Stefan Rodiger* and Michat Burdukiewicz and Peter Schierack

Supplement to: “chipPCR: an R Package to Pre-Process Amplification

Curve Data”

Contents

1 Availability, requirements and setting up a working environment

2 Pre-processing of amplification curve data

3 Functions of the chipPCR package

4 AmpSim - a function to simulate amplification curves

5 Single-blinded, randomized judging of amplification curves

6 Inspection and analysis of amplification curve data
6.1 Parameters of MFIaggr e e
6.2 Data overview - plotCurves e e e e e e e e e e e e e

7 Proposed workflow

8 Imputation of missing values in amplification curve data - fixNA

9 Smoothing and filtering

10 bg.max - a function to estimate the start and end of an amplification reaction

11 Normalization of amplification curve data

12 Compute linear model coefficients - Background subtraction based on linear models

13 The inder function - an interpolating five-point stencil

13.1 Quantitative description of amplification reactions,
13.2 Quantification cycle calculation by the inder function oo
13.3 The inder function in combination with a 5-parameter curve fit function

14 Threshold cycle method

14.1 Application of the th.cyc on ccPCR data
14.2 Application of the th.cyc and CPP function for Helicase Dependent Amplification

15 Amplification efficiency

16 Data sets

17 Acknowledgment

11

13
13
19

21

23

29

32

38

41

43
43
49
50

52
52
56

59

66

70

Abstract

Background: The quantitative real-time polymerase chain reaction (qPCR) and isothermal amplifica-
tion are standard methods for quantification of nucleic acids. Numerous real-time read-out technologies with
different technical foundation have been developed. However, the amplification curve analysis consists of cas-
caded steps, which are carried out similarly in all technologies. Despite the continuous interest in amplification
based techniques, there are only few transparent tools for amplification data pre-processing. It is a major
setback especially during development of new instruments, when the precise and reproducible processing of
raw data is indispensable.

Results and Conclusion: chipPCR is an R package for pre-processing and quality analysis of am-
plification curve data from conventional quantitative polymerase chain reactions (qPCR) and quantitative
isothermal amplification (qIA). Isothermal amplifications are monocyclic reactions at a constant tempera-
ture. Conversely, PCR is a polycyclic reaction with thermal cycling condition steps (denaturation, annealing,
elongation) and measurements at discrete cycle steps. The curve shape of a qIA and ccPCR do not necessarily
follow a S-shaped structure and the measurement is time-based (continuous, not mandatory equidistant) in
contrast to a cycle-based (discontinuous) measurement of qPCRs. The number of measure points in most
cases higher than qPCR.

This supplement provides further details and examples for the chipPCR package. The package contains
several data sets, which were generated by helicase dependent amplification (HDA) or polymerase chain
reaction (PCR) under various temperature conditions and detection systems, such as hydrolysis probes and
intercalating dyes. Examples for their usage are presented herein. We have developed chipPCR, which is
a versatile software tailored for the pre-processing of amplification curve data. Its utility is elaborated on
both real and simulated data sets. The structure of the packages is open for integration to Web based and
standalone shiny applications. The R package along codes used for creation of figures used in publication is
freely available.

1 Availability, requirements and setting up a working environment

Availability and requirements are an R installation and optionally a working Internet connection and web browser:
e Project name: chipPCR,

e Project homepage (development): https://github.com/michbur/chipPCR,

Project homepage at CRAN: http://cran.r-project.org/web/packages/chipPCR/index.html,

Operating System: Platform independent,
e Other requirement: R 3.1.0 or higher,
e License: GPL-3

We use R’s object model S4 class system (see methods package) to separate between interface and implemen-
tation. Other than in R’s §3 class system, needs S4 to declare classes, slots, methods relationships explicitly
and to establish formal declarations of methods. Therefore, the number and types of slots in an instance of a
class have to be established at the time the class definition and the objects from the class are validated against
this definition and have to comply to it at any time. S/ methods are declared by calls to setMethod together
with the names and signatures of the arguments. Signatures are used for identification of classes of one or more
arguments of the methods. setGeneric can be used to declare generic functions. S4 classes require a higher
effort than S& classes, but assure strictly objects in a class have the required slots, that data in the slots have
consistent names and classes, and enable to include additional information (e.g., results, parameters). Moreover,
it assures better control on the object structure and the method dispatch [16]. As perquisite for high-throughput
technologies we avoided loops in the core structures and use partially parallel computing (smoother function) to
keep the code fast.

The vignette can be viewed from R using command: vignette(”chipPCR”). Further details of the experimental
set-up for the data sets are described in the manual of the chipPCR package. Before the start of any analysis, a
user must choose a data set, as shown in example below.

require (chipPCR)
require(xtable)

print (xtable(head(C60.amp[, 1L:5]), caption = "First five cycles of imported data."))

Index Vim.0.1 Vim.0.2 Vim.1.1 Vim.1.2

1 0 0.00 0.00 -0.03 -0.03
2 1 0.00 0.00 -0.03 -0.03
3 2 0.00 -0.00 -0.02 -0.02
4 3 -0.00 -0.00 -0.01 -0.01
5 4 -0.00 -0.00 0.01 0.01
6) -0.00 -0.00 0.05 0.05

Table S1: First five cycles of imported data.

All datasets used in following examples can be loaded in the same manner. They are also automatically
available after loading whole package. chipPCR relies on the R workspaces, and dedicated R packages as default
data format and standard import and export as described elsewhere [3, 28, 30]. The chipPCR can be used to
read the Real-time PCR Data Markup Language (RDML) from various qPCR cycler systems. This means that
basically any RDML compliant data set can be directly used with the chipPCR package.

Graphical user interface (GUI) are important to spread software and to make it available also for researchers
not fluent in R. We implemented core functionality of our package in various R offers several GUI projects to chose
from [35]. Recently, the shiny [37] framework to build and deploy GUISs for the desktop (web browser) or services
for interactive web applications emerged. shiny enables to build plugin-like applications with highly customizable
widgets (e.g., sliders, plots, reports) for a efficient extension. shiny applications update live and interactively.
The user interfaces can be built entirely using R and operates in any R environment (cross-platform). Currently,
the functions AmpSim, th.cyc, bg.max and amptester are part of shiny GUIs.

2 Pre-processing of amplification curve data

Quantitative polymerase chain reaction (qPCR) and quantitative isothermal amplification (qIA) are standard
methods to amplify nucleic acids (e.g., genomic DNA, copy DNA). Recently amplification methods with a con-
tinuous temperature gradient (e.g., microfluidics, capillary convective PCR, (ccPCR)) emerged [6, 41]. All these
amplification methods are used in different real-time monitoring technologies, such as our previously reported
VideoScan technology, microfluidic systems, point-of-care devices, microbead-chip technologies and commercial
real-time thermo cyclers [5, 36, 41, 42].

Real-time technologies enable the quantification of nucleic acids by calculation of specific curve parameters
like the quantification point (Cq) and the amplification efficiency (AE) [40, 49]. Novel qPCR and qIA technologies
initially depend on tools to pre-process the raw data. Pre-processing specifically addresses raw data inspection,
steps to transform raw data in a compatible format for successive analysis steps (e.g., smoothing, imputation of
missing values), data reduction (e.g., removal of invalid sets) and data quality management. The data quality
of experimental instruments is often not ready for end-user analysis and presentation. It is important to use
as many raw data as possible. Pre-processing algorithms remove stochastic errors and artefacts (e.g., noise,
photo-bleaching effects, degassing effects, different signal levels) illustrated in Figure S1. Misinterpretations are
more likely if non or manual (“arbitrary”) corrections are performed. A manual alteration is in contradiction to
reproducible research. The presence of noise may lead to false conclusions and performance estimation. Noise
is challenging because derivative processes as used for “cycle of quantification” methods (e.g., Second Derivative
Maximum method) lead to an amplification of noise [20, 34, 40, 49, 52].

R belongs to the most used bioinformatics tools and is known to be an early adopter of emerging technologies
such as digital PCR and NanoString nCounter Platform [26, 54, 26]. At same time it is widely used for established
methods, such as gPCR. Most R packages focus on the read-in and (post)-processing of data sets, which originate
from commercial qPCR systems. Fundamental steps of amplification curve analysis are: (1) raw data read-in, (2)
amplification curve pre-processing (e.g., noise reduction, outlier removal), (3) amplification curve processing (e.g.,
Cq and AE calculation), (4) post-processing and quantification of secondary parameters (e.g., Delta-Delta-Ct for
gene expression analysis), (5) data export, (6) visualization and (7) report generation. Sophisticated R packages
for the steps 1. and 3.—7. are available from Bioconductor and CRAN [8, 11, 14, 15, 23, 26, 28, 56, 57]. However,
there is no R package for pre-processing and quality analysis of amplification curve data. Similar applies to
other software solutions (compare [26]). Pre-processing is in most commercial cyclers a “black box”. This has
limitations, such as hard to reproduce analysis on other platforms, difficulties during the adoption to changing
experimental setups and limited sophisticated statistical tools. Moreover, it is desirable set up work-flows in an
open environment, which enables downstream analyses and which offers powerful tools for data visualizations
and automatic report generation.

The chipPCR package (chipPCR: “Lab-on-a-Chip” & PCR) was developed to automatize pre-processing,
to ease data analysis/visualization and to offer a quality control for the statistical data analysis of gPCR and
qlA experiments by a comprehensive set of functions (Section 3). chipPCR is primarily targeted at developers
of experimental nucleic acid amplification systems but non the less at users who have access to the raw data of
commercial systems. This supplement highlights pinnacles of the chipPCR package. Due to the vast amount of
information we refer the interested reader to the chipPCR manual for further information and use-case examples
on the parameters of the different functions.

Pre-processing is in most commercial cyclers an black box. This has limitations, such as hard to reproduce
analysis on other platforms, difficulties during the adoption to changing experimental setups and limited so-
phisticated statistical tools. Moreover, it is desirable set up work-flows in an open environment, which enables
downstream analyses and which offers powerful tools for data visualizations and automatic report generation.

res.pos <- AmpSim(cyc = 1:40, noise = TRUE, b.eff = -12, nnl = 0.02)

res.pos[5, 2] <- res.pos[5, 2] * 6

res.low <- AmpSim(cyc = 1:40, noise = TRUE, b.eff = -20, bl = 0.5,
ampl = 0.58, Cq = 33)

res.low([31, 2] <- NA

res.neg <- AmpSim(cyc = 1:40, b.eff = -0.1, bl = 0.05, ampl = 0.4,

Cq = 1, noise = FALSE, nnl = 0.5)

res.pos.CPP <- cbind(1:40, CPP(res.pos[, 1], res.pos[, 2], bg.outliers = TRUE,
smoother = TRUE, method = "smooth", method.norm = "minm",

method.reg = "lmrob")$y)

res.low.NA <- cbind(1:40, CPP(res.low[, 1], res.low[, 2], smoother = TRUE,
method = "smooth", bg.outliers = TRUE, method.norm = "minm",
method.reg = "lmrob")$y)

res.neg.exc <- cbind(1:40, amptester(res.negl, 2]))

par(mfrow = c(1, 2), las = 0, bty = "n", cex.axis = 1.5, cex.lab = 1.5,
font = 2, cex.main = 1.8, oma = c(1, 1, 1, 1))

plot(NA, NA, xlim = c(1, 40), ylim = c(0, max(res.pos[, 2])),
xlab = "Cycle", ylab = "Raw fluorescence")

mtext ("A", cex = 2, side = 3, adj = 0, font = 2)

lines(res.pos, lwd = 2)
lines(res.low, col = 2, lwd = 2)
arrows (38, min(res.low([, 2], na.rm = TRUE), 38, max(res.low[,
2], na.rm = TRUE), code = 3, lwd = 3, angle = 90, col = "grey")
text (38, max(res.lowl[, 2], na.rm = TRUE) * 0.7, "SNR", cex = 1.2)

arrows (29, 0.42, 31, 0.51, 1lwd = 2)
text (29, 0.38, "NA", cex = 1.2)

points(res.pos[5, 1], res.pos[5, 2], pch = 21, cex = 4, 1lwd = 5,
col = "orange")
text(res.pos[5, 1], res.pos[5, 2] * 1.2, "Outlier", cex = 1.2)

lines(res.neg, col = 4, lwd = 2)
text (20, mean(res.neg[, 2]) * 0.9, "No amplification", cex = 1.2,
col = "blue")

plot(NA, NA, xlim = c(1, 40), ylim = c(0, max(res.pos[, 2])),
xlab = "Cycle", ylab = "Pre-processed fluorescence")

abline(h 0.03, 1ty = 2, lwd = 2)

mtext ("B", cex = 2, side = 3, adj = 0, font = 2)

lines(res.pos.CPP, lwd = 2)
lines(res.low.NA, col = 2, 1lwd = 2)
lines(res.neg.exc, col = 4, lwd = 2)

legend(l, 1, c("Positive (outlier removed)", "Positive (scaled)",
"Negative", "Threshold line nof Cq"), col = c("black", "red",
"blue", "black"), 1ty = c(1, 1, 1, 2), lwd = 2, bty = "n")

lines(c(15.1, 15.1), c(-1, 0.03), lwd = 2, col = "black")
text (14, 0.06, "Cq")
lines(c(28.5, 28.5), c(-1, 0.03), 1lwd = 2, col = "red")

text (27, 0.06, "Cq", col = "red")

Q _ e _
— i —— Positive (outlier removed)
—— Positive (scaled)
—— Negative
- = Threshold line nof Cq
@ @
o o
(]
o
c
S
3 « 2 © |
C o = o o
(] o
(8} / >
] =
Qo e
S Outlier 3
< 3
= O
g <1 G SNR 9 %]
o NA IQ_ o
o
o
ol
/‘ I .
~ No amplification ~
o o
o | o [NF>AV"T" [=
o o
T T T T ! T T T T !
0 10 20 30 40 0 10 20 30 40
Cycle Cycle

Figure S1: Analysis and interpretation of real-time amplification curves. (A) The fluorescence values are plotted
against the cycle. The amplification curve has a sigmoidal shape (—, —). Amplification curve raw data are affected
by many influences. This includes noise introduced by the detection system and sensor errors. Measurements can
occasionally contain missing values (“NA”, —) and outliers (orange circle, —). Outliers are often present in the
first cycle due to sensor adjustments. The signal difference between the background phase (first cycles) and the
plateau phase (last cycles) can be expressed as signal-to-noise ratio (SNR). The SNR between different between
samples (e.g., — and —) can vary. For interpretation it is better to compensate the differences. Negative samples
(-) need to be (automatically) identified. (B) pre-processed raw data. NAs were imputed and the noise slightly
removed. The curves were adjusted to have the same baseline and plateau level. The quantification point (Cq)
of the positive reactions are determined in the exponential phase (“Threshold method” is used in this example).
Negative sample are automatically set to zero.

3 Functions of the chipPCR package

Main functions of the chipPCR package are:

e AmpSim: a 5-parameter model for a S-shaped amplification curves accompanied by AmpSim.gui a shiny
GUI, for AmpSim,

e bg.max: a function to detect the start and end of an amplification reaction,
e CPP: wrapper for several pre-processing functions,
e fixNA: to impute missing values in a data column,

e inder: for interpolating first and second derivatives interpolation using the five-point stencil (accompanied
by rounder function),

e MFIlaggr: to analyze a bulk of replicates of an amplification reaction,

e smoother: to smooth the curve data by different methods (e.g., moving average, Savitzky-Golay smoothing).
In addition, further the (auxiliary) functions:

e amptester: to detect the start and end of an amplification curve,

e effcalc: to calculate the amplification efficiency,

e humanrater: a graphical interface to rate curves,

e Im.coefs: to compute linear model coefficients,

e normalizer: to normalize data between a user defined range,

e plotCurves: to plots many curves on one plot in separate cells allowing quick assessment,

e th.cyc): to calculate the number of cycles at which the fluorescence exceeds a defined threshold, called the
threshold cycle (Ct),

are available. These functions are typically used for post-processing (e.g., Cq calculation, amplification
efficiency calculation) and quality analysis are available from the chipPCR package. For more information please
refer to the following sections. Selected functionality is used in the RDML [3] package. Most of the functions
are element of other functions in this package. For example, fixNA is embedded in most functions to prevent
potential problem during processing due to missing values.

Graphical user interface (GUI) are important to spread software. R offers several GUI projects to chose from
[35]. Some functionality of chipPCR originates from experimental plugins for the RKWard GUI [26]. Recently,
the shiny [37] framework to build and deploy GUIs for the desktop (web browser) or services for interactive
web applications emerged. shiny enables to build plugin-like applications with highly customizable widgets
(e.g., sliders, plots, reports) for a efficient extension. shiny applications update live and interactively. The user
interfaces can be built entirely using R and operates in any R environment (cross-platform). Currently, the
functions AmpSim, th.cyc, bg.max and amptester are part of shiny GUIs. It is possible to run the applications
as service on a server. Examples for these use case scenarios are given in the following sections. The following
section give details on the application of the different functions.

4 AmpSim - a function to simulate amplification curves

The function AmpSim is a simulator for amplification reactions. Use cases include teaching, algorithm testing
or the comparison of an experimental system to the predicted (“optimal”) model. AmpSim uses a 5-parameter
model (Equation S1). The function is commonly used for the simulation of amplification curves [12, 33, 47].

ampl — bl
1+ exp (b.ef f * (log cyc — log Cq))

It is an intrinsic property of AmpSim to generate unique results if the noise parameter is bg.max set TRUE.
This is due the use of the rnorm (stats) function to simulate noise. If data need to be replicated identically
use set.seed(123) to alter the random number generator (RNG) state. For example, the amplification curves of
Figure S25 A are generated with the same starting parameter of AmpSim but noise was added. AmpSim.gui is
a shiny GUI (graphical user interface [37]) implementation for AmpSim. The code example below is an example
how-to invoke the AmpSim.gui. Further details on shiny are described in Section 1. AmpSim was also used
to illustrate the inder function (Figure S19), the fixNA function (Figure S12) and the use of the smoother
(Figure S14) function.

There are several ways to implement chipPCR GUIs. An example to launch a graphical user interface that
allows simulating and analyzing amplification reactions is shown below. This approach is usable to run a GUI
on a local machine without the requirement to connect to the Internet. Prerequisites are a local installation of
R, with installed shiny and chipPCR packages and a modern web browser. It is important to note that any
ad-blocking software may be cause of malfunctions. The GUI is invoked by pasting the following code snippet
into a R console.

fluo = bl + (S1)

require(shiny)

runApp(paste(find.package("chipPCR") [1], "/AmpSim.gui", sep = ""))

runGist ("https://gist.github.com/michbur/eldef41598f1d0cle2e6")

The function will open the GUI in a chipPCR webpage of the default browser (Figure S2). All parameters of
the AmpSim function can be used. In addition, shows the GUI some information calculated by the bg.max in a
summary field and a plot below the simulated amplification curve.

AmpSim has several parameters, which can be used to simulate an amplification curve. b.ef f and Cq are
most connected with another. Thus changing one of them will change both values. Cq can be used to define
an approximate Cq value. The expression “approximate Cq” value is used because the calculated Cq value will
vary depending on the preferred Cq quantification method (e.g., Second Derivative Maximum (SDM) method,
threshold method). AmpSim can be used to simulate data with noise (based on rnorm, stats), signal-to-noise
ratios, photo-bleaching and other influences on a qPCR reaction. The following example illustrates the use of
AmpSim (Figure S3).

Warnings in following code chunks were suppressed.

par(las = 0, bty = "n", oma = c(0.5, 0.5, 0.5, 0.5))

plot(NA, NA, xlim = c(1, 40), ylim = c(0, 1.1), xlab = "Cycle",
ylab = "RFU")

colors <- rainbow(8)

sim <- sapply(1L:8, function(i) {
Cq.tmp <- 25 + rnorm(1) * 5

*

| ampification curce simulation | de
B £ @urooizs v ! |Bv oo Ahea 8 a0 Z O =
[«
Tahowbokw |

Amplification curve simulation

sererh iR
Lizeay sndny)
14 3

Ampicalonplees Arplisaton dea

Cyoks
35 b
e Slmukiked curve
= et i ecaBieanaEn
o nnl = inpubinnd .
o Rl reachiad - inpusfnad vechad |
Busslre / H
— S § e v Aleulaze Sl S0 and altha
a05 - = ; eaip - £ gt zea . b an
! 3t
ampituce: w | f
g ° ! ewtgwei Aptandler < rendecklail
¥ -~ 3 e BLatiian. Aupi it i, madn = 3l aked cutws®, type = L
- | it
2 |
Ceyvakie £ ! emtpmtFindccFlor < condecBlak i
! Ploviten.hgiy, main = *iloulacian af curve paziestezdtl
g b a "
- . i
d / prmpnTiagTaile oo cemderTailel |
|| Use nose nsimuaten = ax gl
covensnecsasueacd "
Hokan ki : T T T T T !
3 eotpvTizptieary - sendezbring (|
o0 - o 5 0 5 = = = i e iyites a1
b "
e "
Varabk
Lorstard - Backyzomnd stact L

Backgrewnd srap 1D
Backgzennd coszelatien: 1.3

Trul of whe wvplification oazzasn S

Tinsrescemcs 3E The snd G The SGliE1eitian veszesan: 0.05

Cakubslicon of curve pammetems
ek, Cuzan be usedlo
pprimae e vakie The - ¥ Em— chrseeeer
Vil dartin -
o | seeadenaio :
o /
3 8 /
] H
tee towan expenme il syskm j’ | {
W3 10 predichacd mock| A N R
ribe nssclio sl date z st Badgmusdaiy f
il e, mswig vakies (NA), stk * T et
¥ rolia Mk o bieaching and e Y S .
Sy e et P it g priininn IIIITETL T .
T T T T T =
o B n 5 m w EY 5 =

Figure S2: Locally running shiny AmpSim.gui app. (Top) The plot of the AmpSim.gui is shown in a standard
browser (Iceweasel, v. 29.0.1) along with the parameters (left panel) and the estimation by the th.cyc function.
The code (“server.R”, “ui.R”) of the shiny app is also shown. All parameters (e.g., Cq value, baseline) of the

AmpSim function are accessible.

(Bottom) In addition, shows AmpSim.gui the plot output and the textual

results of bg.max.

9,

tmp <- AmpSim(1:40, Cq = Cq.tmp, noise = TRUE, nnl = 0.03)

lines(tmp, col = colors[i], lwd = 2)

Add the approximate Cq values to the plot

text(3, 1 - i/10, paste("Cq ", round(Cq.tmp, 2)), col = colors[il)

1.0

Cq 24.83
o0}
g
©
LL
@
<
o 1 Cq 43.25
Cq 19.05
AN
s 1 Cq 2451 /
o
S -
| | | | |
0 10 20 30 40
Cycle

Figure S3: The amplification curves were generated with the AmpSim function. All Cgs are unique due to the
use of random value, which were added to the starting Cq of 25. The parameter noise = 0.03 adds some scatter
to the amplification curve data.

10

5 Single-blinded, randomized judging of amplification curves

Humans tend to bias the interpretation towards a desirable outcome. A single-blinded and randomized experiment
aims to reduce bias in the results, which concealed from the human tester. The bias towards a certain result may
be intentional or unconscious. We developed the humanrater function to evaluate the quality of an amplification
curve in a randomized, half-blind manner. humanrater is an interactive function, which can be used to rate a
curve for a certain characteristic. humanrater draws individual graphs of a curve and prompts an input field
for the user. Application of this function are numerous. For example, this function can be used to compare the
human rating and the rating of a machine or the rating of several individual experts. It is possible to specify a
list of designations, which seem appropriate to characterize the amplification curve, where the names of elements
specify short designations used during rating. Defaults are y for “yes”, a for “ambiguous” and n for “no”. It
is possible to supply longer or shorter designations lists. In our example we used humanrater in the RKWard
GUI (Figure S4). We aimed to characterize amplification curves which were randomly drawn from “testdata”
to avoid a bias by the user. However, it should be noted that humanrater can be used to rate other input data
such as melting curves.

testdata <- data.frame(1:35, AmpSim(Cq = 15, noise = TRUE) [,
2], AmpSim(Cq = 25, noise = TRUE)[, 2], rnorm(35), AmpSim(Cq = 35,
noise = TRUE) [, 2], rnorm(35), AmpSim(Cq = 45, noise = TRUE) [,
21)

human.testl <- humanrater(testdata, repeats = 2)

11

repeats for the rating and the categories (e.g., y for

L
R-Backend erbittet Informstionen
Epnkest:

R-Backend ersittel Informationen - RkWerd (3 = 20 5

Repeat:1

Bren Anaicht Arbeltsharelch AusFibren Data nabsis Pioks. Distrl Fenstor Enstelungen HilFe
O prsteten H._Sp_zldg!gn-.v_‘ Fuhre Ausweblaas (B Unterbreche lafenses pommands

el | B humenretectent @]
2L Burdukiewicz, Stefan Roediger

- R Grephics: Device 2 (ACTIVE) - RKierd G ki) |
Exanp'l_es Gerdt d,[ﬁm Ansichs !eru_uf Fenster Emstellungen ﬂNI"g
[tursusoabe kopers= | B isherupl 8 VarhergerPlat K i<l
Testoata <- data.frame(1:35,
AmpSim{Cq = 15, noise = TRUE)[Experiment 6
AmpSim(Cq = 25, noise = TRUE)[
rnorm(33), i
AMpSim(Cq = 25, noise = TRUE)[H
norm(33), <
AmpSim{Cq = 45, noise = TRUE)[. -
| -} (L]
#check testdata for significance of amplification in .'
human.testl <- humanrater(iestdata, repeats = 2} . \
.
#check tastdata for significance of amplification in / e o® -
#finger friendly (but less cbvious) designations a -
human,test2 <- humanrater(testdata, repeats = 1, list et .
o ! | e .
X \ TN
TPackage C-fj b .
! - .
¥ = requireichipPCR)
| Laading roquired package: chipPtR - []
* > Phumanrater /
¥ > tostdata <- data.fraee(] 35, 9
' ApSimiCy = 15, noise = TRUEIL, 20 L]
‘ AipSin(Cy = 75, noise = TRUEI[, 21, ks ™ T T T T T T T
+ roorn|5],
+smEq = 35, noise = TRUEIL, 21, a 5 10 15 20 25 30 35
+ rnorniss),
o+ AnpSim(Cq = 23, noise = TRUEI(, 21) Cyel
w > human_testl < husanrater(testdata, repeats - 2) yela
| Repeat:l
Repeat 3

¥ > hunzn . testl
.| test.result.l test,result.2 cenformity
3 TRLE

1 [¥ T

2 ¥ ¥ TRE

3 n n TRE
- ¥ ¥ TRE

5 n n TRE
5 ¥ ¥ TRE
= |

Figure S4: Application of humanrater in a instance of RKWard. humanrater was used to analyze a row of
amplification curves. (A) All data are anonymous and can be randomized during the rating. The number of
‘ves”, a for “ambiguous” and n for “no”) can be defined by
the user. The function has an option to present the curves at random (default). (B) The user gets as result a

3

tabular output, including the result of each run and the conformity of the runs (see table in console).

12

6 Inspection and analysis of amplification curve data

The following section briefly describes function from the chipPCR to visualize and analyze amplification curve
data. In particular, the functions MFIaggr and plotCurves (Section 6.2) were developed for a rapid and convenient
inspection of raw data.

MFIlaggr is a powerful analytical and graphical tool for fast multiple comparison of the cycle dependent
signal dispersion and distribution. The continuous response variable y is used to describe the relationships to n
continuous predictor variables x;, where i € {1,...,n}. Use cases include the comparison of independent reaction
vessels or the analysis of replicate experiments. The basic idea is to analyze only a region of interest (ROI)
from a data set. MFIaggr is a relative of the MFIerror function from the MBmca ([34]) package. However, this
functions enables a fine grained analysis of specific parts of the curve data. The function returns an object of
the class list with the columns “Cycle”, “Location” (Mean, Median), “Deviation” (Standard Deviation, Median
Absolute Deviation) and “Coefficient of Variation”. Using the option rob = TRUE the median and the median
absolute deviation (MAD) are calculated instead of the mean and standard deviation. MFIaggr has parameter
llul to define the lower and upper data limit (cycle) for a ROI. The results for the ROI can be invoke by
@stats. The output includes the mean, median, standard deviation (sd), median absolute deviation (mad), inter
quartile range (IQR), medcouple (robust measure of skewness), skewness (Pearson’s second skewness coefficient;
skewness = 3 (mean(x) — median(z)) / sd(zx)), signal-to-noise ratio (SNR), variance-to-mean ratio (VRM),
number of missing values (NAs) and results from a linear fit of the ROI (intercept, slope, r.squared). Moreover,
we included the Breusch-Pagan test to test for heteroskedasticity in a linear regression model (see Section 6).
In our example we analyzed the raw fluorescence from 96 replicates of a qPCR experiment for the human gene
Vimentin. The MFIaggr plot shows that the first ten cycles (noise) follow a normal distribution (Figure S5).
In contrast, the analysis of all cycles shows expectedly a distribution, which significantly differs from a normal
distribution (Figure S7). Setting the option CV = FLASE shows the relative standard deviation (RSD, %).
Ideally the variance between the amplification curves is low. Other results of MFIaggr include the density analysis
(Qdensity), the quantile (Qggnorm.data), and the results of the linear regression (@Qlm.roi) from the ROI. In
particular, this function might be useful for quality management during the development of high-throughput
technologies. An analysis via a the shiny MFIlaggr.gui app is shown in Figure S6.

par(las = 0, bty = "n", cex.axis = 1.2, cex.lab = 1.2, font = 2,

cex.main = 1.2, oma = c(1, 1, 1, 1))

plot (MFIaggr (VIMCFX96_60[, 1], VIMCFX96_60[, 2:ncol(VIMCFX96_60)],
1lul = c(1, 10)), CV = FALSE)

6.1 Parameters of MFlaggr

MFTaggr is a powerful analytical and graphical tool for fast multiple comparison of the cycle dependent signal
dispersion and distribution. This function enables the analysis of specific parts of the curve data as defined
by the llul parameter. [lul defines the lower and upper data limit (cycles) for a region of interest (ROI).
The function returns an object with the columns “Cycle”, “Location” (Mean, Median), “Deviation” (Standard
Deviation, Median Absolute Deviation) and “Coefficient of Variation”. Using the option rob = TRUEFE the
median and the median absolute deviation (MAD) are calculated instead of the mean and standard deviation.
MFIaggr has the parameter llul to define the lower and upper data limit (cycle) for a ROI. Invoked by Q@stats
reports MFIaggr further information such as inter quartile range (IQR), medcouple (robust measure of skewness),
skewness (Pearson’s second skewness coefficient), signal-to-noise ratio (SNR), variance-to-mean ratio (VRM),
number of missing values (NAs), results from a linear fit of the ROI (intercept, slope, R squared) and the
Breusch—Pagan test to test for heteroscedasticity in a linear regression model.

In our example we analyzed the raw fluorescence from 96 replicates ("VIMCFX96_60” data set) of a qPCR
experiment for the human gene Vimentin. The MFIlaggr plot shows that the analysis of all cycles is non-normal
distributed (Figure ST7).

plot (MFIaggr (VIMCFX96_60[, 1], VIMCFX96_60[, 2:ncol(VIMCFX96_60)],
11ul = c(1, 40)), CV = FALSE)

MFTaggr can be used to analyze the heteroskedasticity in a given data set. Heteroskedasticity (“hetero” =
different, “skedasis” = dispersion) is present if the variance (error term) is not constant. In case the variance

13

ROI samples: 96 ROl cycle 1 to 10

ROI mean: 2268.596 +— 46.74638 bw 14.051
ROI median: 2272.960 +- 46.7463¢ N 192
8 _ _::=-==--——_ § p—
3 S
] >
] 'v‘"' % <
o o] % 8]
3 - h 8 o
< | |
= o
in S . _
S . | o T T T T 1T T 1
= A 2100 2200 2300 2400
@ RFU
I S
= g | g
L0 >
® A Normal Q-Q Plot
Breusch—-Pagan Test p—value: 0.03628
o o .
o _| D _ °
S I N
1< _
@
{ & 2
S o
To R f=1 N
N e _
@
0 o .
n _|
—
| | | | | N T T T T T 1
0 10 20 30 40 -3 -1 0 1 2 3
Cycle Theoretical Quantiles

Figure S5: Sample code for the analysis with the MFIaggr function. The VIMCFX96_60 data set (96-well
plate cycler (Bio-Rad CFX96)) was used. Either all a subset of cycles (ROI: 1 — 10) or all cycles (ROI: 1 —
40) (Figure S7) were analyzed. The density plot (right upper panel) and quantile-quantile analysis (right lower
panel) show no normal distribution. Due to the sigmoidal curve structure is the density function bimodal.

14

ew
| MFlaggr x | 4
J

MFlaggr - Mozilla FirsFox

ve| By cooale

® tB + A2 Q=

& | @ https//michbur.shinyapps.io/MFlsgar_aui

MFlaggr
| Ghoose GEV Flle (input shouild contain cycle data)

Browse,. | Nofie selected.

 Header
Type of csv file

« Dec: dot (), Sep: comma ()

& Dec: comma (.), Sep: semicolon (;)
Column containing the cycle data:

1 v |

Relative standard deviation:
Median and MAD:
Region of interest - lower border:

1 <
Reglon of interest - lower border:
~
1" v
& Download MFlagar results (with graphics)

& Download MFlagar results (.csv)
Lost? Use button below to see an example:

Run example

Multiple comparison of the cycle dependent variance of
the fluorescence

er & Mi

by Stefan R

3| Burduldewlcz <stefan.roediger

About
MFlaggr is used for a fast multipl of the cycle dep

i the Itis a web-based offunction from
package chipPCR.

Authors: Siefan Roediger, Michal Burduklewicz.

Readme

1. Choose fife - a csv flle with a fiuorescence data and cycle number,

2. Header - must be checked If input table has header.

3. Type of .csv fie - choose typs of csv file (depanding on decimal
separaor),

4. Column containing the cycle data - number of column containing the cycle
number.

5. Aelative standard deviation - show relafive standard deviation in percent.

6. Medlan and MAD - must be checked If median and MAD should be used
Instead of mean and standard deviation.

7. Lower and upper border of the region of interest - two cycle numbers
defining upper and lower limit of the region of interest (ROI) used for the
density and quantile plot.

WF

Input data Resuilts with graphics Resulls - table All curves plot

ROl samples: 15
ROI mean: 2235.33 +- 47.74713
ROI median: 2230.810 +- 47.74713

}

ROl cycle 1 to 11
bw 19.379
N 30

| g

1 t
g ﬁ}

500
.
.

Deviation: 50

3000
e

Normal -Q Plot
Ereumen P Testp v 022

2500
i

!
L3
-.ununul“. g £

[10

'R
g
&

Mean: 2235

Median: 2231

Standard deviation: 42.51
Median Absolute Deviation: 47.75
Interquartile Range: £4.2
Medcouple: 0.1171
Skewness: 0.318

SHR: 52.58

VEM: 0.8085

Number of NAs: O
Intercept: 2180

Slope: 7.561

B squared: 0.9883

Breusch-Pagan Test p-valus: 0.225

serverR ulR

libraryishiny)
library(chipPCRI

server for the Shiny app
shinyServer (function(input, output) |
#check if no data is loadsd or no example used
null input <- reactive!

is.null (input|["input. file”]1) £& input[['run.example”|] == 0

processed.data <- reactive |
fafter loading any file it would be possible to start an ekample
null(input|["input. £ile"1]111 {
dac <- VIMCF®SE_E0[, 1L:1E]
}oelse {
dat <~ switchiinput|["csv.type"l],
=

vl = read.csv(input[["inpuc.file"]] [["dacapach’l],

ex = input [["header"]]]

esvZ = read.csv2input | ["input. file"]][["datapath"]],

header = inpuc(['header”]])
if(input(["header"]])
eolnames (dat) <- pasteD("Colvan’, lL:necolidat))

dac
i1

#dabsec before and afver data imput
output [["dynamic_tabset”]] <- renderUI((
if (null.input ()
tabPanel("chipPCR loga®,
ing(sre="logo.png”, alt = "chipPCR loge"))
} else (
tabsecPanel(
tabPanel("Input data’, tableOutput ("input_data’)),

1 show with app

~

v
b —

Figure S6: Example of shiny MFIlaggr.gui app. (Top) The plot of the AmpSim.gui is shown in a standard
browser (Iceweasel, v. 32.0) along with the parameters (left panel). The code (“server.R”, “ui.R”) of the shiny
app is also shown. Most parameters of the MFIaggr.gui function are accessible.

is constant data are considered to be homoskedastic. If the error terms do not have constant variance, they are
said to be homoskedastic. Analysis of the heteroskedasticity can give some insight into the characteristics of a
system. In the following example we compared the VIMCFX96_60 and VIMCFX96_69 data sets. Both data set
were obtained from the same qPCR run in a Bio-Rad CFX96. However, data from the VIMCFX96_60 data set
were obtained during the annealing phase at 60 degree Celsius and during the elongation phase at 69°C. The
heteroskedasticity increased expectedly during the amplification reaction. The variance in the elongation phase
(Figure S7C and D) was lower than in the annealing phase (Figure S7TA and B). The heteroskedasticity was
significant in during the (Figure STA) first 15 cycles at 60 °C.

par (mfrow = c(2, 2), bty = "n"
Create a helper function

'hsk.test' to analyze the

heteroskedasticity and the wvariance.

hsk.test <- function(x, y, 1llul

res <- MFIaggr(x, y, 1lul =

head (res)

c(1, 15), main = "") {

11ul)

plot(res[, 1], res[, 3172, xlab = "Cycle", ylab = "Variance of refMFI",

xlim = 1lul, ylim =

c(min(res[11ul([1]:11ul[2], 3]°2),
max(res[11ul[1]:11ul[2], 3]1°2)), main =

15

main, pch = 19,

ROI samples: 96 ROl cycle 1 to 40

ROI mean: 3492.900 +- 1480.658 bw 401.357
ROI median: 3172.575 +- 1480.658 N 192
Q 11T <t
o — —T
g e $
i [
— <
T 498999 P —
11144111 ‘@
o 1] é $
o _| L]
2 - <
: O
1 o
+ p— —
s | - 8 1 | | | | | |
S Q 1000 3000 5000 7000
0]
_ < RFU
L 1O
= g I
3 - 5
® @) Normal Q-Q Plot
Breusch—-Pagan Test p-value: 0.4748
S | o
o 8 0©
8 _ —
® I 2 o
= 8]
S <
>
i S
S | 2 3 -
2 e ©
3 _
o
S _|
Lo
N o 0O
| | | | | | | | | |
0 10 20 30 40 -3 -2 -1 0 1 2 3
Cycle Theoretical Quantiles

Figure S7: Signal analysis using the VIMCFX96_60 data set (96-well plate cycler (Bio-Rad CFX96)). All cycles
(ROI: 1 - 40) were analyzed by the MFTaggr function. The density plot (right upper panel) and quantile-quantile
analysis (right lower panel) show no normal distribution. Due to the sigmoidal curve structure is the density
function bimodal.

16

type = "b")

abline(v = 1lul, col = "grey", lty = 2, lwd = 2)

legend("top", pasteO("Breusch-Pagan test p-value: \n", format(summary(res,
print = FALSE) [14], digits = 2)), bty = "n"

}

hsk.test (VIMCFX96_60[, 1], VIMCFX96_60[, 2:ncol(VIMCFX96_60)],
11lul = c(1, 15), main = "ROI Cycle 1 to 15\nAnnealing phase")
mtext ("A", cex = 2, side = 3, adj = 0)

hsk.test (VIMCFX96_60[, 1], VIMCFX96_60[, 2:ncol(VIMCFX96_60)],
11ul = c(1, 40), main = "ROI Cycle 1 to 40\nAnnealing phase")
mtext ("B", cex = 2, side = 3, adj = 0)

hsk.test (VIMCFX96_69[, 1], VIMCFX96_69[, 2:ncol(VIMCFX96_69)],
1lul = c(1, 15), main = "ROI Cycle 1 to 15\nElongation phase")
mtext ("C", cex = 2, side = 3, adj = 0)

hsk.test (VIMCFX96_69[, 1], VIMCFX96_69[, 2:ncol(VIMCFX96_69)],

11lul = c(1, 40), main = "ROI Cycle 1 to 40\nElongation phase")
mtext("D", cex = 2, side = 3, adj = 0)

17

ROI Cycle 1 to 15
Annealing phase

ROI Cycle 1 to 40
Annealing phase

o
A s B
_ © 8 PP Y PYY Y
Breusch—-Pagan test p—value: — Breusch—Pagan tegpp-value:
o 0.12 I 0.47 .
L 3 I o .
g - | 2 3 - N
o | . o 8 /
© © - M
] o / [} /
e 2 - y S 9 .
8 3] / g g /
S)]
g \ % g = ;
°] °
o . °
9 - .o e o - coccssccsccscsce®’
— | | | | | | | | | | | |
2 4 6 8 10 12 14 0 10 20 30 40
Cycle Cycle
ROI Cycle 1 to 15 ROI Cycle 1 to 40
C Elongation phase D Elongation phase
o © o0000000000
9 - Breusch—-Pagan test p—value: Breusch—Pagan tes.t.p—value:
"' \ 0.041 — 0.39 .
L = L o
2 Q = 38 h
s 3 ° S S :
5 \ 5 3 .
g ‘ 3 /
c o . c 7] M
87\ /g g !
> _ PN /. > 8 - /
L4 e ® o (@] °
o \ .e / — °
n — ° N °
[¢e} o o o 4 ©000000000000000°
| | | | | | | | | | | |
2 4 6 8 10 12 14 0 10 20 30 40
Cycle Cycle

Figure S8: Use of MFIaggr to test for heteroskedasticity using the Breusch-Pagan test. The data were aggregated
with the MFIaggr function and assigned to the object res. The standard deviation was transformed to the
variance. The plot shows the cycle dependent variance measured at 60 degree Celsius (annealing phase; A, B)
and 69 degree Celsius (elongation phase, C, D). First cycles 1 to 10 of 96 qPCR replicate amplification curves
were analyzed. Next the cycles 1 to 40 of the same amplification curve data were analyzed. The Breusch-Pagan

confirmed the heteroskedasticity in the amplification curve data. The VIMCFX96_60 and VIMCFX96_69 data
sets were used.

18

6.2 Data overview - plotCurves

plotCurves visualizes many curves on one plot in separate cells allowing quick experiment assessment (Figure S9).
In addition, plotCurves has an option to run an unsupervised CPP pre-processing step on the raw data. This
will smooth the data (Savitzky-Golay Smoothing), remove missing values (spline interpolation by default) and
perform a background subtraction (base-lining to zero). plotCurves has a colored indicator for rapid visualization
of dataset with potentially problematic amplification curves. The output of the plot is arranged in an orthogonal
matrix.

Warnings in following code chunks were suppressed.

y <- VIMCFX96_60[, 2L:9]

ylc(10, 22, 3, 25, 26, 15, 27, 23, 4), c(5, 7, 4, 2, 1)] <- NA

plotCurves (VIMCFX96_60[, 1], y, nrow = 2, type = "1", CPP = TRUE)

19

4000
|

S~
\\\\\~\
\\\\\\\

1000 2000
|

0
]

\

4000

\\\\‘~\
\\\\\~\

1000 2000

0
]

Figure S9: The plotCurves function. Plots many curves on one plot in separate cells allowing quick assessment.
Missing values were artificially introduced at random position to selected curves of the VIMCFX96_60 data set
(solid black line). A colored box (topleft of each plot) indicates the sample name and if the data contain missing
values. The red rug indicates the position of the missing values. The red lined shows the amplification curve
after unsupervised pre-processing (using an instance of CPP).

7 Proposed workflow

In the previous section we showed different methods to investigate specific properties of the measured data. Next,
we focus on methods of the chipPCR package to pre-process the data. We have chosen to state function names
and give some information on the working principle. However, details will be explained in the subsequent sections
to avoid confusion of the reader. In particular, we show the application of the CPP function, which can be seen
as a proposed workflow for customized pre-processor functions. Data were taken from the VIMCFX96_60 data
set. This data set was measured with a Bio-Rad CFX96 thermo-cycler with 96 replicates (see chipPCR manual
for experiential details).

The function CPP encompasses a set of functions to pre-process an amplification curve. The pre-processing
includes options to normalize curve data, to remove background, to remove outliers (fixNA function) in the
background range and to test if an amplification is significant. The function uses the bg.max function to estimate
automatically the start of the amplification process. In the background range there is often noise which makes it
harder to determine a meaningful background value. Therefore, CPP can optionally remove outliers by finding
the value with the smallest and largest difference from the mean as provided by the rm.outlier function from the
outlier package [19]. rm.outlier detects these outliers by a simple rule without statistical testing and replaces it by
the sample mean. Outliers herein referrers to the smallest and largest value, which has maximum difference from
the sample mean. The slope of the background range is often unequal to zero. By setting the parameter trans
it is possible to apply a simple correction of the slope. Thereby either a robust linear regression by computing
MDM-type regression estimators, a nonparametric rank-based estimator or a standard linear regression model.
CPP uses by default a robust linear regression (MM-type estimator) as integrated in the Im.coefs function. A
defined range of the amplification curve (typically the background range) is used to extrapolate the linear trend
over the entire data set. However, this step his to be performed with caution since this operation effects the
amplification efficiency. The background is assumed to be constant for the entire measurement. Care is also
needed when using trans with time series (see Im from the stats package for details). In addition, all data are
normalized between there minimum and maximum. This is taken care of by the normalizer function. Smoothing
of the data is finally done based on an instance of the smoother function. By default, a Savitsky-Golay filter
was used to smooth the data. The following code is a representative example for the use of CPP (Figure S10).
Warnings in following code chunks were suppressed.

layout (matrix(c(1, 2, 3, 3), 2, 2, byrow = TRUE), respect = TRUE)
par(las = 0, bty = "n", oma = c(0.5, 0.5, 0.5, 0.5))
th.cyc.raw <- apply(VIMCFX96_60[, -11, 2, function(i) {

th.cyc(VIMCFX96_60[, 11, i, r = 2575)[1, 1]
9,

res.CPP <- apply(VIMCFX96_60[, -1], 2, function(i) {
CPP(VIMCFX96_60[, 1], i, trans = TRUE, method.norm = "minm") [["y.norm"]]
I3

th.cyc.CPP <- apply(res.CPP, 2, function(i) {
th.cyc(VIMCFX96_60[, 1], i, r = 0.1)[1, 1]
19

matplot (VIMCFX96_60[, -1], type = "1", pch = 19, col = 1, 1ty = 1,
xlab = "Cycle", ylab = "Raw fluorescence", main = "Raw")
abline(h = 2575, 1ty = 2)
mtext ("A", cex = 1.2, side = 3, adj = 0, font = 2)
matplot(res.CPP, type = "1", pch = 19, col = 1, 1ty = 1, xlab = "Cycle",

ylab = "Fluorescence", main = "CPP")
abline(h = 0.1, 1ty = 2)

mtext ("B", cex = 1.2, side = 3, adj = 0, font 2)

boxplot(data.frame(Raw = th.cyc.raw, CPP = th.cyc.CPP), ylab = "Cq (Ct)",
notch = TRUE)
mtext ("C", cex = 1.2, side = 3, adj = 0, font = 2)

21

Raw CPP

5500

4500
Fluorescence

Raw fluorescence
3500

00

25
00 02 04 06 08 10

Cycle Cycle

Cq (Ct)
16,5 17.0 17.5 18.0

Raw CPP

Figure S10: Application of the CPP and th.cyc functions. A) The raw data of the VIMCFX96_60 data set were
plotted without pre-processing. B) All amplification curve data were pre-processed with the CPP function. The
parameter trans was set to T RU E, which lead to a linear trend correction and base-lining. By default a Savitzky-
Golay filter was used to smooth the data. The data were normalized between 0 and 1 (method.norm =" minm').
C) All Cgs were calculated with th.cyc function. The Cq for the raw data was 17.25 £ 0.5 (at r = 2575) and
17.1 4+ 0.1 (at r = 0.1) for the pre-processed data. Our results indicate that the dispersion of the Cq values was
slightly lower.

22

8 Imputation of missing values in amplification curve data - fixINA

Experimental technologies may produce missing values (NA) at random due to sensor drop-outs or other technical
difficulties. Many analytical functions stop to progress or discard entire data sets. This behavior is rational for
unknown data structures. However, in case of amplification curve data it is justified to impute NAs because the
structure generally resembles an S-shaped curve. Standard approaches include substitution with most frequent
values, mean value imputation, last value carried forward, bootstrapping, or substitution by correlation with
replicate measurements [13]. In case of amplification curves other approaches are favorable. Particularly, the
transitions phases (e.g., background phase to exponential phase) is potentially prone to bias.

The NAs may be caused by detector problems, acquisition error or other assorted problems. There are different
ways to handle missing values. One approach is to ignore NAs, which is generally acceptable. However, in case of
further calculation it is often necessary to handle cases of missing values in a way that the next calculation steps
can be performed. Missing values can be eliminated by a imputation, which encompasses various approaches.
This includes to calculate a location parameter (e.g., mean, median) or other significant values (e.g., minimum,
maximum, modus) of a data column. However, in non-linear processes such as amplification processes its is
reasonable to estimate the missing values from a trend.

The function fixNA imputes missing values in a single column of data (response). The imputation is based
either on a linear approximation or an approximation by cubic splines (default) (Figure S12). Other smoothing
functions such as the Savitzky-Golay smoothing filter have the intrinsic capability to remove missing values [9, 43].
However, such functionality was not yet implemented. This linear approach is useful but may be problematic
on the phases other then background or plateau phases of an amplification reaction. The parameter spline on
fixNA enables a trend estimation on cubic splines and may be more appropriate in most scenarios. The function
fixNA imputes missing values in a single column of data. The imputation is based on a linear approximation by
default. However, the data can also be estimated from an approximation by splines.

We used the “reps384” data set from the gpcR package [46] to compare the influence of imputation on
real-world data. The “reps384” data set consists of 379 replicate amplification curves (see documentation of
the gpcR package for details). Our in-silico experiment was designed as followed: Either one or three missing
values were artificially to each amplification curve at random positions. We separated the amplification curve
in three fixed regions (“Linear phase” (cycle 1 — 10), “Exponential phase” (cycle 11 — 34), “Plateau phase”
(cycle 34 — 40), Figure S11) and investigated the impact on the pPCR parameters “Cq (SDM, Cy0)” and
curve background parameter “bg”. The performance of the imputed models was analyzed the goodness-of-fit
in this region by the commonly normalized used root-mean-squared-error (NRMSE). The smaller the NRMSE
the better the imputation is. Using this approach we compared the imputation by “linear approximation”
(fieN A(z,y, spline = FALSE)) and “spline approximation” (fizN A(z,y, spline = TRUFE)). Our results show
that the imputation with the spline method worked reliably and introduced no significant bias to all investigated
parameters. To compare the linear and spline-based imputation we performed a Kruskal-Wallis rank sum test
(kruskal.test, stats package [29]).

Our in-silico experiments showed that cubic spline interpolation yielded the most probable values and therefore
led to the least effect on tested statistical parameters (Cq, background signal, Pearson correlation coefficient)
the exponential phase and is therefore the recommended approach to remove missing values (Figure S11). We
observed no significant bias by cubic spline interpolation (Table S2). The performance of fixNA using cubic splines
was better than a linear interpolation (Figure S12). However, the linear approximation might be applicable in
measurements with high sample rates (e.g., isothermal amplification) (not shown). Any method requires a
minimum number of data points as foundation for a meaningful imputation. fixNA attempts to take care of such
pitfalls. By rule of thumbs we determined that the number of missing elements in relation to the total number
of elements. In case more than 30 % of all values are NAs gives fixNA a warning.

Our results for the given experiential setting support following statements. (I) The imputation of missing
values by spline interpolation and liner methods introduce no significant bias on the tested parameters “Cq
(SDM, Cy0)”, “bg” and the accompanied quality measure NRMSE (Table S2). (IT) We found that the difference
between the linear and spline imputation is negligible (p 1).

library(gpcR)
library(chipPCR)
cols <- adjustcolor(2:4, 0.6)
plot(NA, NA, xlim = c(1, 45), ylim = c(min(reps384[, -1]), max(reps384[,
-1]1)), col = 1, pch = 19, type = "b", xlab = "Cycle", ylab = "Fluorescence")
rect (0.8, min(reps384[, -1]), 10.2, max(reps384[, -1]), border = NA,
col = cols[1])
rect(10.8, min(reps384[, -1]1), 33.2, max(reps384[, -1]), border = NA,
col = cols[2])
rect(33.8, min(reps384[, -1]), 45, max(reps384[, -1]), border = NA,

23

col = cols[3])

apply(reps384[, -1], 2, function(i) lines(reps384[, 1], i))

NULL

Background - raw data Background - fixed NA c¢pD2 - raw data c¢pD2 - fixed NA

Linear phase - 1 NA
Exponential phase - 1 NA
Plateau phase - 1 NA
Linear phase - 3 NA
Exponential phase - 3 NA
Plateau phase - 3 NA

4606.43 + 186
7555.31 + 468

11736.60 £ 1032

4606.43 = 186
7555.31 + 468

11736.60 £ 1032

4606.53 + 186
7555.28 £ 468

11736.82 £ 1032

4607.05 = 186
7555.15 + 468

11736.86 £ 1033

18.20 £ 0.145
18.20 £ 0.145
18.20 £ 0.145
18.20 £ 0.145
18.20 £ 0.145
18.20 £ 0.145

18.20 £ 0.145
18.20 £ 0.145
18.20 £ 0.145
18.20 £ 0.145
18.19 £+ 0.148
18.20 £ 0.145

Cy0 - raw data

Cy0 - fixed NA NRMSE

Linear phase - 1 NA 11.73 +1.06 11.73 £ 1.06
Exponential phase - 1 NA 11.73 +1.06 11.73 £ 1.06
Plateau phase - 1 NA 11.73 £+ 1.06 11.73 £ 1.06
Linear phase - 3 NA 11.73 £ 1.06 11.73 £1.06
Exponential phase - 3 NA 11.73 £+ 1.06 11.71 £ 1.06
Plateau phase - 3 NA 11.73 £ 1.06 11.73 £1.06

0.00012 £+ 0.000133
0.00018 = 0.000176
0.00026 £ 0.000237
0.00033 £+ 0.00031

0.00078 £ 0.000601
0.00072 £ 0.000475

Table S2: Results of fixNA data imputation. 1NA (= one) or 3NA (= three) missing value per amplification

curve, respectively.

Simulation of an tdeal amplification curve with 40 cycles
The other parameter of the AmpSim function are identical to
the default.

res <- AmpSim(cyc = 1:40)

Introduce a missing value (cycle 18) in the transition
between the background and the exponential phase.

res.NA <- res
res.NA[18, 2] <- NA

Helper function to highlight the position of the missing

wvalue.

abliner <- function(xl = 17.5, x2 = 18.5, y1 = 0.09, y2 = 0.14) {
abline(v = c(x1, x2), col "red")
abline(h = c(yl, y2), col = "red")

}

par(las = 0, mfrow = c(2, 2), bty = "n")

plot(res, xlab = "Cycles", ylab = "refMFI", type = "b", pch = 20,
main = "Without NA")

abliner ()

mtext ("A", cex = 1.2, side = 3, adj = 0, font = 2)

res.NA.linear <- fixNA(res.NA[, 1], res.NA[, 2], spline = FALSE,
verbose = FALSE)

plot(res.NA, xlab = "Cycles", ylab = "refMFI", type = "b", pch = 20,
main = "With NA during transition")
abliner ()

mtext ("B", cex = 1.2, side = 3, adj = 0, font = 2)

res.NA.spline <- fixNA(res.NA[, 1], res.NA[, 2], spline = TRUE,
verbose = FALSE)

24

o
S g
S g
q- ~
= g
Z
o
o
o —
AN
—
3
=
8 o 4
0 o
(O] —
S
o
>
LL
o
o _|
o
o0}
o
o _|
o
©
o
o _|
o
<
| | | | |
0 10 20 30 40
Cycle

Figure S11: Inspection of the reps384 data set. The reps384 data set was used for the analysis of the impact
of imputed missing values. Three areas of the curve data were defined as “Linear phase” (red, cycle 1 — 10),
“Exponential phase” (blue, cycle 11 — 33), “Plateau phase” (green, cycle 34 — 40).

25

plot(res.NA.linear, xlab = "Cycles", ylab = "refMFI", type = "Db",
pch = 20, main = "Linear imputed\n NA")

abliner ()

mtext("C", cex = 1.2, side = 3, adj = 0, font = 2)

plot(res.NA.spline, xlab = "Cycles", ylab = "refMFI", type = "Db",
pch = 20, main = "Spline imputed\n NA")

abliner ()

mtext("D", cex = 1.2, side = 3, adj = 0, font = 2)

par(mfrow = c(1, 1))

26

08 1.0

refMFI
0.6

0.4

0.2

refMFI
0.8 1.0

04 0.6

0.2

Without NA

/

: |

: |

[I I I I
0 10 20 30 40

Cycles

Linear imputed
NA

/

: |

: |

[I I I |
0 10 20 30 40

Cycles

refMFI

refMFI

08 1.0

0.6

0.4

0.2

08 1.0

04 0.6

0.2

With NA during transition
B

[I I I I
0 10 20 30 40

Cycles

Spline imputed
NA

[I I I |
0 10 20 30 40

Cycles

Figure S12: Imputation of missing values in amplification curve data. (A) Raw data were generated using the
AmpSim simulation function. (B) A missing value was introduced in the transition phase. The missing value
was imputed either by (C) linear approximation or (D) a cubic spline approximation. The spline approximation
nearly reconstituted the original curve.

27

cpD2.raw cpDa fix

15-

10-
5-
0-

Number of NAs

o
S
;u Gyl.raw Coyl.fix 3 NA
1 NA
15 =
10-
5 -
0 -
I I 1 I I I
linear phase exponantial phase plateau phase linear phase expanential phase plateau phase

Amplification curve region

Figure S13: Test of the fixNA function using the spline and linear imputation for gPCR data with missing
values. Missing values were artificially introduced into the “reps384” data set from the gpcR package. We found
no significant difference between raw data and data with imputed missing values. R? and correlation coefficients

of curves were close to 1 with p-value < 1076

28

9 Smoothing and filtering

Amplification curve data of experimental thermo-cyclers may deliver results, which are hard to interpret due to
noise. For data presentation it is often useful to smooth or filter the data. Smoothing and filtering are different
approaches with a similar outcome. Both pre-process an input signal as output for subsequent analysis steps.
Filtering uses methods of signal processing and takes a data input and apply a function to form an output.
Smoothing in contrast uses statistical approaches, like local regression models (e.g., least squares estimate) or
cubic splines. Therefore, we developed the smoother function, which is a wrapper for smoother functions and
filters commonly used to process amplification curve data. smoother inherited traits (Table 9) of the parent
functions. However, the functionality of smoother greatly outgrowths applications only in amplification curve
analysis. Incorporating most of the best proven algorithms, we offer the user a powerful tool to access the methods
while minimizing the drawback of learning syntax of specific functions. smoother was enhanced by functionality
of fixNA and CPP. Figure S14 shows results of the smoother function an amplification curve data.

Simulate and amplification curve with the AmpSim function
tmp <- AmpSim(cyc = 1:35, bl = 0)

par(las = 0, bty = "n", cex.axis = 1.5, cex.lab = 1.5, font = 2,
cex.main = 1.8, oma = c(1, 1, 1, 1), fig = c(0, 1, 0.55,
1))
plot(tmp, type = "b", col = 1, pch = 20, xlab = "", ylab = "RFU",
main = "Raw data")
mtext ("A", cex = 2, side = 3, adj = 0, font = 2)

Apply all (parameter method = 'all') smoothers/filter with
the default setting to the amplification curve of the
object tmp. Smoothers / Filters: Savitzky-Golay smoothing
filter locally-weighted polynomial regression moving
average, windowsize 3 cubic spline smooth standard cubic
spline smooth Friedman's SuperSmoother weighted Whittaker
smoothing with first order finite difference penalty
weighted Whittaker smoothing with a second order finite

H O OH R R R R KRR

difference penalty
res <- smoother(tmp[, 1], tmp[, 2], method = "all", CPP = FALSE)

Calculate the difference between the tdeal curve (tmp) and
the smoothed curves (res) and assign the results to the

object res.out

res.out <- cbind(cycle = tmp[, 1], tmp[, 2] - res)

Plot the smoothed curves

par(fig = c(0, 1, 0, 0.65), new = TRUE)

plot(NA, NA, type = "b", col = 2, pch = 15, xlim = c(1, 35),
ylim = c(-0.1, 0.1), xlab = "Cycle", ylab = "delta refMFI (raw - smoothed)",
main = "Smoothed / Filtered data")

mtext ("B", cex = 2, side = 3, adj = 0, font = 2)
legend(1.5, 0.1, ncol = 2, colnames(res.out[, 2:9]), pch = 15:22,
lwd = 2, col = c(2:9))

Plot the results.
tmp <- sapply(2:9, function(i) {
lines(res.out[, 1], res.out[, i], type = "b", col = i, pch = i +
13)

2,

Many functions (e.g., Savitsky-Golay filter) of chipPCR assume uniform (equally spaced) sampling. Therefore,
it is recommended to pre-process the data to have equally spaced values. The function smoother and CPP
(inherited from smoother) give a warning in such cases. The smoother function enables users to tune behavior
of the chosen smoothing algorithm by using nearly all parameters available in called subroutines and at the same
time uniforms input and output. It should be noted that smoothing may alter the curve shape and thus lead to

29

oo} s
S .
- /
q— .
r s /
S U -7
S TptTtcececscececececececece-e-. | | | |
0 5 10 15 20 25 30 35
Smoothed / Filtered data
~o B
g S-
£ O —=— Jowess —e— spline
o —— mova supsmu
o 8 —A— savgol whitl
g S N smooth —8— whit2 -
i AN
% o - o-o-o-o--o-o-o’o'o-o-o-o-o—a-nzeiéqa:g; B 8-g-A-B-8-0-0-0-0-8-0-0-8-0
g S i
LL .o
HE_ _
Qo
c O
s 3
8 CIJ T T T T T T T]
0 5 10 15 20 25 30 35
Cycle

Figure S14: Smoother and filter methods of the chipPCR package. (A) Raw data were generated using the
AmpSim simulation function. (B) The difference of the raw data to the smoothed data was plotted. “savgol”
(Savitzky-Golay Smoothing), “lowess” (locally-weighted polynomial regression), “mova3” (moving average with
window size of 3), “smooth” (cubic smoothing spline), “spline” (Interpolating cubic spline), “supsmu” (Friedman’s
SuperSmoother), “whitl” (weighted Whittaker smoothing with a finite difference penalty of order 1), “whit2”
(weighted Whittaker smoothing with a finite difference penalty of order 2). The “savgol”, “smooth”, “spline”
“whitl” , and “whit2” nearly preserved the original curve. The other functions resulted in alteration in the
transition phases of the amplification curve. Optimized time series smoother, like the Kalman filter [53], are not
yet integrated.

30

artificial results. Smoothed data are easier to read but introduce a bias to the pre-processed data. Therefore, the
prime use of smoothers is processing data for visualization purposes. However, it is not recommended to smooth
signals unsupervised prior to statistical procedures (e.g., least-squares curve fitting). All smoothing algorithms
are “lossy” to a certain extent and may change the curve shape significantly. In particular, the residual evaluation
of a fit may lead to false prediction, because noise after smoothing may be mistaken for signal. Signals after
curve smoothing can be used to locate peaks but it should cautiously be used to measure peaks.

31

Tables

10 bg.max - a function to estimate the start and end of an amplifi-
cation reaction

The following paragraphs describe methods from the literature to detect the background range of amplification
curves. Background range herein refers to a level of fluorescence measured before any specific amplification is
detectable. The raw data (e.g., fluorescence intensity) measured after each step (cycle or time point) follow a
non-linear progress. Currently none of them is implemented as R function. The easiest way to classify them is
the extend of assumptions made before applying of a method.

The simplest approach is to treat the background fluorescence as a value constant during whole amplification
reaction. In this case the noise could be approximated as the mean or median of fluorescence values in lag
phase [10] or their standard deviations [27]. The more sophisticated way of approximating constant background
fluorescence requires optimizing its value to achieve linearity of the model fit on the semi logarithmic plot in
log-linear phase [10]. The later procedure is greatly enhanced by performing further computations only on a
subset of consecutive measurements for which calculated efficiencies have the lowest variance. Other methods
loosen the assumption that background fluorescence is a constant value and instead describe it as a function of the
cycle number. For example the algorithm used in SoFar [55] fits a nonlinear saturation function to measurement
points before the start of the exponential growth phase. Parameters of the saturation function are chosen to
minimize the sum of squared residuals of the fitted function. Then the value of saturation function is calculated
for all data points and subtracted from measured values giving corrected values of fluorescence, which are used
in next calculations.

Some approaches make even less assumptions regarding the form of the background noise. The taking-
difference linear regression method has a premise that changes of fluorescence between subsequent cycles are
exclusively caused by the amplification of the product [31]. The corrected values are calculated by simply
subtracting the fluorescence value in the former cycle from fluorescence in the latter. Of course in this case
the real fluorescence value in first cycle is unknown, so the number of cycles that can be used in following
computations is reduced by one.

The Real-Time PCR Miner algorithm is also nearly assumption-free ([58]). The principle is that background
fluorescence is similar in the small groups of subsequent measurements. So the first step of the algorithm is
division of subsequent measurement points belonging to the exponential phase of amplification in at least four-
element groups. For each set of points is calculated a pair of the estimate of the efficiency and the significance
of model representing relation between the fluorescence value and the cycle number. The estimates paired with
the highest significance are the most influential in the computation of the final efficiency.

To find the beginning of the lag phase and end of plateau phase is important for the goodness-of-fit for both
exponential-phase-only and S-shaped models. There are two strategies. The first narrows the area of the search
to the neighborhood of their theoretical values determined by a fitted model of the amplification reaction. To this
group belongs SoFar (Wilhelm et al. (2003) [55]). The algorithm looks for the start and the end of the exponential
phase near the second derivatives of the function representing the relation between logarithm of the fluorescence
and the cycle number. The available correction guarantees that the start of amplification has higher value than
background noise. The very similar procedure is implemented in Real-Time PCR Miner [58], where background
noise is also used as parameter in implemented models to calculate theoretical the start of the amplification
process. The end of amplification process is detected by calculating the third derivative of implemented S-shaped
model. The second approach does not require theoretical values. A very intuitive solution, designated take-off
point, by Tichopad et al. (2003) [50] describes the lag phase using a linear function. Random deviations are
taken into account as standardized residuals. The method starts with a fitting of a linear function to first three
measurement points. If none of residuals is considered an outlier with a statistical test, the algorithm fits a
new linear model to the first four measurement points and so on. The procedure stops when two last points are
designated as outliers. The first of aforementioned outliers is considered the end of lag phase. It is worth noting
that this algorithm is versatile enough to also detect the beginning of the plateau phase.

The algorithm of bg.max is based on the assumption that the signal difference of successive cycles in the
linear ground phase is approximately constant. After transition in the early exponential phase the signal changes
drastically. First data are smoothed by Friedman’s ’'super smoother’ (as found in “supsmu”. Thereof the
approximate first and second derivative are calculated by a five-point stencil inder. The difference of cycles
at the maxima of the first and second approximate derivative and a correction factor are used to estimate the
range before the exponential phase. This simple function finds the background range without modeling the
function. The start of the background range is defined be a “fixed” value. Since many signals tend to overshot in
the first cycles a default value of 2 (for gPCR) is chosen. bg.max tries also to estimate the end of an amplification
reaction (Figure S15). See section bg.max “Details” of the chipPCR manual for further details. Application of
this function is for example a rational basis for trimming of unneeded data.

32

par(las = 0, mfrow = c(2, 1), bty = "n", oma = c(0.5, 0.5, 0.5,
0.5))

res <- AmpSim(cyc = 1:40, Cq = 25)

plot(res, xlim = c(1, 40), ylim = c(-0.1, 1), xlab = "Cycles",
ylab "refMFI", main = "Background Range Estimation\n in Absence of Noise",
type = "b", pch = 20)

background <- bg.max(res[, 1], res[, 2])

mtext ("A", cex = 2, side = 3, adj = 0, font = 2)

points(background[, 3], col = "red", type = "b", pch = 20)
points(background[, 4], col = "blue", type = "b", pch = 20)

abline(v = background@bg.start)

text (background@bg.start, 0.2, "Background start", pos = 4)

abline(v = background@bg.stop, col = "blue")

text (background@bg.stop, 0.25, "Background stop", pos = 4, col = "blue")

abline(v = background@amp.stop, col = "green")
text (background@amp.stop, 0.3, "Plateau transition", pos = 4,
col = "green")

legend(4, 1, c("Raw data", "First derivative", "Second derivative"),
pch = rep(20, 3), col = c(1, 2, 4), bty = "n")

res <- AmpSim(cyc = 1:40, Cq = 25, noise = TRUE)

plot(res, xlim = c(1, 40), ylim = c(-0.1, 1), xlab = "Cycles",
ylab = "refMFI", main = "Background Range Estimation\n in Presence of Noise",
type = "b", pch = 20)

mtext ("B", cex = 2, side = 3, adj = 0, font = 2)

background <- bg.max(res[, 1], res[, 2])

points(background[, 3], col = "red", type = "b", pch = 20)
points(background[, 4], col = "blue", type = "b", pch = 20)

abline(v = background@bg.start)

text (background@bg.start, 0.2, "Background start", pos = 4)

abline(v = background@bg.stop, col = "blue")

text (background@bg.stop, 0.25, "Background stop", pos = 4, col = "blue")

abline(v = background@amp.stop, col = "green")
text (background@amp.stop, 0.3, "Plateau transition", pos = 4,
col = "green")
legend(4, 1, c("Raw data", "First derivative", "Second derivative"),

pch = rep(20, 3), col = c(1, 2, 4), bty = "n")
par(mfrow = c(1, 1))

We used to the bg.max algorithm to analyze amplification curve data from an capillary convective PCR
(capillaryPCR, chipPCR data set). The data were used as raw data (Figure S16 A) and pre-processed data
(Figure S16 B) using the CPP function. For both cases it was possible to receive results, which can be used for
further processing. We observed no significant difference between the raw and pre-processed data.

Warnings in code chunk below were suppressed.

Set parameter for the plot.
par (mfrow = c(2, 1), las = 0, bty = "n")

Use of bg.max for time-dependent measurements.

Amplification curves from the capillaryPCR data set were

processed in a loop. The results of bg.mazxz are added to the
plot.

colors <- rainbow(8)
plot(NA, NA, xlim = c(0, 75), ylim = c(-200, 1300), xlab = "Time (min)",

ylab = "Voltage (micro V)", main = "ccPCR - Raw data")
mtext("A", cex = 1.5, side = 3, adj = 0)

33

Background Range Estimation

A in Absence of Noise
© + Raw data e
) _| X S /
=} « First derivative .
| » Second derivative /
m .
2 < /
o o)
= . Plateau transition
— Background start Background stop e
- fTttel, L
g - b S S I S D S I T S GG N
I T T T 1
0 10 20 30 40
Cycles
Background Range Estimation
B in Presence of Noise
o + Raw data e
|) oo s
o « First derivative .
_ « Second derivative /
E .
2 < /
o o)
= . Plateau transition
. Background start Background stop L7
L. - - _. ele T e,
o .- ® -4 -8 "% -6 -0 -0-9-0-4 - - . -,.-::_:;' M . .. e o, . R . A A
S ~ ¢ -4-0-0-6-0-0-0-e-0e-0-0-0-¢4-06-0-0-0 ® 6 -4 -g-e-8-83:8=0-0-0-0-0-0-0-0
I T T T 1
0 10 20 30 40
Cycles

Figure S15: bg.max tries to estimate the range between the background and the plateau phase of an amplification
reaction. (A) in absence and (B) presence of noise. The data were simulated with the AmpSim function.

34

for (i in c(1, 3, 5, 7)) {

x <- capillaryPCR[1L:750, i]

y <- capillaryPCR[1:750, i + 1]

res.bg <- summary(bg.max(x, y))

lines(x, y, type = "b", pch = 20, col = colors[i], cex = 0.5)

lines(c(res.bgl[2], res.bgl2], res.bgl4], res.bgl[4]), c(-150,
-50, -150, -50), col = colors[i], 1lwd = 1.5)

text (10, 1200 - i * 50, paste("bg.start: ", res.bg[1], ", bg.stop: ",
res.bgl[2], ", amp.stop: ", res.bgl[4]), col = colors[i],
cex = 0.6)

}

plot(NA, NA, xlim = c(0, 75), ylim = c(-200, 1300), xlab = "Time (min)",
ylab = "Voltage (micro V)", main = "ccPCR - Pre-processed")
mtext ("B", cex = 1.5, side = 3, adj = 0)
for (i in c(1, 3, 5, 7)) {
x <- capillaryPCR[1L:750, i]
y <- CPP(capillaryPCR[1L:750, i], capillaryPCR[1:750, i +
1], method = "mova", trans = TRUE, bg.range = c(1, 105),
bg.outliers = TRUE) [["y.norm"]]
res.bg <- summary(bg.max(x, y))
lines(x, y, type = "b", pch = 20, col = colors[i], cex = 0.5)
lines(c(res.bgl[2], res.bgl2], res.bgl4], res.bgl[4]), c(-150,
-50, -150, -50), col = colors[i], 1lwd = 1.5)
text (10, 1200 - i * 50, paste("bg.start: ", res.bg[1l], ", bg.stop: ",
res.bgl[2], ", amp.stop: ", res.bgl4]), col = colorsl[i],
cex = 0.6)

35

ccPCR - Raw data

g,qlh‘\h-’vd‘-; o
bg.start: 2, bg.stop: 12, amp.stop: 34 . . NS
o? H
8 .-,"""'.'&‘f*"""‘f i hiaad
S] st -
- Y ot /‘,n.f,ﬁ-"’w‘ i
bg.start: 2, bg.stop: 22, amp.stop: 57 . AN h P 4‘“.\' ’
S wiC L
° R S
& N 4
= o~
S . Fag
= o o 7
g B P e
o} . ‘ﬁ""
5 / d
= ;4‘" ,\(v e
- A o
e
o -
[T T 1
0 20 40 60
Time (min)
ccPCR - Pre-processed
bg.start: 2, bg.stop: 13, amp.stop: 35
8 » AW
S
- W Nﬂw
~
9 bg.start: 2, bg.stop: 22, amp.stop: 57 fv. /_/N
Y '
o ."‘\'ﬂ "-V/‘N
S A o
£ Y Y
S o :
0] o — ' IJ/
o W Vs
© By ¢
8 ¥ P
o : :
> fad
; ; .‘/J’
o ~
__/'/ ~
o - ‘Mﬁ/"

Time (min)

Figure S16: Application of the bg.max function. Amplification curve data from a capillary convective PCR, were
used (A) as raw data and (B) pre-processed (smoothed (moving average, window size 3), base-lined and trend
corrected (robust MM-estimator)) with the CPP function. The output of the was used by bg.max to detected
the start and the end of the amplification reaction. The start and end were reliably estimated (range between
“bg.stop” and “amp.stop”). There was no significant difference between raw data and pre-processed data.

36

Table S3: Smoothing and filter methods of the chipPCR package. The parameter lowess for LOWESS smoother
(locally-weighted polynomial regression) can be tuned by the parameters f and iter. The parameter mova
for moving average can be tuned by the parameter movaww. movaww is the window size used for the moving
average. The parameter savgol for Savitzky-Golay smoothing filter can be tuned by the parameter p (see sgolayfilt
(signal) for details). The parameter smooth for cubic spline smooth can be tuned by the parameter df.fact. A
df.fact value of 1 will leave the raw data almost unaffected while a value 0.5 will smooth the curve considerably.
The parameter spline for standard cubic spline smooth has currently no additional parameter. The parameter
supsmu for Friedman’s SuperSmoother can be tuned by the parameter span. The parameter whitl (first order
finite difference penalty) and whit2 (second order finite difference penalty) for Weighted Whittaker smoother
smoothing filter, derived from the ptw package, can be tuned by the parameter lambda. For further details on
the smoothers refer to the documentation of the parent functions.

Method Parameter value Parent
LOWESS lowess f lowess, stats
Cubic spline smooth df.fact smooth.spline, stats
Interpolating Splines spline - spline, stats
Friedman’s “super smoother” supsmu span supsmu, stats
Savitsky-Golay savgol - sgolayfilt, signal
Moving Average mova movaww (3, 5, ...) filter, stats
Whittaker whitl, whit2 lambda whit1, whit2, ptw
All smoother all defaults

37

11 Normalization of amplification curve data

It is a common characteristic of amplification curve data that the fluorescence values between samples vary due
to high background, sample inhomogeneities and variances in dye quantities (Figure S17 A). Data within an
experiment have in most cases different minimum and maximum values. For the visualization of the data it is
often better to scale the data within a defined range. Eventually, this helps to grasp the data faster. In particular,
a comparison of data from different measurements and/or scaling is easier if data are normalized. normalizer
is a function to normalize any data set. It is possible to chose from different methods (see Details). This is
recommended if the data from an experiment have considerable variation regarding the background and plateau
signal. Therefore, normalization of amplification curve data is a common task during the data analysis. To scale
the fluorescence between 0 and 1 a Min-Max normalization (Equation S2) can be used [34]. We propose an
alternative normalization based on quantiles (Equation S4). Quantiles are less affected by outliers. The method
can be invoked by the parameter norm = ”lugn”. Although this does not scale all values between zero and
one we found it to be useful for noisy data. The parameter gnL is symmetrically used to set the level for the
quantiles. By default the 3 % and 97 % quantiles are used for the normalization. In addition, a normalization
to maximum (Equation S3, Figure S17 D) and by standard score (Equation S5, Figure S17 F).

RFU — min(RFU)

FUninmaz = T 2
REU, max(RFU) — min(RFU) (52)

RFU

F =—
EEUnaq max(RFU) (53)
RFU — Q,(RFU)

RFUpygn = P 54
T Q1 (RFU) — Qy(RFU) 59

U — 1
RFU . geore = f?AAE{AAAjFEiEEZ (85)

SRFU

The parameter gnL is a user defined quantile, which is used for the quantile normalization.

e A quantile normalization herein refers to an approach, which is less prone to outliers than a normalization
based on the minimum and the maximum of an amplification curve.

e minm does a min-max normalization between 0 and 1 (see [34] for explanation).
e max does a normalization to the maximum value (MFI/max(MFI)).

e lugn does a quantile normalization based on a symmetric proportion as defined by the qnL parameter (e.g.,
qnL = 0.03 equals 3 and 97 percent quantiles).

e zscore performs a z-score normalization with a mean of 0 and a standard deviation of 1.

par(mfrow = c(2, 3), las = 0, bty = "n", oma = c(0.5, 0.5, 0.5,
0.5))
tmp <- VIMCFX96_60

plot(NA, NA, xlim = c(1, 40), ylim = c(0, 6000), xlab = "Cycle",
ylab = "RFU", main = "Raw data")

mtext ("A", cex = 1.2, side = 3, adj = 0, font = 2)

lin <- apply(tmp[, -1], 2, function(x) lines(tmp[, 1], x))

abline (1m(rowMeans (tmp[2:10, 2L:ncol(tmp)]) ~ tmp[2:10, 1]),
col = 2)

plot(NA, NA, xlim = c(1, 40), ylim = c(0, 3300), xlab = "Cycle",
ylab = "RFU", main = "Baselined data")

mtext ("B", cex = 1.2, side = 3, adj = 0, font = 2)

lin <- apply(tmp[, -1], 2, function(x) lines(tmp[, 1], CPP(tmpl[,
1], x, method.norm = "none")$y))

plot(NA, NA, xlim = c(1, 40), ylim = c(0, 1.15), xlab = "Cycle",
ylab = "RFU", main = "MinMax-Normalization")
mtext ("C", cex = 1.2, side = 3, adj = 0, font = 2)

38

lin <- apply(tmp[, -1], 2, function(x) lines(tmp[, 1], CPP(tmpl[,
1], x, method.norm = "minm")$y))

plot(NA, NA, xlim = c(1, 40), ylim = c(0, 1.15), xlab = "Cycle",
ylab = "RFU", main = "Max-Normalization")

mtext ("D", cex = 1.2, side = 3, adj = 0, font = 2)

lin <- apply(tmp[, -1], 2, function(x) lines(tmp[, 1], CPP(tmpl[,
1], x, , method.norm = "max")$y))

plot(NA, NA, xlim = c(1, 40), ylim = c(0, 1.15), xlab = "Cycle",
ylab = "RFU", main = "lugn-Normalization")

mtext ("E", cex = 1.2, side = 3, adj = 0, font = 2)

lin <- apply(tmp[, -1], 2, function(x) lines(tmp[, 1], CPP(tmpl[,
1], x, method.norm = "lugn", gnL = 0.03)$y))

plot(NA, NA, xlim = c(1, 40), ylim = c(-1.5, 1.5), xlab = "Cycle",
ylab = "RFU", main = "zscore-Normalization")

mtext ("F", cex = 1.2, side = 3, adj = 0, font = 2)

lin <- apply(tmp[, -1], 2, function(x) lines(tmp[, 1], CPP(tmpl[,
1], x, method.norm = "zscore")$y))

The slope in a curve can be corrected by a linear regression. CPP and Im.coefs offers four linear regression
models to calculate the slope based on the background range. This includes a ordinary least squares method
(Im, stats) but also three robust methods. The robust regression methods are considered to be less vulnerable to
outliers. This feature is especially useful, when the background range contains considerable noise. The methods
are (I) a nonparametric rank-based estimator [17], (IT) quantile regression [18] and (III) a MM-type estimators
for linear regression [51]. By default the MM-type estimator is used. In all cases takes CPP a defined range
of the amplification curve to extrapolate the linear trend over the entire data set. However, this step his to be
performed with caution since this operation effects the amplification efficiency. The background is assumed to
be constant for the entire measurement.

39

Raw data Baselined data MinMax—Normalization

o A B C
o _
o
o o
8 o
8 ® 2 .
o
o —
o «© _|
S ° 3
< o _]
o
5 g > > 9 |
L o L L o
© ™ @ - @
o <
S s S]
N o
—
3 | o N]
o o - o
— n
o - o - g —
[I I I 1 [I I I 1 [I I I 1
0 10 20 30 40 0 10 20 30 40 0 10 20 30 40
Cycle Cycle Cycle
Max—Normalization lugn—Normalization zscore—Normalization
[Te]
@
o _ e _
i - e
—
[ee] [ee]
@ 2 A 0
o
o 9 | o 9 | > o
L o L o L —
o 2 o o
< < 0
o o ? =
o~ o~ Q
o 7 S <
o _| e 5
o o ‘Ti
[I I I 1 [I I I 1 [I I I 1
0 10 20 30 40 0 10 20 30 40 0 10 20 30 40
Cycle Cycle Cycle

Figure S17: Comparison of the normalization functions from CPP. The VIMCFX96_60 data set (96-well plate
cycler, Bio-Rad CFX96, EvaGreen detection) was used. (A) Raw data of all amplification curves. The signals
are superimposed to circa 2200 RFU and the inter-sample baseline and plateau shift is high. Note the positive
trend (—, fitted with an ordinary least squares method) in the background range of cycles 1 to 15. All subsequent
plots were processed with the CPP function. By default, the curves are base-lined, smoothed (Savitzky-Golay
smoother) and the slop corrected by a linear regression (trans = TRUE). (B) base-lined raw data, (C) Min-Mazx
normalization, (D) Mazx normalization, (E) lugn-normalization with a cut off 3% and (F) zscore-normalization.

40

12 Compute linear model coefficients - Background subtraction based
on linear models

The slope of the background range is often unequal to zero and in most cased accompanied by a positive or
negative trend. By using a linear trend extrapolation it is possible to apply a correction of the slope.

Im.coefs is a wrapper around functions performing normal (linear least squares) and robust linear regression.
If the robust linear regression is impossible, Im.coefs will perform linear regression using the least squares method.
This function can be used to calculate the background of an amplification curve. The coefficients of the analysis
can be used for a trend based correction of the entire data set. Thereby either a robust linear regression by
computing MM-type regression estimators, a nonparametric rank-based estimator or a standard linear regression
model. Care is needed when using trans with time series (see Im from the stats package for details).

par(bty = "n")
plot (VIMCFX96_69[, 11, VIMCFX96_69[, 2], type = "1", xlab = "Cycle",
ylab = "Fluorescence")
rect(1, 0, 10, 5000)
method <- c("lmrob", "rq",
for (i in 1:4) {
tmp <- 1m.coefs(VIMCFX96_69[1:10, 1], VIMCFX96_69[1:10, 2],
method.reg = method[i])
text(9, 3200 - i * 100, paste(method[i], ":", "m: ", round(tmp[1,
11, 4), "n: ", round(tmp[2, 1], 3)))
abline(a = tmp[1l, 1], b = tmp[2, 1], col = i + 1, lwd = 1.5)

Mepst?, DerdE?)

}

Warning: Chosen method rfit failed to converge.
it Performed linear regression.

n

legend("right", c("Data", "lmrob", "rq", "least", "rfit"), lty = 1,

col = 1:5, cex = 0.95)

41

o
o _
Q
(90
o
S _|
A
[90]
mrob : m:; 21252826 n: 7.09
o
§ —{ |rg:m: 2127.3667 n: 6.703
@ least : m: 2125.2087 n: 7.098
8 o —— Data
& Q 4 |rfit: m: 2125.2087 n: 7.098 — Imrob
g o — rq
o —— least
L_:: o rfit
S |
(o]
N
o
o _|
<
N
o
o b -
| T T |
0 10 20 30 40

Cycle

Figure S18: Im.coefs a function to compute linear model coefficients. The function is a convenient wrapper around
few functions performing normal (least squares) and robust linear regression. If the robust linear regression is
impossible, Im.coefs will perform linear regression using the least squares method. This function can be used to
calculate the background of an amplification curve. The coefficients of the analysis can be used for a trend based
correction of the entire data set.

42

13 The inder function - an interpolating five-point stencil

Many methods for curves analysis require the calculation of derivatives. It is possible to solve this by fitting a
curve to a function and performing symbolic derivation. Unfortunately, this approach causes information loss
through the fit and unnecessary adds additional assumptions regarding the relation between cycle number and
fluorescence level. Hence, we integrated the inder function. inder (“in” and “der” = interpolate derivatives) finds
numeric derivatives by a five-point stencil, a commonly used finite difference method. These methods approximate
derivative in a given point by adding up products of nearby values of function and their weights [7]. This function
can be used to estimate the approximate cycle of quantification (Cq). Differentiation is a method for background
suppression and reduction of the inter sample background amplitude variations (Figure S21 A and B). Smoothing
may enhance the calculation of derivatives calculation and optimize the signal-to-noise ratio. Therefore, we
implemented spline interpolation. Friedman’s SuperSmoother is also implemented. However, the use of this
smoother is limited for the use in other functions such as bg.max. The parameter Nip (default Nip = 4) is used
to define how often an interpolation takes place at n equidistant points within the first and the last cycle. A high
Nip may improve the precision. However, Nip less than 2 and higher than 20 are not meaningful for conventional
qPCR with 30 to 50 cycles. In context of qIA, a higher Nip might be appropriate.

13.1 Quantitative description of amplification reactions

According to the MIQE guidelines (“Minimum Information for publication of Quantitative real-time PCR Ex-
periments”, [4]) is the Ct referred to as quantification cycle (Cq). The calculated Cq is a relative value, which
depends on the template copy number, instrument, reagents, amplification efficiency and probe technology. Low
Cgs correlate with high quantities template copy numbers. Real-time technologies enable the quantification of
nucleic acids by calculation of specific curve parameters like the quantification point (Cq) and the amplification
efficiency (AE) based on the kinetics of the amplification curve. The Cq represents the number of cycles (time
for qIA) needed to reach a defined fluorescence signal level in the exponential phase of the amplification curve.
The Cq can be determined from a fixed threshold value or by various analytical algorithm as described elsewhere
[38, 40, 49]. The output of inder includes the first derivative maximum (F'DM) and second derivative maximum
(SDM), which are commonly used in qPCR experiments. Figure S19 shows a typical result of the inder function.
Following we show three examples explain properties of inder and to illustrate applications of the function in
combination with other functions.

Function inder calculates numeric derivatives on smoothed data, which results in data points not observable
in reality. The rounder function averages such result to the real values of cycle number.

Warnings in following code chunks were suppressed.

isPCR <- AmpSim(cyc = 1:40)

res <- inder(isPCR)

rd <- rounder(res)

head(res)

#i# X y dly d2y
[1,] 1.000000 0.05 -4.350617e-13 8.697680e-13
[2,] 1.245283 0.05 -2.217106e-13 8.704119e-13
[3,] 1.490566 0.05 -8.206265e-15 8.702197e-13
[4,] 1.735849 0.05 2.086810e-13 8.842231e-13
[5,] 1.981132 0.05 4.222938e-13 7.730801e-13
[6,] 2.226415 0.05 4.929158e-13 -2.900925e-13
summary (res)

43

Smoothing method: spline

First derivative maximum: 19.89
Second derivative maximum: 18.91
Second derivative minimum: 21.11

Second derivative center: 19.98

head (rd)

#H# cyc y dly d2y
[1,] 1 0.05 -2.216595e-13 8.701332e-13
[2,] 2 0.056 3.471567e-13 -5.632357e-14
[3,] 3 0.05 -1.083221e-12 -4.552932e-13
[4,] 4 0.05 3.944521e-12 2.505165e-12
[5,] 5 0.05 -1.449063e-11 -1.173032e-11
[6,] 6 0.05 5.390452e-11 5.562310e-11

summary (rd)

Figure S19 illustrates the most important parameters of the inder function. We used the AmpSim function
to simulate an ideal “noise-free” amplification curve with the default setting to calculated the second derivative
maximum (SDM) with inder. If logy is TRUE than a semi-decadic log scale graph (corresponds to the linear
phase) to illustrate the exponential dynamic of the qPCR amplification is used. The parameter logy is FALSFE
by default. To the best of our knowledge, is inder the first tool in R, which allows user to numerically derive his
data without fitting them to any function or combination of functions. The universality of stencil approach can
find an application even in problems not related to the analysis of amplification curve.

Use AmpSim to generate an amplification curve with 40
cycles and an approximate Cq of 20 and assign it to the
object 1sPCR. 1SPCR %s an object of the class

'data. frame'.

isPCR <- AmpSim(cyc = 1:40, Cq = 20)

Invoke the inder function for the object ©sPCR to

interpolate the derivatives of the simulated data as object
res. The Nip parameter was set to 5. This leads to smoother
curves. res 1s an object of the class 'der'.

res <- inder(isPCR, Nip = 5)

Plot the object res and add descriptions to the elements.

par(las = 0, bty = "n", oma = c(0.5, 0.5, 0.5, 0.5))

plot (isPCR, xlab =
main = "", type = "b",

colors <- rainbow(4)

Add graphical elements for the derivatives and the

calculated Cq values FDM, SDM, SDm and SDC.

"Cycle", ylab = "RFU", ylim = c(-0.15, 1),
pch = 20, 1lwd = 2)

"blue", lwd = 2)
"red", lwd = 2)

lines(res[, "x"], res[, "di1y"], col
lines(res[, "x"], res[, "d2y"], col

Fetch the Cq values from res with the summary function
summ <- summary(res, print = FALSE)

abline(v = summ, col = colors, lwd = 2)

text (15, 0.3, paste("FDM ~ ", round(summ["FDM"], 2)), cex = 1.1,
col = colors[1])

text (15, 0.2, paste("SDM ~ ", round(summ["SDM"], 2)), cex = 1.1,
col = colors[2])

text (15, -0.1, paste("SDm ~ ", round(summ["SDm"], 2)), cex = 1.1,
col = colors[3])

text (15, 0.7, paste("SDC ~ ", round(summ["SDC"], 2)), cex = 1.1,

44

col = colors([4])

legend(1.1, 0.9, c("raw", "first derivative", "second derivative"),
col = c(1, 4, 2), 1ty = c(2, 1, 1), bty = "n"

Summary of the object res.
summ

#i# FDM SDM SDm SDC
19.81407 19.03015 20.98995 19.98604

inder is a helper function, which can be part of other routines. Recently, we added this approach to the diffQ
function of the MBmca for improved predictions. diff@ function is part of a routine to calculate the melting
points of nucleic acids [34]. The FDM and SDM are peak values to determine the Cq. We used the inder
function in diff@Q to compare the Cq values between a quantification experiment where the samples were either
detected with a gene specific hydrolysis probe or the intercalating dye EvaGreen. For the analysis we focused
on the SDM. We found that the samples detected with EvaGreen had a slightly lower Cq (Figure S20 A) than
samples detected with the hydrolysis probe (Figure S20 B). The spread of the Cq was also less in samples where
EvaGreen was used for the monitoring.

Plot all data from C127EGHP and calculate the SDM (Second
Derivative Maxzimum) wvalues with the diffQ2() function

(Note: the inder parameter is set as TRUE) first plot the
samples detected with EvaGreen and next the samples

detected with the Hydrolysis probe

require (MBmca)

pointer <- function(x, pos = 1, w = 5, stat = TRUE) {
xx <- pos + rep(seq(-0.1, 0.1, length.out = w), ceiling(length(x)/w))
yy <- sort(x)
points(xx[1:length(yy)], yy, pch = 19)

if (stat == TRUE)
x.median <- median(x, na.rm = T)
x.mad <- mad(x, na.rm = T) * 2
param <- c(length = 0, code = 3, pch = 15, cex = 1.2)
arrows(xx[1] * 0.98, x.median, tail(xx, 1) * 1.02, x.median,

param, lwd = 3, col = 2)
arrows(xx[1] * 1.01, x.median + x.mad, tail(xx, 1) * 0.99,
x.median + x.mad, param, lwd = 2, 1ty = 2, col = 4)
arrows(xx[1] * 1.01, x.median - x.mad, tail(xx, 1) * 0.99,
x.median - x.mad, param, lwd = 2, 1ty = 2, col = 4)

amp.liner <- function(range, input, colors = "black") {
sapply(range, function(i) {
lines(input[, 2], input[, i], col = colors, pch = 19)
tmpP <- mcaSmoother(input[, 2], input[, i])
SDM <- diffQ2(tmpP, inder = TRUE) [["xTm1.2.D2"]1][1]
abline(v = SDM)
SDM
)
}

layout (matrix(c(1, 3, 2, 3), 2, 2, byrow = TRUE), respect = TRUE)

par(las = 0, bty = "n")

plot(NA, NA, xlim = c(1, 40), ylim = c(0, 10), xlab = "Cycle",
ylab = "Fluorescence", main = "EvaGreen")

mtext ("A", cex = 1.1, side = 3, adj = 0, font = 2)

EG <- amp.liner(range = 3L:34, input = C127EGHP)

45

] ...‘.............

-Co- o raw /

1.0

g - —— first derivative 4
—— second derivative
SDC ~ 19.99
O
Q-
D
2D
FDM ~ 19.8

0.2
|
——

® 0000060000000 000

Cycle

Figure S19: Cycle of quantification by the second derivative maximum method. Raw data (e) were generated
using the AmpSim simulation function (see example main text). The inflection point is the point where the
slope is maximum and the curvature is zero. The first derivative of the amplification curve has a first derivative
maximum (FDM) at the inflection point. The second derivative maximum method (SDM) needs to differentiate
a curve to the second order prior to quantification. The second derivative exhibits a zero-crossing at the FDM.
The function y = f(z) is numerically derived by five-point stencil. This method do not require any assumptions
regarding the function f. inder calculates the approximate SDM. The SDM might in addition be useful
for isothermal amplification processes. The SDM is calculated from a derived cubic spline. Similarly the
first approximate derivative maximum (FDM), second derivative minimum (SDm), and approximate second
derivative center (SDC, geometric mean of SDM and SDm) are available. FDM, SDm and SDC values can
be used to further characterize the amplification process.

46

plot(NA, NA, xlim = c(1, 40), ylim = c(0, 10), xlab = "Cycle",
ylab = "Fluorescence", main = "Hydrolysis probe")
mtext("B", cex = 1.1, side = 3, adj = 0, font = 2)

HP <- amp.liner(range = 35L:66, input = C127EGHP)

plot(NA, NA, xlim = c(0.8, 2.2), ylim = c(13, 14), xaxt = "n",
xlab = "", ylab = "Cq (SDM, diffQ2)")

text(c(1.05, 2), c(13.05, 13.05), c("EG", "HP"), cex = 1.2)

mtext("C", cex = 1.1, side = 3, adj = 0, font = 2)

pointer(EG, pos = 1, w = 8)

1, w
pointer(HP, pos = 2, w = 8)

47

EvaGreen

A C
o _
= =
5 -
—
w —
]
3 - -
o o — °
?
o © g
S < :
> o e0®
T - o
AN - .o
e
...
o — ...o
| I I I | ."
© o®
0 10 20 30 40 SO o
o - ‘
Cycle © - -
>3
a
2
. > <
Hydrolysis probe S 54 __
B - o
8 N o::: o®
-
w —
s o
[] o
g © H
0
2
S < o
=
LL
N EG HP
Q
o -
o - _— —

Cycle

Figure S20: Plot all data from C127EGHP and calculate the SDM (Second Derivative Maximum) values with
the diffQ2 function. (A) Plot the samples detected with EvaGreen and (B) shows the same samples detected
with the Hydrolysis probe for MLC-2v. (C) Stripchart of the Cq values () with the median (~) and the median
absolute deviation (——). This result indicates, that the variance of the derived from the detection with hydrolysis
probes is higher than the samples detected with EvaGreen. Note: the inder parameter is set as TRUE.

48

13.2 Quantification cycle calculation by the inder function

The presence of noise may cause many false estimates for the FDM and SDM. To minimize this problem, it is
possible to smooth the first derivative of the amplification curve. Many methods integrated the moving average
as first pre-processing step (e.g., [44]). The moving average filter is linear filter, which replaces sequentially data
points with the average of the neighbor data points. The average is calculated from a defined span (“window”)
of odd count (e.g., 3, 5). The “average” herein may refer to the arithmetic mean, the median, the geometric or
the exponential mean. The smoother function uses exclusively the arithmetic mean. Moving average is intuitive
and easy to implement but it lags behind a trend and ignores rapid changes. For example, the 3- and 5-window
moving average (running mean) filters are useful to pre-process data, but always leads to a forerun of few cycles.
This is in particular problematic in the exponential phase. Splines apply non-parametric regression by local cubic
polynomials between knot points [25]. Other examples for smoothers include Savitzky-Golay smoothing filter,
Friedman’s SuperSmoother, and the Weighted Whittaker smoother (see the smoother function for details).

Provided that the smoother is properly adjusted, it is possible to detect only the significant peaks while
small or to narrow peaks are ignored. smoother is used by other functions of chipPCR like CPP. The example
for Figure S20 illustrates the use of the diffQQ and diff@Q2 function from the MBmca and the integration of the
inder function. In contrast to the original publication [34] is the inder function in diff@ and diffQ2 used for a
precise peak location while the approximate SDM is calculated from the derivative of a quadratic function at
the approximate SDM.

49

13.3 The inder function in combination with a 5-parameter curve fit function

In the previous example we used smoothing and the inder method to calculate the SDM. But, smoothing
may alter peak signal considerably. For example, peak height reduction and peak width increase are a common
problem. An alternative technique to determine the F DM or SDM is by fitting the raw data. In the next example
we used the drm function from the dre package [32] to fit a five-parameter log-logistic function (S-shaped). The
inder function was used to calculate the SDM of the predicted models (Figure S21).

fit.amp <- function(cyc, fluo, plot = FALSE) {

ampl <- quantile(fluo, 0.999)
bl <- quantile(fluo, 0.001)
Cq <- round(mean(cyc))

b.eff <- 1

fit <- nls(fluo ~ bl + ampl/(1 + exp(-(cyc - Cq)/b.eff)),
start = list(Cq = Cq, b.eff = b.eff, ampl = ampl, bl = bl))

res.pred <- data.frame(cyc, predict(fit))
res <- inder(res.pred[, 1], res.pred[, 2])
if (plot) {

lines(res[, 1], res[, 41)
}

SDM
summary (res) [2]

}

tmp <- C126EG595
out <- apply(tmp[, -1], 2, function(x) fit.amp(tmp[, 1], x))
layout (matrix(c(1, 2, 1, 3), 2, 2, byrow = TRUE))

plot(NA, NA, xlim = c(1, 40), ylim = c(min(tmp[, 2L:97]), max(tmpl[,
2L:97]1)), xlab = "Cycle", ylab = "Raw fluorescence")
mtext ("A", cex = 1.2, side = 3, adj = 0, font = 2)
for (i in 2L:97) {
lines(tmp[, 1], tmp[, i], col
"red", "black"), lwd = 2)

ifelse(out[i - 1] < 15.5,

}

abline(v = out)

plot(NA, NA, xlab = "Cycle", ylab = "RFU''(Cycle)", main = "",
xlim = c(0, 40), ylim = c(-850, 850))

abline(v = 15.5, 1ty = 2)

invisible(apply (tmp[, -11, 2, function(x) {
fit.amp(tmp[, 1], x, plot = TRUE)

1))

mtext ("B", cex = 1.2, side = 3, adj = 0, font = 2)

hist(out, xlab = "Cq (SDM)", main = "", breaks = seq(14.8, 15.8,
0.05), col = rainbow(96))

abline(v = 15.5, 1ty = 2)
mtext ("C", cex = 1.2, side = 3, adj = 0, font = 2)

50

