.

Usage
KDE(x, at=NULL, n.grid=100)

Arguments
X a matrix whose columns contain the coordinates for each dimension. Each row
represents the location of a single point in a multidimensional embedding.
at the locations of the points over which the KDE is to be calculated. Default: a
multidimensional uniform grid of points spanning the training data space (de-
fined by x).
n.grid the number of divisions per dimension to using in forming the default grid when
the at input is unspecified. Default: 100.
Details

The kernel bandwidth is constant (non-adaptive) and is determined by first computing the minimum
variance of all dimensions (columns) of x. This minimum variance is then used in Scott’s Rule to
compute the final bandwidth.

This function is primarily used for estimating the mutual information of a time series and is included
here for illustrative purposes.

Value

an object of class KDE.

S3 METHODS

eda.plot extended data analysis plot showing the original data along with a perspective and contour
plot of the resulting KDE. In the case that the primary input x is a single variable (a time
series), only the KDE is plotted.

plot plot the KDE or original (training) data. Options are:

style a character string denoting the type of plot to produce. Choices are "original”, "perspective”,
and "contour” for plotting the original training data, a perspective plot of the KDE, or a
contour plot of the KDE over the specifed dimensions. In the case that the primary input
x is a single variable (a time series), this parameter is automatically set to unity and a
KDE is plotted. Default: "original”.
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dimensions a two-element integer vector denoting the dimensions/variables/columns to se-
lect from the training data and resulting multidimensional KDE for perspective and con-
tour plotting. In the case that the primary input x is a single variable (a time series), this
parameter is automatically set to unity and a KDE is plotted. Default: 1:2 for multivariate
training data, 1 for univariate training data.

xlab character string defining the x-axis label. Default: dimnames of the specified dimensions
of the training data. If missing, "X" is used. For univariate training data, the x-axis label
is set to the name of the original time series.

ylab character string defining the y-axis label. Default: dimnames of the specified dimensions
of the training data. If missing, "Y" is used. For univariate training data, the y-axis label
is set to "KDE".

zlab character string defining the z-axis label for perspective plots. Default: "KDE".
grid alogical flag. If TRUE, a grid is plotted for the "original” style plot. Default: "FALSE".
... Optional arguments to be passed directly to the specified plotting routine.

print a summary of the KDE object is printed.. Available options are:

justify text justification ala prettPrintList. Default: "left".
sep header separator ala prettyPrintList. Default: ":".

... Additional print arguments sent directly to the prettyPrintList function).

See Also

timelLag.

Examples

## create a mixture of 2-D Gaussian distributed

## RVs with different means, standard

## deviations, point density, and orientation.

n.sample <- c(1000, 500, 300)

ind <- rep(1:3, n.sample)

X <= rmvnorm(sum(n.sample),
mean = rbind(c(-10,-20), c(10,0), c(0,0))[ ind, 1,
sd rbind(c(5,3), c(1,3) , c(0.3,1))[ ind, 1,
rho c(0.5, 1, -0.4)[ind])

## perform the KDE
z <- KDE(x)
print(z)

## plot a summary of the results
eda.plot(z)

## form KDE of beamchaos series
plot (KDE(beamchaos), type="1")
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1mACF ACF, PACE, and ACVF for various stochastic fractal time series mod-
els

Description
Computes the autocovariance, autocorrelation or partial autocorrelation sequences for various stochas-
tic fractal time series models.

Usage

ImACF (x, lag.max=32, type="correlation")

Arguments
X an object of class "1mModel”. Use the ImModel function to create this input.
lag.max the maximum number of lags at which to compute the autocovariance, the auto-
correlation or the partial autocorrelation. Default: 32.
type a character string defining the output type based on the following options:
""covariance' autocovariance sequence
"correlation' autocorrelation sequence
""partial" partial autocorrelation sequence
Default: "correlation”.
Details

The autocovariance sequence is computed using Equation (2.10) of Beran (1994). The autocorrela-
tion sequence is computed by dividing the autocovariance sequence by the variance of the process
(i.e., the value of the autocovariance sequence at lag zero). The partial autocorrelation sequence is
computed using the Levinson-Durbin recursions.

Value

an object of class signalSeries containing the result.

References

D. Percival and A. Walden (2000), Wavelet Methods for Time Series Analysis, Cambridge University
Press, Chapter 7.

J. Beran (1994), Statistics for Long-Memory Processes, Chapman and Hall, Chapter 2.

D. Percival and A. Walden (1993), Spectral Analysis for Physical Applications, Cambridge Univer-
sity Press, 1993, Chapter 9.

See Also

ImModel, ImSDF, ImSimulate, ACVStoPACS.
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Examples

models <- c("ppl"”,"fdp”,"fgn")

lag <- 100

z <- lapply(models, function(x, models, lag)
{ 1mACF(1mModel(x), lag=lag)@data}l,
models=models, lag=lag)

names(z) <- paste(upperCase(models), "ACF")

stackPlot(seq(@,lag), z, xlab="lag")

title("Stochastic Fractal Model ACFs")

ImConfidence Confidence intervals for unknown mean

Description

Estimates confidence intervals for an unknown process mean of a time seeries well modeled by a
stochastic fractal process.

Usage

ImConfidence(x, model, conf.level=0.95,
parm.known=FALSE, n.rep=100000)

Arguments
X a vector containing a uniformly-sampled real-valued time series or an object of
class wavTransform.
model an object of class "1mModel”. Use the ImModel function to create this input.
conf.level confidence interval probability on the interval (0,1). Default: @.95.
n.rep number of repititions in a Monte Carlo study. Default: 100000.
parm.known a logical value. Default: FALSE.
Value

an two-element vector defining the low and high limits of the estimated confidence interval.

References

D. Percival and A. Walden (2000), Wavelet Methods for Time Series Analysis, Cambridge University
Press, Chapter 7.

See Also

ImSimulate.

Examples

model <- 1mModel("ppl”,alpha=-0.9)
ImConfidence(1lmSimulate(model), model)
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ImConvert Stochastic fractal exponent conversion

Description

Estimates the unknown variance of a stochastic fractal process.

Usage

ImConvert(x, to="delta")

Arguments
X an object of class "1mModel”. Use the ImModel function to create this input.
to a character string defining the target conversion for the given model exponent.
Choices are: "alpha”,"delta”,"HG","HB","beta". Default: "delta”.
Value

numeric value representing the converted exponent.

See Also

1mModel, ImConfidence.

Examples

model <- 1mModel("ppl”,alpha=-0.99)
ImConvert(model, to="delta")

1mModel Constructor function for objects of class "ImModel"”

Description

Packs the parameters defining a specfied stochastic fractal time series model into a list an returns
the result.

Usage

1mModel (model, variance.=1.0, delta=0.45,
alpha=-0.9, HG=0.95, HB=0.95,
innovations.var=NULL, Cs=NULL,
bterms=10, dterms=10, M=100)



ImModel

Arguments

model

Cs

HB
HG

alpha

bterms

delta

dterms
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a character string defining the model type. Choices are

"ppl” Pure power law (PPL) process. A process {X;} is a PPL process if its
SDF is given by

Sx(f) =Cslfl*, |fI<1/2,

where C's > 0. The innovations variance for this process is given by
C,e~(08(2)+1) (this is the variance of the best linear predictor of the pro-
cess given its infinite past).

"fdp" Fractionally differenced (FD) process. A process {X;} is a FD process
if its SDF is given by

2
O¢

Sx(f)zma Ifl <1/2

where Jg is the innovations variance, and § is the FD parameter. Thus,
an FD model is completely defined by the innovations variance and FD
parameter.

"fgn" Fractional Gaussian noise (FGN) process. An FGN process {X;} is a
stationary Gaussian process if its ACVF is given by

)

2
SXr = %X (Ir +1]2He — 2|72He 4 |7 — 1]2He)

where O%( > 0 is the variance of the process, while 0 < Hg < 1 is the
so-called Hurst coefficient. The coefficient Hs is sometimes called the
self-similarity parameter for a FGN process and is usually designated in the
literature as simply H.

"dfbm" Discrete Fractional Brownian Motion. i.e., regularly-spaced samples
from a FBM process that is defined over the entire real axis.

pure power law constant. If supplied, this argument is used to compute variance
and innovations.var. If not supplied and innovations.var is supplied, then
Cs and variance are determined from the innovations.var. Default: NULL.

the Hurst coefficient for a DFBM process. Default: . 95.
the Hurst coefficient for an FGN process. Default: 0. 95.

sets the number of terms used in the Euler-Maclaurin summation for calculating
the SDF of an FGN process and DFBM process. The default value should be
adequate for all values of the Hurst coefficient. Default: 100.

power law exponent for a PPL model. Default: -0. 9.

an integer used to control the number of primary terms cumulatively summed in
computing an ACVS for a PPL process. Default: 10.

the FD parameter. Default: 0. 45.

an integer used to control the number of secondary terms cumulatively summed
in computing an ACVS for a PPL process. Default: 10.
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innovations.var
innovations variance for an FD or PPL model. If supplied, this argument is used
to compute variance and, for a PPL model, Cs. If not supplied and Cs is sup-
plied for a PPL model, then Cs determines innovations.var. If not supplied
and Cs is also not supplied for a PPL model or if not supplied for an FD model,
then variance determines innovations.var. Default: NULL.

variance. the process variance with a default of unity. If cs or innovations.var is spec-
ified, this parameter is set in agreement with those. If the process is nonstation-
ary but has stationary differences, i.e., incrementally stationary, then the process
variance is taken to be the variance of the stationary process that is formed by
appropriately differencing the nonstationary process.

Value

an object of class 1mModel containing a list of model parameters.

References

D. Percival and A. Walden (2000), Wavelet Methods for Time Series Analysis, Cambridge University
Press, Chapter 7.

J. Beran (1994), Statistics for Long-Memory Processes, Chapman and Hall, Chapter 2.

D. Percival and A. Walden (1993), Spectral Analysis for Physical Applications, Cambridge Univer-
sity Press, 1993, Chapter 9.

See Also

ImACF, ImSDF, ImSimulate, ImConvert, ImConfidence, FDWhittle.

Examples

1mModel("ppl”, alpha=-2.0)

1mModel ("fdp"”, delta=0.45, innov=1.3)
1mModel ("fgn", HG=0.98)

1mModel ("dfbm"”, HB=0.35)

1mSDF SDF for various stochastic fractal time series models

Description
Compute a discretized version of a single-sided parametric spectral density function (SDF) for
various stochastic fractal time series models.

Usage

ImSDF (x, sampling.interval=1, n.freq=NULL,
n.sample=NULL, with.Nyquist=NULL)
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Arguments

X an object of class "1mModel”. Use the ImModel function to create this input.

n.freq the number of frequencies at which the SDF is computed (this argument should
not be supplied if n. sample is supplied). If n. sample is non-NULL supplied but
n.freq is NULL, the actual grid of frequencies is determined by the argument
with.Nyquist. Default: if neither n.sample nor n.freq is specified, n.freq
defaults to 32.

n.sample length of a time series. If non-NULL, the spectral resolution is setto 1/(n.sample * sampling.interva

Default: NULL (n.freq is used to set the specral resolution instead).

sampling.interval
the sampling interval for the process. The SDF is computed for frequencies
on the interval [0, Nyquist] where Nyquist is 1/(2*sampling.interval). The
value of sampling. interval must be a positive number. Default: 1.

with.Nyquist  a logical flag. If TRUE, the grid of frequencies over which the SDF is eval-
uated ranges from 1/2*n.freq*sampling.interval up to the Nyquist frequency;
otherwise, the range is from 1/(2*n.freq + 1)*sampling.interval to just below
the Nyquist frequency. The intent of this argument is to mimic the grid of
Fourier frequencies for time series with an even or odd sample size by setting
with.Nyquist to, respectively, TRUE or FALSE. This argument is only really in-
tended to be used if n. sample is not supplied, but n. freq is. Default: TRUE.

Details

The SDF is computed as described in Section 7.6 of Percival and Walden (2000), after a possible
change of variable to take into account the sampling interval (the discussion in the reference assumes
a unit sampling interval).

Value

an object of class signalSeries containing the SDF.

References

D. Percival and A. Walden (2000), Wavelet Methods for Time Series Analysis, Cambridge University
Press, Chapter 7.

J. Beran (1994), Statistics for Long-Memory Processes, Chapman and Hall, Chapter 2.

D. Percival and A. Walden (1993), Spectral Analysis for Physical Applications, Cambridge Univer-
sity Press, 1993, Chapter 9.

See Also

ImModel, 1ImACF, ImSimulate.
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Examples

old.plt <- par("plt")
models <- c("ppl”,"fdp”,"fgn","dfbm")
for (i in seq(along=models)){
splitplot(2,2,i)
plot (1mSDF (1mModel (models[i])),
reference.grid=FALSE, log.axes="xy")
3
par(plt=old.plt)

ImSimulate Stochastic fractal time series simulation

Description

Create a simulation of a stochastic fractal time series according to a specfied model.

Usage

ImSimulate(x, sampling.interval=1,
mean=0, n.sample=128, generate.Sj=FALSE,
Sj=NULL, rn=NULL)

Arguments

X an object of class "1mModel”. Use the ImModel function to create this input.

Sj a numeric vector of Davies-Harte frequency domain weights used to create the
simulation(s). These weights are calculated if not supplied. Default: NULL (not
supplied).

generate.Sj a logical value. If TRUE, the Davies-Harte frequency domain weights (Sj) are
returned instead of a simulated series. See the references for details. Default:
FALSE.

mean the mean value of of the resulting simulation. Default: 0. 0.

n.sample length of a time series. Default: 128.

rn a vector of random normal deviates used to generate uncorrelated random vari-

ables for the Davies-Harte simulator. Default: rnorm(2 * length(Sj) - 2).
sampling.interval

the sampling interval for the process. The SDF is computed for frequencies

on the interval [0, Nyquist] where Nyquist is 1/ (2*sampling.interval). The

value of sampling.interval must be a positive number. Default: 1.

Details

Simulates a stochastic fractal time series via the Davies-Harte technique, which randomizes spectral
weights and inverts the result back to the time domain. See the references for more details.
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Value

an object of class signalSeries containing the simulated series.

References

D. Percival and A. Walden (2000), Wavelet Methods for Time Series Analysis, Cambridge University
Press, Chapter 7.

J. Beran (1994), Statistics for Long-Memory Processes, Chapman and Hall, Chapter 2.

D. Percival and A. Walden (1993), Spectral Analysis for Physical Applications, Cambridge Univer-
sity Press, 1993, Chapter 9.

Davies,R.B.and Harte,D.S.(1987). Tests for the Hurst effect, Biometrika, 74, 95-102.

See Also

ImModel, 1mACF, ImSDF, ImConfidence, FDSimulate.

Examples

old.plt <- par("plt")

models <- c("ppl"”,"fdp”,"fgn","dfbm")

for (i in seq(along=models)){
splitplot(2,2,i)
plot(ImSimulate(1mModel (models[i])),
reference.grid=FALSE)

3

par(plt=old.plt)

localProjection Time series denoising via a local projection filtering technique

Description

Given a time series, X [t], this function performs one iteration of the local projection filtering algo-
rithm as described in Kantz and Schreiber [1]. This noise reduction algorithm is summarized in the
following steps:

1. A time lag embedding of dimension dimension is formed using X [¢], where dimension is typ-
ically at least twice the dimension at which the underlying dynamics of X[t] become deter-
ministic. At each point in the embedding a neighborhood is determined by a given radius and
a given minimum number of required neighbors.

2. Center-of-mass vectors are computed for each embedding point neighborhood and correspond-
ing covariance matrices are computed with respect to the center-of-maxx vectors.

3. The eigenvectors corresponding to the noise.dimension smallest eigenvalues are assumed to
form a (local) basis for the noise subspace and the projection of the embedding vector onto
these "noise" eigenvectors is subtracted from the original embedding vector.

4. The components of the corrected embedding vectors are averaged to compute the overall correc-
tion for each point in the original time series.
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Usage

localProjection(x, dimension=3, tlag=timelLag(x), n.neighbor=dimension + 1,
max.distance=2*stdev(x), metric=Inf, noise.dimension=1, corr.curve=TRUE)

Arguments
X a vector containing a uniformly-sampled real-valued time series.
corr.curve boolean argument. If true, the center-of-mass vectors will be corrected for cur-
vature effects. Default: TRUE.
dimension the dimension of the time lag embedding created from the given time series. This

value should be at least twice the dimension in which the underlying dynamics
of the time series become deterministic. Default: 3.

max.distance the neighbor search for each embedding point finds all neighbors within max.distance.
Default: 2xstdev(x).

metric the metric used when searching for neighbors. Supported values are 1 (1-norm),
2 (2-norm), and Inf (infinity norm). Default: Inf.

n.neighbor the minimum number of neighbors acceptable to define a neighborhood for each
embedding point. If the neighbor search using input max.distance does not
produce at least this number of neighbors a new search is performed which finds
exactly n.neighbor neighbors. Default: dimension + 1.

noise.dimension
the assumed dimension of the (local) noise subspace. This should be equal to the
embedding dimension, dimension, minus the dimension where the underlying
dynamics of the time series become deterministic. Default: 1.

tlag the time lag used when creating the time lag embedding. Default: 1.

Value

the resulting denoised time series, a vector the same length as the original time series.

References

Holger Kantz and Thomas Schreiber (1997), Nonlinear Time Series Analysis, Cambridge University
Press.

See Also

embedSeries, medianFilter, timelLag, FNN.

Examples
X <- beamchaos@data
X <- x - mean(x)

sigma <- stdev(x)

xnoise <- x + rnorm(length(x)) * sigma / 3

xclean <- localProjection(xnoise, dimension=7, noise.dimension=5,
max.distance=3*sigma, n.neighbor=100)
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y <- data.frame(xclean, xnoise, x)
stackPlot(x=positions(beamchaos)[]1, y=y,

ylab=c("denoised”, "noisy”,"original"),
ylim=range(y))

lorenz Chaotic response of the Lorenz system

Description

The Lorenz system is defined by the third order set of ordinary differential equations:
i =o(y—w)
y=rx—y—xz
z2=—-bz+uxy

If the parameter set is o = 10, r = 28, b = 8/3, then the system response is chaotic. The Lorenz is
one the hallmark examples used in illustrating nonlinear deterministic chaotic motion.

See Also

beamchaos, ecgrr, eegduke, pd5si.

Examples
plot(lorenz[,1], lorenz[,3], pch=".", col="blue")
lorenz.ode Lorenz system ODEs
Description

Ordinary differential equations fro the Lorenz system. See the help documentation for the lorenz
data object for more information. A parameter space defined by sigma=10, r=28, and b=8/3 is
known to produce chaotic motion.

Usage

lorenz.ode(x, sigma=10, r=28, b=8/3)
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Arguments
X a three-element numeric vector representing the current X, Y, and Z states, re-
spectively, of the Lorenz system.
b the b parameter. Default: 8/3.
r the r parameter. Default: 28.
sigma the sigma parameter. Default: 10.
Value

a vector of three values representing the Lorenz states X, Y, and Z, respectively, evaluated with the
specified parameter regime.

See Also

lorenz, henon.

Examples

lorenz.ode(c(0.3,-0.1,1.0))

lyapunov Local-Global Lyapunov Spectrum Estimation

Description

Estimates the local Lyapunov exponents over a range of user supplied scales and dimensions. The
local Lyapunov spectrum is calculated as follows:

1 A delayed embedding of the input time series is formed.

2 For each global reference point (specified by an intger index in the reference matrix) a local Lya-
punov spectrum is calculated, one exponent for each dimension from 1 to local.dimension
and for each (integer) scale specified by the scale vector. As the scales grow larger, the
Lyapunov exponent estimates tend toward asymptotic values corresponding to the global Lya-
punov exponents. The details of how each local spectrum is estimated is given below.

3 The local spectra are then averaged over each global reference point to stabilize the results.

Each local spectrum is obtained by estimating the eigenvalues of the so-called Oseledec matrix,
which is formed through a matrix product of successive local Jacobians with the transpose of the
Jacobians. The number of Jacobians in the product is equivalent to the scale. Each Jacobian is
formed by fitting a local neighborhood of points (relative to a some reference point) with a mul-
tidimensional polynomial of order polynomial.order. The number of neighbors found for each
reference point in the embedding is chosen to be twice the polynomial order for numerical stabil-
ity. To further stabilize the results, a local Lyapunov spectrum is formed for each local reference
point.
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lyapunov(x, tlag=NULL, dimension=5, local.dimension=3,
reference=NULL, n.reference=NULL, olag=2,
sampling.interval=NULL, polynomial.order=3, metric=Inf, scale=NULL)

Arguments

X

dimension

local.dimension

metric

n.reference

olag

a vector containing a uniformly-sampled real-valued time series.

an integer representing the embedding dimension. Default: 5.

an integer representing the dimension (number of) local Lyapunov exponents to
estimate. This value must be less than or equal to the embedding dimension.
Default: 3.

the metric used to define the distance between points in the embedding. Choices
are limited to 1, 2, or Inf which represent an L1, Lo, and L, norm, respectively.
Default: Inf.

the number of neighbors to use in in developing the kd-tree (used as a quick
means of finding nearest neighbors in the phase space). These neighbors are
collected relative to the reference points. This value must be greater than 10.
Default: min(as.integer(round(length(x)/20)), 100).

the number of points along the trajectory of the current point that must be ex-
ceeded in order for another point in the phase space to be considered a neighbor
candidate. This argument is used to help attenuate temporal correlation in the
the embedding which can lead to spuriously low correlation dimension esti-
mates. The orbital lag must be positive or zero. Default: length(x) /1@ or 500,
whichever is smaller.

polynomial.order

reference

the order of the polynomial to use in fitting data around reference points in the
phase space. This poloynomial fit will be used to form the Jacobians which are
in turn used to calcualte the Lypaunov exponents. Default: 3.

a vector of integers representing the indices of global reference points to use in
estimating the local Lyapunov spectrum. A local spectrum is estimated around
each global reference point, and all the local spectra are then averaged to stabi-
lize the results. These global reference points should be chosen such that they
are far apart in time. Default: Five indices uniformly distributed on the interval
[1,M], where M = Ne - max(scale) - n.reference - 2 and Ne is the number of
embedding points.

sampling.interval

scale

tlag

a numeric value representing the interval between samples in the input time
series. Default: deltat(x).

a vector of integers defining the scales over which the local Lyapunov exponents
are to be estimated. As this scale increases, one expects the local Lyapunov
exponent estimates to converge towards the global estimates. All scales must be
greater than one. Default: as.integer(2”(seq(min(floor(logb(scale.max,2)) - 2 ,
10)) - 1)) where scale.max = Ne - 2 - n.reference.

the time delay between coordinates. Default: the decorrelation time of the auto-
correlation function.
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Value

an object of class FNN.

S3 METHODS

plot plots a summary of the results. Available options are:

... Additional plot arguments (set internally by the par function).
print prints a summary of the results. Available options are:

... Additional print arguments used by the standard print function.

summary summarizes the results.

References

P. Bryant, R. Brown, and H.D.I. Abarbanel (1990), Lyapunov exponents from observed time series,
Physical Review Letters, 65(13), 1523-1526.

H.D.I. Abarbanel, R. Brown, J.J. Sidorowich, and L. Tsimring (1993), The analysis of observed
chaotic data in physical systems, Reviews of Modern Physics, 65(4), 1331-1392.

See Also

embedSeries, infoDim, corrDim, timeLag, FNN.

Examples

## Calculate the local Lyapunov spectrum for the
## beamchaos series
z <- lyapunov(beamchaos)

## print the results
print(z)

## summarize the results
summary (z)

## plot the results
plot(z)

medianFilter Median filtering of a time series
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Description
Given a filter order P, the output of applying a median filter to a time series X [t] fort = 0, . ..
1is
Podd: Y[k] = median(X[k — (P —1)/2,...k+ (P —1)/2])
Peven: Y[k] = median(X[k — P/2,....k+ P/2 —1])
fork = 0,..., N — 1. Thus, median filtering replaces the %t value of the time series with the
median of the time series over an P-point window centered about point k. In the case where a

portion of the window exceeds the boundaries of the time series, the values outside the boundaries
are ignored in the median value calculation.

Usage

medianFilter(x, order=2)

Arguments
X a vector containing a uniformly-sampled real-valued time series.
order the median filter order. This argument defines the size of the windows over
which the median values are calculated. The filter order must be positive and
less than twice the length of the time series. Default: 2.
Value

a vector containing the result and of the same length as the original time series.

See Also
localProjection.
Examples
X <- beamchaos@data
X <- x - mean(x)

sigma <- stdev(x)

xnoise <- x + rnorm(length(x)) * sigma / 3
xclean <- medianFilter(xnoise, order=10)

y <- data.frame(xclean, xnoise, x)

stackPlot(x=positions(beamchaos)[]1, y=y,
ylab=c("denoised”, "noisy"”,"original"),
ylim=range(y))
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pd5si Gait stride intervals for a patient with Parkinson’s Disease

Description

These data are from the file pd5-si. txt in the ‘gait in aging and disease’ database of PhysioBank,

which is a large collection of physiologic signals maintained as a public service athttp://www.physionet.org/physiobank
by NIH’s National Center for Research Resources. The following quote from this Web site de-

scribes how the stride intervals were obtained. Subjects walked continuously on level ground around

an obstacle-free path. The stride interval was measured using ultra-thin, force sensitive resistors

placed inside the shoe. The analog force signal was sampled at 300 Hz with a 12 bit A/D converter,

using an ambulatory, ankle-worn microcomputer that also recorded the data. Subsequently, the time

between foot-strikes was automatically computed. The method for determining the stride interval is

a modification of a previously validated method that has been shown to agree with force-platform

measures, a ‘gold’ standard.

Data were collected from the healthy subjects as they walked in a roughly circular path for 15
minutes, and from the subjects with Parkinson’s disease as they walked for 6 minutes up and down
a long hallway.

See Also

beamchaos, ecgrr, eegduke, lorenz.

Examples

plot(pd5si)

poincareMap Create a Poincare map

Description

Create a map using the extrema of a scalar time series.

Usage

poincareMap(x, extrema="min", denoise=FALSE)

Arguments
X a vector holding a scalar time series.
denoise a logical value. If TRUE, the data is first denoised via waveshrink prior to analy-
sis. Default: FALSE.
extrema the type of extrema desired. May be "min" for minima, "max" for maxima, or

"all" for both maxima and minima. Default: "min".
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Details

This function finds the extrema of a scalar time series to form a map. The time series is assumed to
be a uniform sampling of s(t), where s(t) is a (possibly noisy) measurement from a deterministic
non-linear system. It is known that s'(t), s”(t), ... are legitimate coordinate vectors in the phase
space. Hence the hyperplane given by s’(t) = 0 may be used as a Poincare surface of section.
The intersections with this plane are exactly the extrema of the time series. The time series minima
(or maxima) are the interesections in a given direction and form a map that may be used to esti-
mate invariants, e.g., correlation dimension and Lyapunov exponents, of the underlying non-linear
system.

The algorithm used to create a Poincare map is as follows.

1 The first and second derivatives of the resulting series are approximated via the continuous
wavelet transform (CWT) using the first derivative of a Gaussian as a mother wavelet filter
(see references for details).

2 The locations of the local extrema are then estimated using the standard first and second derivative
tests on the CWT coefficients at a single and appropriate scale (an appropriate scale is one that
is large enough to smooth out noisy components but not so large as to the oversmooth the
data).

3 The extrema locations are then fit with a quadratic interpolation scheme to estimate the amplitude
of the extrema using the original time series.

Value

a list where the first element (Location) is a vector containing the temporal locations of the extrema
values, with respect to sample numbers 1, ..., N, where IV is the length of the original time series.
The second element (amplitude) is a vector containing the extrema amplitudes.

References

Holger Kantz and Thomas Schreiber, Nonlinear Time Series Analysis, Cambridge University Press,
1997.

See Also

embedSeries, corrDim, infoDim.

Examples

## Using the third coordinate (\egn{z} state) of a
## chaotic Lorenz system, form a discrete map

## using the series maxima. Embed the resulting
## extrema in a 2-dimensional delay embedding

## (with delay=1 for a map). The resulting plot
## reveals a tent map structure common to

## Poincare sections of chaotic flows.

z <- poincareMap(lorenz[,3], extrema="max")

z <- embedSeries(z$amplitude, tlag=1, dimension=2)
plot(z, pch=1, cex=1)
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Rovers$S Estimate the Hurst coefficient by rescaled range (R/S) method

Description

The series is partitioned into m groups. The R/S statistic is computed as described in the references,
the number of groups is increased, and the calculation is repeated. A log-log plot of R/S versus
number of groups is, ideally, linear, with a slope related to H, so H can be determined by linear
regression.

Usage

RoverS(x, n.block.min=2, scale.ratio=2, scale.min=8)

Arguments
X a vector containing a uniformly-sampled real-valued time series.
n.block.min minimum number of blocks in partitioning the data. Must be at least 2. Default:
2.
scale.min minimum number of data values allowed in a block This may be restricted so
the statistic evaluated within each group is from a reasonable sample. Default:
8.
scale.ratio ratio of successive scales to use in partitioning the data. For example, if scale.min=8
and scale.ratio=2, the first scale will be 8, the second scale 16, the third scale
32, and so on. Default: 2.
Value

estimated Hurst parameter H of the time series.

References

B.B. Mandelbrot and J.R. Wallis (1969), Water Resources Research, 5, 228-267.
See summary in M.S. Taqqu and V. Teverovsky (1998), On Estimating the Intensity of Long-Range
Dependence in Finite and Infinite Variance Time Series, in A practical Guide to Heavy Tails: Sta-
tistical Techniques and Applications, 177-217, Birkhauser, Boston.

See Also

hurstBlock, hurstACVF, dispersion.

Examples

RoverS(wmtsa: :ocean)
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spaceTime Space time separation plot

Description

This function can be used to generate contours of a space time separation plot. This plot type is a
visual tool which can help to determine the correlation time for a particular delay embedding of a
given time series.

Usage

spaceTime(x, dimension=2, tlag=timelLag(x, method="acfdecor"),
olag.max=as.integer(min(500,length(x)/20)), probability=0.1)

Arguments
X a vector holding a scalar time series
dimension the desired embedding dimension. Default: 2.
olag.max an integer representing the maximum orbital lag ot use in forming the results.
Default: as.integer(min(500,length(x)/20)).
probability a positive numeric scalar on the interval (0,1) which gives the probability asso-
ciated with the first contour. This input determines the number of contours to be
generated (see the output description below). Default: 0. 1.
tlag the delay used to create the delay embedding. Default: timeLag(x, method="acfdecor").
Details

Each contour, Cp,(At), in a space time separation plot corresponds to a particular probability, p,
and gives spatial distance between pairs of phase space vectors as a function of their temporal
separation. In particular, any pair of vectors seperated in time by At are separated in the phase
space by distance C,(At) with probability p.

Value

an object of class spaceTime.

S3 METHODS

as.matrix convert the output to a matrix.

eda.plot plot a summary of the space-time contours including a density function estimate of the
median contour in addition to a suggested range of suitable orbital lags. In the latter case,
the most populous values of the median contour are highlighted by a cross-hatched area that
covers a plot of the median curve. The suggested range for a suitable orbital lag is based on
the range of values that first escape this cross-hatched region. Optional parameters include:

type An integer denoting the type of line to plot ala the par function. Default: "1" (solid
line).
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density The density of the cross-hatched area ala the polygon function. Default: 10.

add A logical flag. If TRUE, the plot is added using the current par settings. Otherwise, the
par settings are adjusted as needed. Default: FALSE.

... Additional parameters sent directly to the par function.

plot plot the space-time contours for the given spaceTime object. Optional arguments include:

Ity Line type ala the par function. Default: 1.

color A vector of integers defining the contour line colors. Default: 1:8.

xlab A character string denoting the x-axis label. Default: "Orbital Lag".

ylab A character string denoting the y-axis label. Default: "Spatial Separation”.
main A character string denoting the title label. Default: NULL (no title).

cex Character expansion value ala par. Default: 1.

pch An integer representing the plot character ala par. Default: ".".

add A logical flag. If TRUE, the plot is added using the current par settings. Otherwise, the
par settings are adjusted as needed. Default: FALSE.

... Additional parameters sent directly to the par function.

print print a summary of the spaceTime object.

References

Holger Kantz and Thomas Schreiber, Nonlinear Time Series Analysis, Cambridge University Press,
1997.

See Also

embedSeries, determinism, timelLag.

Examples

#it
#it
#it
#it
#it
#it
#it
#it
#it
#it
#i#
#it

Using the beamchaos data calculate the space
time separation contours for probabilities
1/10, 2/10, ..., 1, for a 3-dimensional
delay embedding with delay of 10. Plot the
resulting contours, which will reveal
periodicity in the data. From the top
contour in the plot, which corresponds to
probability 1, we can conclude that any two
vectors in the chosen delay embedding which
are separated in time by approximately 90
time steps are separated by a distance of at
least 8 in the phase space.

z <- spaceTime(beamchaos, dim=3, tlag=10,

#it

olag.max=500, probability=1/10)

print the results

print(z)

#it

plot the results

plot(z)
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## extended data analysis plot
eda.plot(z)

stationarity Testing for stationarity in a time series

Description

The Priestley-Subba Rao (PSR) test for nonstationarity is based upon examining how homogeneous
a set of spectral density function (SDF) estimates are across time, across frequency, or both. The
original test was formulated in the terms of localized lag window SDF estimators, but such estima-
tors can suffer from bias due to leakage. To circumvent this potential problem, the SDF estimators
are averages of multitaper SDF estimates using orthogonal sinusoidal tapers.

Usage

stationarity(x, n.taper=5,
n.block=max(c(2, floor(logh(length(x), base=2)))), significance=0.05,
center=TRUE, recenter=FALSE)

Arguments

X a vector containing a uniformly-sampled real-valued time series.

center a logical value. If TRUE, The mean value of the data is subtracted from the
original series prior to analyis. Default: TRUE.

n.block the number of non-overlapping blocks with which the time series will be uni-
formly divided. If the number of samples in the time series is not evenly divisible
by n.block, then those samples at the of the time series that do not fit into the
last block are ignored (rejected for analysis). Default: max(c(2, floor(logb(length(x), base=2)))).

n.taper an integer specifying the number of sinusoidal tapers to use in developing the
eigenspectra for each block of the time series. Default: 5.

recenter a logical value. If TRUE, the mean value of the data is subtracted from the ta-

pered series prior to forming a mutltiaper SDF estimate of the input time series.
Default: TRUE.

significance the significance is the number of times you expect the underlying hypothesis
of stationarity to fail even though stationarity remains true. Essentially, you
are allowing for error in the result. A significance of 0.05 means that you are
allowing 5 percent error, i.e., you are 95 percent confident in the result. Default:
0.05.



58 stationarity

Details

The algorithms is outlined as follows:

1. Re-centering The time series x is recentered by subtracting the sample mean.
2. Blocking The recentered series is then segmented into n.block non-overlapping blocks in time.

3. Mutitaper SDF estimation For each block, n. taper eigenspectra are formed by calculating the
periodogram of the block windowed by each of the n. taper tapers. These eiegenspectra are
then averaged to form a multitaper SDF estimator for the current block.

4. ANOVA table A subset of each multitaper SDF estimate is formed by extracting only those
values corresponding to frequencies which are approximately uncorrelated (the details of this
exercise can be found in the references). Each subset (one per block) is stacked in rows
such that an n.block x M matrix (S) is formed, where M is the number of (subset) Fourier
frequencies. The (two-factor) ANOVA table (Y) is then formed via' Y = log(S)—1/(n.taper)+
log(n.taper), where () is the digamma function and log is the natural logarithm function.

5. PSR statistics Using the ANOVA table and (row, column, and grand) means of the ANOVA
table, the Priesltey-Subba Rao statistics are generated: one for investigating time effects, one
for investigating frequency effects, and one which combines the two to test time-frequency
effects. See references for details.

6. Stationarity tests The PSR statisitcs are then compared to corresponding chi-square ((1 - significance)
x 100) percentiles (normalized by v’ (n.taper) where ¢’ (-) is the trigamma function). Specif-
ically, if the PSR statistic is found to be greater than the corresponding chi-square percentile,
it indicates that there isa 1 - significance probability that the data is nonstationary.

Value

an object of class stationarity.

S3 METHODS

as.list convert output to a list.
print prints the object. Available options are:

justify text justification ala prettPrintList. Default: "left".

n,n

sep header separator ala prettyPrintList. Default: ":".
n.digits number of digits ala prettyPrintList. Default: 5.
... Additional print arguments sent directly to the prettyPrintList function).

summary prints a summary of the stationarity test results.

References
Priestley, M. B. and Subba Rao, T. (1969) “A Test for Stationarity of Time Series", Journal of the
Royal Statistical Society, Series B, 31, pp. 140-9.

See Also

hurstBlock.
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Examples

## assess the stationarity of the ecgrr series
z <- stationarity(ecgrr, n.block=8)

## print the result, noting that all tests fail.
## The strongest failure attributed to the

## time-based fluctations of the eigenspectra
print(z)

## print a summary of the results, including the
## ANOVA table of the eigenspectra
summary(z)

surrogate Surrogate data generation

Description

This function can be used to generate surrogate time series via various frequency domain bootstrap-
ping techniques. Bootstrapping has been used (in the statistics community) to assess the sampling
variability of certain statistics. The nonlinear dynamics community typically uses bootstrapping to
detect nonlinear structure in stationary time series. Given a time series, this function is used to gen-
erate surrogate series via Theiler’s Amplitude Adjusted Fourier Transform (AAFT), Theiler’s phase
randomization, Davies and Harte’s Circulant Embedding (CE) technique, or Davison and Hinkley’s
(DH) phase and amplitude randomization technique.

Theiler’s techniques produce so-called constrained realizations since some statistical aspect of the
original data preserved (the histogram for the AAFT and the periodogram for the phase randomiza-
tion). The other techniques, ciruclant embedding and Davison-Hinkley, are non-constrained as both
the amplitudes and phases of the original series are randomized.

Usage

surrogate(x, method="ce", sdf=NULL, seed=0)

Arguments
X a vector containing a uniformly-sampled real-valued time series.
method a character string representing the method to be used to generate surrogate data.

Choices are:

"aaft" Theiler’s Amplitude Adjusted Fourier Transform.
"phase” Theiler’s phase randomization.

"ce" Davies and Harte’s Circulant Embedding.

"dh"” Davison and Hinkley’s phase and amplitude randomization.

Default: "ce".



60

sdf

seed

Details

surrogate

an object of class SDF, containing a single-sided spectral density function esti-
mation (corresponding to the original data) over normalized frequencies fr =
k/(2N) for k = 0,..., N where N is the number of samples in the original
time series. This argument is only used for the circulant embedding method.
Default: NULL unless the circulant embedding method is used, and then it is

sapa: :SDF (x, method="multitaper"”, recenter=TRUE, taper=h, single.

where h = taper(type="sine"”, n.sample=N, n.taper=5, norm=TRUE).

a positive integer representing the initial seed value to use for the random num-
ber generator. If seed=0, the current time is used as a means of generating a
(unique) seed value. Otherwise, the specified seed value is used. Default: .

The algorithms are detailed as follows:

phase The discrete Fourier transform of a time series is calculated and the phase at each frequency

aaft

is randomized to be uniformly distributed on [0, 27]. Phase symmetry is preserved so that an
inverse DFT forms a purely real surrogate. Null hypothesis: the original data come from a
linear Gaussian process. Side effect: the periodogram of the surrogate and original time series
are the same.

An N-point normally distributed realization of a white noise process is created, where N is
the length of x, and sorted to have the same rank as x (e.g., if rank(z;) = 5 it means that
x, is the fifth smallest element of x). The result is then phase randomized and its rank (r) is
then calculated. The surrogate is then created by rank ordering x using r. Null hypothesis:
the observed time series is a monotonic nonlinear transformation of a Gaussian process. Side
effect: the amplitude distribution (histogram) of the surrogate and original time series are the
same.

ce The circulant embedding technique is based upon generating surrogates whose estimated SDF

(e.g., a periodogram) is not constrained to be the same as that of the original series (for refer-
ences for details).

dh The Davison-Hinkley technique is based upon generating surrogates by randomizing both the

Value

phases and the amplitudes in the frequency domain followed by an inversion back to the time
domain.

an object of class surrogate.

S3 METHODS

plot

plots the surrogate data realizations. The following options may be used to adjust the plot
components:

n o on

show. A character string defining the data to display. Choices are "series”, "surrogate”,
or "both" for plots corresponding to the original series, surrogate series, or both, respec-
tively. Default: "surrogate”.

type Character string denoting the type of data to plot. Options are "time" for time history,
"sdf" for a multitaper spectral density function estimation, "pdf" for a probability den-
sity function estimation, and "1lag" for a two-dimensional embedding (lag plot. Default:
"time".

sided=T)
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stack A logical flag. If TRUE, the stackPlot function is called as opposed to the default
plot function. As stackPlot requires a common abscissa, this option is only available
for type="time" (time history) or type="sdf" (spectral density function plot). Default:
TRUE.

xlab Character string denoting the x-axis label for the "time” and "sdf"” "pdf" types. De-
fault: "Time", the series name, and "Frequency (Hz)", respectively.

ylab Character string denoting the y-axis label for the "time" style. Default: the series name.
cex Character expansion factor (same as the cex argument of the par function). Default: 1.
adj.main Title adjustment ala the adj argument of the par function). Default: 1.

line.main Line spacing for title ala the 1ine argument of the text function). Default: @.5.

col.series A character string or integer denoting the color to use when plotting data cor-
responding to the original series. See the colors function for more details. Default:
"black”.

col.surrogate A character string or integer denoting the color to use when plotting data cor-
responding to the surrogate series. See the colors function for more details. Default:
n r.ed n .

... Additional plot arguments (set internally by the par function).
print prints a summary of the surrogate data realization. Available options are:

... Additional print arguments used by the standard print function.

References

J. Theiler and S. Eubank and A. Longtin and B. Galdrikian and J.D. Farmer (1992), Testing for
nonlinearity in time series: the method of surrogate data, Physica D: Nonlinear Phenomena, 58,
77-94.

Davies,R.B.and Harte,D.S.(1987). Tests for the Hurst effect, Biometrika, 74, 95-102.

D.B. Percival and W.L.B. Constantine (2002), Exact Simulation of Gaussian Time Series from
Nonparametric Spectral Estimates with Application to Bootstrapping, Statistics and Computing,
under review.

D.B. Percival and A. Walden (1993), Spectral Analysis for Physical Applications: Multitaper and
Conventional Univariate Techniques, Cambridge University Press, Cambridge, UK.

D. B. Percival, S. Sardy and A. C. Davison, Wavestrapping Time Series: Adaptive Wavelet-Based
Bootstrapping, in W. J. Fitzgerald, R. L. Smith, A. T. Walden and P. C. Young (Eds.), Nonlinear
and Nonstationary Signal Processing, Cambridge, England: Cambridge University Press, 2001.

D.T. Kaplan (1995), Nonlinearity and Nonstationarity: The Use of Surrogate Data in Interpreting
Fluctuations in Heart Rate, Proceedings of the 3rd Annual Workshop on Computer Applications of
Blood Pressure and Heart Rate Signals, Florence, Italy, 4-5 May.

See Also

infoDim, corrDim.
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Examples

## create surrogate data sets using circulant
## embedding method
surr <- surrogate(beamchaos, method="ce")

## print the result
print(surr)

## plot and compare various statistics of the
## surrogate and original time series
plot(surr, type="time")

plot(surr, type="sdf")

plot(surr, type="lag")

plot(surr, type="pdf")

## create comparison time history
plot(surr, show="both"”, type="time")

timelag Estimate the proper time lag for single variable delay embeddings

Description

Given the time series X, the embedding dimension F, and the time lag 7, the embedding coordi-
nates are defined as X;, Xy, ..., Xy_(g_1)r. This function can be used to estimate the time lag
T using a variety of statistical methods.

Usage

timelLag(x, method="acfzero", plot.data=FALSE)

Arguments

X a vector containing a uniformly-sampled real-valued time series.

method character string denoting the method to use in estimating the time delay. Sup-
ported methods are:
"acfzero” First zero crossing of the autocorrelation function.
"acfdecor” First 1/ exp of the autocorrelation function.
"acfnadir” First nadir of the autocorrelation function.

"mutual” First nadir of the average mutual information function.
Default: "acfzero”.

plot.data a logical value. If TRUE, a plot of the time lag selection process is displayed.
Default: FALSE.
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Details

Currently, there exists no single method which yields an optimal time lag estimation although there
are some basic criteria that are used: if the lag is chosen too small, the coordinates will be too
highly correlated and the embedding will cluster tightly around the diagonal in the phase space. If
the lag is chosen too large, the resulting coordinates may be almost uncorrelated and the resulting
embedding may become unduly complicated, even if the underlying attractor is not. The goal is to
find a lag which falls in-between these scenarios.

In addition the autocorrelation-based methods this function supports an estimation method based on
the time-delayed mutual infomation (TDMI), which can be thought of as a nonlinear generalization
of the autocorrelation function. For a random process X; the TDMI, I(7), is a measure of the
information about X; . contained in X;. The first nadir of I(7) gives the delay, 7y, such that
X+ 7, adds maximal information to that already known from X;. This 79 is returned as an estimate
of the proper time lag for a delay embedding of the given time series.

Value

an integer representing the the estimated time lag.

References

Holger Kantz and Thomas Schreiber (1997), Nonlinear Time Series Analysis, Cambridge University
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See Also

embedSeries, infoDim, corrDim, lyapunov, findNeighbors, KDE, determinism.

Examples

## estimate the proper time lag for an embedding

## of the beamchaos data using the first zero

## crossing of the ACF

as.numeric(timeLag(beamchaos, method="acfzero”, plot=TRUE))
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