
RnavGraph: an R package to visualize high dimensional
data using graphs as navigational infrastructure

Adrian Waddell and Wayne Oldford

April 30, 2013

Contents

1 Installation 3

2 Introduction 4
2.1 Getting started . 4
2.2 A simple example . 5
2.3 Underlying graph theory . 6
2.4 General Structure of RnavGraph . 8

2.4.1 The simple example, in detail. 10

3 Data 11
3.1 group argument . 13

4 Graph 14
4.1 The graph package . 14

4.1.1 linegraph and its complement . 20
4.2 The NG_graph object . 20

5 Visualization Instructions 22
5.1 tk2d . 22

5.1.1 Working with Images (from some text source) 23
5.1.2 Working with color Images (jpeg, png, etc...) 26
5.1.3 Working with Star Glyphs . 28
5.1.4 Working with Text . 29

5.2 ggobi . 29
5.3 Custom visualization instructions . 29

5.3.1 with the ng_2d_myplot function . 29
5.3.2 with the initializeViz, updateViz and closeViz methods 31
5.3.3 grid . 32
5.3.4 rgl . 32

6 Starting a navGraph Session 33
6.1 Calling navGraph . 33

6.1.1 Settings . 34
6.2 Graphical User Interface . 34

6.2.1 Move the bullet . 35
6.2.2 Modify the Graph Layout . 36
6.2.3 Animate . 36
6.2.4 Paths . 37
6.2.5 The navGraph Handler . 38

6.3 The tk2d Display . 39
6.3.1 Zooming and Moving the viewing region . 40
6.3.2 Brushing and Selecting . 40
6.3.3 Moving Individual Points Temporarily . 41
6.3.4 Deactivating and Reactivating points . 41
6.3.5 Changing Color and Size . 41
6.3.6 Getting and Setting Color and Size . 41

1

6.3.7 Linking Data between two tk2d displays . 43

7 Scagnostics and RnavGraph 43
7.1 The quick way . 44
7.2 The detailed way . 44

8 Example sessions on different data 48
8.1 Iris . 48
8.2 Olive . 48
8.3 US Judge Ratings . 48
8.4 Storm Tracks . 49
8.5 US cereal . 49
8.6 Boston Housing . 49
8.7 Birth Weight . 50
8.8 Swiss bank note data . 50
8.9 Body Dimensions Data . 50
8.10 Ozone Data . 50
8.11 Swiss fertility . 51
8.12 Challenger . 51
8.13 Animal . 51

9 Acknowledgments 52

2

1 Installation

RnavGraph depends on a working tcl/tk build and on two R packages that do not come with an
R base installation, i.e. the graph and RBGL packages from the bioconductor repositories. However
we suggest you to install a couple of other packages from the CRAN repositories in order run all the
package demos.

Getting tcl/tk (version 8.5 or 8.6) set up correctly requires different steps on each OS:

• OSX 10.8+: Make sure XQuartz is installed: http://xquartz.macosforge.org/landing/

• OSX and R 3.0.0+: No additional installation steps required. R 3.0.0 comes bundled with
the tcl/tk 8.6.0 X11 libraries.

• OSX and R 2.8.0 - 2.15.3: A tcl/tk build (version 8.5) for X11 is required. Go to the
R project webpage (www.r-project.org) and follow link “download R”, choose the CRAN server
closest to you, follow the “Download R for MacOS X” link and then the “tools” link in the
“Subdirectories” section. Download and install the tcl/tk 8.5 build.

• Linux: Linux users need the libtk-img-dev, tcl-dev and tk-dev system libraries for tcl/tk
version 8.5 installed.

• Windows: If you plan to import images from files (.png,.jpg, etc.) you need a working Img

tcl extension. It is easiest to install the free ActiveTcl build and link R against it. To do so

– download ActiveTcl from http://www.activestate.com/activetcl (maybe 32 bit
and 64 bit if you use both R versions)

– install ActiveTcl say under C:/Tcl32 or C:/Tcl64

– edit the Rgui shortcut (right click and select properties) by adding MY_TCLTK=C:/Tcl32

at the end of the target property.

RnavGraph requires tcl/tk version 8.5. Version 8.6 seems to work too, please contact us if you
experience difficulties. tcl/tk version 8.4 will not work with RnavGraph. You may check your
tcl/tk version accessible from R by starting R and entering

> library(tcltk)

> .Tcl('set tcl_version')

Once tcl/tk is set up correctly, start an R session (under linux with root rights) and enter the
following code to install the dependencies.

> source("http://www.bioconductor.org/biocLite.R")

> biocLite("graph"); biocLite("RBGL"); biocLite("Rgraphviz"); biocLite("RDRToolbox")

> install.packages(c("PairViz", "scagnostics", "rgl", "MASS",

+ "hexbin", "vegan", "png"), dependencies = TRUE)

Check for errors and warnings. RnavGraph and RnavGraphImageData are then installed as follows

> install.packages("RnavGraph")

> install.packages("RnavGraphImageData")

If you experience any problems, watch the installation videos on www.navgraph.com or contact us.

3

2 Introduction

RnavGraph provides interactive visualization tools for exploring high dimensional space through
lower dimensional trajectories, based on the concepts first presented in Hurley and Oldford (2011).

2.1 Getting started

The RnavGraph package is available from the Comprehensive R Archive Network (CRAN). We used
extensively S4 classes and the Tcl and Tk API via the tcltk R package. Most of the visualization,
both for the graph and the 2d scatterplots, build upon the Tk canvas widget.

Once the package and all of its dependencies have been installed, RnavGraph is loaded using

> library(RnavGraph)

A closer look into RnavGraph reveals that a relatively large set of functions are available that provide
a programmable user interface to the package.

> ls("package:RnavGraph")

[1] "closeViz" "completegraph" "initializeViz"

[4] "linegraph" "navGraph" "newgraph"

[7] "ng_2d" "ng_2d_myplot" "ng_data"

[10] "ng_get" "ng_get_color" "ng_get_size"

[13] "ng_graph" "ng_image_array_gray" "ng_image_files"

[16] "ng_set" "ng_set<-" "ng_set_color<-"

[19] "ng_set_size<-" "ng_update" "ng_walk"

[22] "plot" "scagEdgeWeights" "scagGraph"

[25] "scagNav" "shortnames" "shortnames<-"

[28] "updateViz"

We try to explain all these functions within this vignette, though the R help function should also
be used to get a more detailed description on any particular function, as needed. In addition, we
provide the RnavGraph package with several demos that may be helpful, via

> demo(package = "RnavGraph")

The source code of these demos can be found in the system directory shown in the output from

> system.file("demo", package="RnavGraph")

Many of the demos require data from the RnavGraphImageData package also written by us.

All said, though, this vignette should itself provide the best introduction to RnavGraph and its full
functionality.

4

2.2 A simple example

We start with a simple example, using the famous Anderson Iris data, to quickly introduce the
basic functionality of RnavGraph and to give you a feel for its interface. To begin, then, execute the
following in R:

> library(RnavGraph)

> ng.iris <- ng_data(name = "iris", data = iris[,1:4],

+ shortnames = c('s.L', 's.W', 'p.L', 'p.W'),
+ group = iris$Species,

+ labels = substr(iris$Species,1,2))

As the name suggests, ng_data sets up a “navgraph” or “ng” data object (more on this later). Its
data argument takes a data.frame identifying the numeric variables to be explored. The Iris data
consists of measurements of the Sepal.Length, Sepal.Width, Petal.Length, and Petal.Width

on 50 flowers of each of three Species of Iris. (The above construction uses the argument short-

names, instead of the variable names, just to give more compact labelling in the subsequent displays.)

The Iris data provides a set of 150 points in a four-dimensional space; our objective is to visually
explore the structure of this data. To begin this exploration, we simply call navGraph on the
prepared data.

> navGraph(ng.iris)

This call will produce a navigation graph (or navgraph for short) as shown in Figure 1(a)

(a) The 3D transition graph (b) The associated display: 2D plot

Figure 1: navGraph on the Anderson Iris data.

and a “visualization” such as that of Figure 1(b). Figure 1(b) is a 2D display, native to navGraph.
The variates Sepal.Length and Sepal.Width determine the coordinates of the points in the scat-
terplot and the group, here Iris$Species, determine the point colours. If you select “text” in the
2D plot, the point symbols will be replaced by the text strings identified by the labels argument
in the definition of the “ng data” ng.iris.

The graph of Figure 1(a), the navigation graph, is programmatically linked to the 2D plot data
visualization of Figure 1(b). The large yellow circle on the rightmost node of the graph is called the

5

“bullet”; its position in the graph represents a well-defined location in the high-dimensional data
space which, in turn, determines what is actually displayed in the visualization of Figure 1(b). In
Figure 1(a), it sits on a node labelled s.L:s.W and so Figure 1(b) displays a scatterplot for the
variates Sepal.Length and Sepal.Width (“shortnames” being s.L and s.W, respectively).

Note how the other nodes are coloured differently, and the edges to them highlighted, depending
upon whether they share an edge with the bullet’s current node or not. You can move the bullet
to a connected node simply by double-clicking on the destination node, by selecting the destination
node and scrolling, or by simply selecting and dragging the bullet itself. Whatever way you choose,
the bullet will dynamically traverse the edge from origin to destination node while, at the same
time, the scatterplot display will “follow” the bullet’s path smoothly updating its display.

Try it, moving the bullet from the original node s.L:s.W to the upper left node s.W:p.W. The effect
in the scatterplot will be that of rotating the s.L axis into that of the p.W axis. The shared variate,
s.W will remain in place.

Now make a number of connected moves in sequence along the graph. As you move the bullet along
a path, the scatterplot will continually update via rigid rotations. Note also that each time the
bullet arrives at a new node, its potential destination nodes and edges are highlighted anew, and
those edges which have already been traversed are coloured slightly different from those which have
not yet been visited. Your connected sequence of edges constitutes a path on the navigation graph
which, when followed by the bullet, causes the 2D display to update, dynamically following various
3D trajectories through the four dimensional space of the Iris data.

The effect is made more apparent by explicitly choosing the entire path in advance. This is done
using “shift-select”. Simply hold the shift-key down continuously and select each node (single-click)
in turn along a path of your choice. The path will be highlighted as you go. Double-click for the
final destination and the bullet will immediately start to walk the path you have identified. This
will allow you to focus on the movement in the scatterplot display as the path is walked.

Having just walked a path, you might care to re-run it. To do so, choose the “Tools” menu on the
navgraph display and select the menu item “Paths”. A new window will open where the path just
walked is recorded as the “Active Path”. This path may be viewed on the navgraph by pressing the
“view” button, or walked again by pressing the “walk” button. The active path may also be saved
by pushing the “save” button and, once saved, made active again by double-clicking on the path
in the list of saved paths. It is also possible to select paths and type in comments related to the
selected path. In this way, the user can record interesting paths, describe the interesting features
found, and walk them again at a later date. Simply close the paths display when finished.

(The graphical user interface is described later in much more detail.)

2.3 Underlying graph theory

The graph theory underlying RnavGraph is given in detail in the paper by Hurley and Oldford
(2011) and we direct the reader there to gain a fuller appreciation. In this section, we give only a
brief summary of some of the ideas.

6

In the Iris example just considered, the nodes of Figure 1(a) are connected only if they share a
variate. As a consequence of this, any travel along an edge is consistent with a a rigid rotation
through a three dimensional subspace from one two-dimensional space (or scatterplot) to another.
Because the edges are restricted in this way, Hurley and Oldford (2011) call such a graph, a 3D
transition graph.

The complement of a 3D transition graph is the graph having the same nodes but with edges ap-
pearing only between nodes that have no variates in common. That is only those edges missing
between nodes in Figure 1(a) will appear in its complement. Hurley and Oldford (2011) call this
graph the corresponding 4D transition graph.

In our Iris example, choosing the “Graph” menu from the navgraph display of Figure 1(a) gives a
menu of graphs to choose from. Selecting the menu item “iris: 4D” will cause the 4D transition
graph to be displayed in place of the 3D transition graph and will also update the scatterplot display.

Since nodes no longer share a variable, moving the bullet along an edge in a 4D transition graph
causes the 2D subspace (or scatterplot) at one node to smoothly transition to the 2D subspace (or
scatterplot) at the destination node. This is effected by having both axes of one subspace simulta-
neously transformed into the axes of the other subspace along a geodesic in the four dimensional
space defined by all 4 axes. In this way, the path is essentially like that followed in ggobi but
restricted to the four variates. Walking a path on a 4D transition graph amounts to exploring the
entire (possibly higher) dimensional space via four dimensional trajectories.

At this point, you might give the 4D transition a try. You will see that the 4D transitions are not
rigid rotations and so might look a little unnatural.

Hurley and Oldford (2011) describe a variety of ways to construct meaningful 3D and 4D transition
graphs. Fundamentally, these all begin with a graph on the variates themselves.

Hurley and Oldford (2011) define a variable graph G as any graph, whose nodes are variates, and
whose edges indicate an interest (however defined) in the pair of variates each edge joins in the
graph G.

For example, if we consider again the Iris data with p = 4 variates and assume that all pairs of vari-
ates are of equal interest, then G could be the complete graph on four variates given by the leftmost
graph of Figure 2 (where A = Sepal.Length, B = Sepal.Width, C = Petal.Length, D = Petal.Width).

A handy constructor from graph theory is the line graph of a graph G denoted by L(G). This and
other constructors are given in detail in Hurley and Oldford (2011). Suffice to say here is that every
edge in G becomes a node in L(G) and nodes in L(G) have edges between them if and only if the
corresponding edges in G meet at a node in G. For our purposes, it is enough to know that L(G)
will be a 3D transition graph, whatever the graph G (provided it is a variable graph). Moreover,
the complement of L(G) will be a 4D transition graph. These three graphs are shown for the Iris
data in Figure 2.

Another means of constructing 3D and 4D transition graphs given by Hurley and Oldford (2011)
is the use of various graph products. If the variables –from the data– separate into two sets, say

7

A B

CD

G

AB

AD

AC

CD

BC

BD

L(G)

AB

CD

AD

BCAC

BD

L(G)

Figure 2: Complete graph G with the individual variables as nodes. Line graph L(G) which is
equivalent to the 3d-transition graph. L(G) the 4d transition graph.

U = {U1, U2, ..., Um} and V = {V1, V2, ..., Vn}, and for each set there is a corresponding variable
graph which connects the pairs of interest, then the Cartesian product of the two graphs will pro-
duce a 3D transition graph preserving the pairs of interest and its complement, the tensor product
on graphs will be the corresponding 4D transition graph. Figure 3 shows these, and other, graph
products. Although RnavGraph does not yet implement these products, it will in the next release.

U1

U2

U3 V1 V2

G H

< U1, V1 >

< U2, V1 >

< U3, V1 >

< U1, V2 >

< U2, V2 >

< U3, V2 >

Cartesian product: G�H

< U1, V1 >

< U2, V1 >

< U3, V1 >

< U1, V2 >

< U2, V2 >

< U3, V2 >

Tensor product: G × H

< U1, V1 >

< U2, V1 >

< U3, V1 >

< U1, V2 >

< U2, V2 >

< U3, V2 >

Strong product: G � H

Figure 3: Graph products

Please see Hurley and Oldford (2011) for more details.

2.4 General Structure of RnavGraph

Before going further, it is important to realize that neither the underlying theory nor the im-
plementation of RnavGraph presupposes that the only visualization of interest is that of rotating

8

scatterplots.

The theory, so far (though Hurley and Oldford, 2011, go beyond 2D nodes), only takes it that each
node of a transition graph represents 2D information of some sort and that an edge connects two
sets of 2D information which either share a single dimension (a 3D transition) or share no dimension
(a 4D transition). When imagining scatterplots at each node, it is easy to see that walking a path
on the graph amounts to following a low dimensional trajectory through the higher dimensional
space.

RnavGraph allows the user to define what visualization the vertices (or nodes) represent and what
the transition (along the edges) represent. Moreover, moving a bullet along graph edge simply means
updating the visualization with information on the current position between two nodes. What a
visualization chooses to do with such information depends entirely on the visualization.

The implementation of RnavGraph is general in that it makes no assumptions about either the
views being displayed or the nature of the transitions between them. RnavGraph integrates data
to be analyzed, a graph to navigate and visualization instructions to be executed as the graph is
traversed.

RnavGraph provides an S4 class for each of these components to encapsulate the corresponding
information, namely the classes NG_data, NG_graph and NG_Visualization, respectively (their
associated constructor functions will be explained later). The navGraph() function in R takes
graph, data and visualization objects as arguments and starts up the corresponding graphical
user interface. Figure 4 shows a stylized session.

A:D

B:C

C:D

A:B
interactive graph linked 2d image scatterplot linked 2d glyph scatterplot

Figure 4: A possible session of RnavGraph. Note that here the ball is connected to two sets of
visualization instructions. That is, to an scatterplot with images and a scatterplot with glyphs.

A navGraph function call returns a navGraph handler object which allows the user to control and
receive certain states of the running navGraph GUI.

navGraph offers different ways to instantiate a session. The most straightforward way is to only
define a NG_data object and then let navGraph set up the default environment with 2d scatterplots
and 3d- and 4d transition graphs. This is what we did in the introductory example.
Alternatively, the user can define the NG_data, NG_graph and NG_Visualization objects them-
selves and hence have a much finer control and broader set of functionality to access.

In the following subsection, we redo the simple example but, this time, with more detailed control

9

over the constructions.

2.4.1 The simple example, in detail.

In the Iris data example, we simply relied on RnavGraph to fill in the details. Now, we revisit this
example; this time filling in the details so as to demonstrate the fine control over graphs, data, and
visualization instructions which RnavGraph offers to the user.

The following code may also be found in the ng_2d_iris demo.

> demo("ng_2d_iris", package = "RnavGraph")

Now, as before, the first step is to create the data object

> ng.iris <- ng_data(name = "iris", data = iris[,1:4],

+ shortnames = c('s.L', 's.W', 'p.L', 'p.W'),
+ group = iris$Species,

+ labels = substr(iris$Species,1,2))

Note how the Species variable was passed on to the group argument and not to the data argument.
Further, the shortnames argument takes alternative variable names. That is, we’d like to use these
shortnames to name the vertices of the variable graph.

> V <- shortnames(ng.iris)

We now create the three graphs presented in the figure 2:

> G <- completegraph(V)

> LG <- linegraph(G)

> LGnot <- complement(LG)

These three objects are from the graph class

> class(G)

[1] "graphAM"

attr(,"package")

[1] "graph"

The RnavGraph package provides, as outlined earlier, a own graph class because navGraph needs
additional information

> ng.lg <- ng_graph(name = '3D Transition', graph = LG, layout = 'circle')
> ng.lgnot <- ng_graph(name = '4D Transition', graph = LGnot, layout = 'circle')

Note that the names of the graph objects must be unique within all graph objects passed on to
navGraph. The same holds for the data names, as navGraph uses these names to link a graph and
data via a visualization object.

As the last step, we need to define visualization rules. For the 3d and 4d transition of 2d scatterplots
we can use the ng_2d() function as follows

10

> viz3dTransition <- ng_2d(ng.iris,ng.lg)

navGraph takes multiple visualization instruction objects, so for demonstration purposes let’s define
another visualization instruction object

> viz4dTransition <- ng_2d(ng.iris,ng.lgnot)

In summary, we have now one data object ng.iris, two graph objects ng.lg and ng.lgnot, and
two visualization instruction objects viz3dTransition and viz4dTransition. When dealing with
multiple objects from the same class, we need to pack them into a list

> viz <- list(viz3dTransition, viz4dTransition)

> graphs <- list(ng.lg, ng.lgnot)

and finally we can pass them all to the navGraph GUI initializing function

> nav <- navGraph(graph = graphs, data = ng.iris, viz = viz)

where nav is the navGraph handler, more about it later.

This example session shows essentially the work flow of using navGraph. The rest of this vignette
discusses each step in detail. It also shows a variety of visualizations.

3 Data

Every NG_data object needs a unique name and a data set in the form of a data.frame with solely
numeric variables. The shortnames, group and label argument are optional. It is important that
the data.frame used only contains numeric variables, as this is the only data type supported for
visualization at the moment and it simplifies some navGraph internal procedures. Hence, when
trying to pass on non-numeric variables, ng_data() throws an error.

The name argument takes a string which must be unique between all NG_data objects passed on
to navGraph. navGraph will, based on the data- and graph- names, link graph and data via the
visualization instructions. A minimal working NG_data object can be created with

> ng.iris <- ng_data(name = "iris", data = iris[,1:4])

NG_data objects, as most other objects provided by the RnavGraph package, show a summary if you
print them with print or just enter their variable name into the R promt

> ng.iris

object from NG_data class.

name: iris

data: 150 x 4

Variable Names | No Short Names

Sepal.Length |

Sepal.Width |

Petal.Length |

Petal.Width |

group: No group variable defined.

labels: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25...

11

The variable names of NG_data objects, like the variable names of data.frame objects, can be
displayed and changed with the names function:

> names(ng.iris) ## get variable names

[1] "Sepal.Length" "Sepal.Width" "Petal.Length" "Petal.Width"

> names(ng.iris) <- c("SepL", "SepL", "PetL", "PetW")

the same holds true for the shortnames:

> shortnames(ng.iris)

character(0)

> shortnames(ng.iris) <- c('s.L', 's.W', 'p.L', 'p.W')

let’s see the output summary of the modified ng.iris object

> print(ng.iris)

object from NG_data class.

name: iris

data: 150 x 4

Variable Names | Short Names

SepL | s.L

SepL | s.W

PetL | p.L

PetW | p.W

group: No group variable defined.

labels: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25...

all the information stored in a NG_data object can be accessed via the ng_get and modified via the
ng_set function.

> ng_get(ng.iris) ## See what can be accessed

Get what? Possible options are: name, data, group, labels

> ng_get(ng.iris,"data")[1:3,]

SepL SepL PetL PetW

1 5.1 3.5 1.4 0.2

2 4.9 3.0 1.4 0.2

3 4.7 3.2 1.3 0.2

> ng_get(ng.iris,"name")

[1] "iris"

12

> ng_get(ng.iris,"group")

numeric(0)

> ng_get(ng.iris,"labels")

[1] "1" "2" "3" "4" "5" "6" "7" "8" "9" "10" "11" "12"

[13] "13" "14" "15" "16" "17" "18" "19" "20" "21" "22" "23" "24"

[25] "25" "26" "27" "28" "29" "30" "31" "32" "33" "34" "35" "36"

[37] "37" "38" "39" "40" "41" "42" "43" "44" "45" "46" "47" "48"

[49] "49" "50" "51" "52" "53" "54" "55" "56" "57" "58" "59" "60"

[61] "61" "62" "63" "64" "65" "66" "67" "68" "69" "70" "71" "72"

[73] "73" "74" "75" "76" "77" "78" "79" "80" "81" "82" "83" "84"

[85] "85" "86" "87" "88" "89" "90" "91" "92" "93" "94" "95" "96"

[97] "97" "98" "99" "100" "101" "102" "103" "104" "105" "106" "107" "108"

[109] "109" "110" "111" "112" "113" "114" "115" "116" "117" "118" "119" "120"

[121] "121" "122" "123" "124" "125" "126" "127" "128" "129" "130" "131" "132"

[133] "133" "134" "135" "136" "137" "138" "139" "140" "141" "142" "143" "144"

[145] "145" "146" "147" "148" "149" "150"

Modifying parts from the NG_data objects can be achieved using the ng_set function

> ng_set(ng.iris)

Replace what? Possible options are: name, data, group, labels

Use ng_set<- to set a value.

> ng_set(ng.iris,"labels") <- as.character(iris$Species)

3.1 group argument

The group argument of the ng_data function deserves its own subsection, as it defines the color
of the points, images, glyphs, etc. in the visualization displays. We herefore create a small toy
example:

> x <- rep(1:30, each = 30)

> y <- rep(1:30, 30)

> ng.test <- ng_data(name = "test", data = data.frame(x = x, y = y, z = 1:900),

+ group = 1:900)

This produces a rectangular grid of 900 points where each point has a different group:

> nav <- navGraph(ng.test)

The output of navGraph is shown in figure 3.1. navGraph matches the first nine groups to the
colors shown in its brushing menu and the rest to the colors returned by the R function colors().
Note that navGraph only distinguishes between as many groups as colors() knows colors. If more
groups exist, the remaining points get mapped to the first color in the brushing menu.
For RnavGraphs default display (tk2d, see later), the group variable could also be a vector of strings
contained in the colors() output. For example

13

Figure 5: Mapping of the group argument to colors in the default tk2d window.

> x <- rep(1:3, each = 3)

> y <- rep(1:3, 3)

> ng.test <- ng_data(name = "test2", data = data.frame(x = x, y = y, z = 1:9),

+ group = c('red','red','green','blue','blue','blue','blue','orange','orange'))
> nav <- navGraph(ng.test)

yield the output shown in figure 3.1.

Figure 6: Mapping of the group argument containing color names.

4 Graph

Defining an NG_graph object happens in two stages. First, a graph object from the graph package
has to be created. Second, a NG_graph object gets created from the graph object. This has the
advantage, that a R standard graph gets created using the full flexibility provided by other packages
building on the graph package such as the RGBL and Rgraphviz package.

4.1 The graph package

We recommend to take a brief look at the following vignettes in order to get an overview of some
of the functionality of R handling graphs.

14

> vignette(package="graph")

> vignette(package="RBGL")

> vignette(package="Rgraphviz")

The graph package does, to our understanding, not deliver any simple creator functions, that is the
user is left to use the new() creator function.

> adjM <- matrix(c(0,4,1,0,2,0,3,2,2,2,0,0,0,2,0,0), ncol = 4)

> rownames(adjM) <- c('A','B','C','D')
> colnames(adjM) <- c('A','B','C','D')
> G <- new("graphAM", adjMat = adjM, edgemode = "directed")

> G

A graphAM graph with directed edges

Number of Nodes = 4

Number of Edges = 8

If the Rgraphviz package is installed, one can plot a graph object

> library(Rgraphviz)

> plot(G)

A

B

C D

We have written some functions which ease the graph creation part. Often the users want to start
from a complete variable graph. We provide the completegraph function which takes a vector of
node names as the argument

> V <- c('s.L', 's.W', 'p.L', 'p.W')
> G <- completegraph(V)

> plot(G, "neato")

15

s.L
s.W

p.L

p.W

We also introduce the newgraph R function which either takes an adjacency- or a from-to-edge
matrix to create a graph

> from <- c("A","A","C","C")

> to <- c("B","C","B","D")

> ftEmat <- cbind(from,to)

> G <- newgraph(nodeNames = LETTERS[1:5], mat = ftEmat)

> plot(G, "neato")

A B
C
D

E

Note how the node “E” was added to the graph because it was specified in the nodeNames argu-
ment of newgraph. Graphs can also be directed, however RnavGraph does not constrain the bullet
in direction if an edge exists. Hence this feature is for the current RnavGraph version not from
importance, however for completeness the following code works as expected

> G <- newgraph(nodeNames = LETTERS[1:5], mat = ftEmat, directed = TRUE)

> plot(G, "neato")

16

A B
C
D

E

The from-to-edge matrix can also be numeric

> from <- c(1,1,3,3)

> to <- c(2,3,2,4)

> ftEmat <- cbind(from,to)

> G <- newgraph(nodeNames = LETTERS[1:5], mat = ftEmat)

> plot(G, "neato")

A B
C
D

E

Weights can also be added to Graphs via the weights argument. Note however that navGraph does
not visualize them, but they might be important for greedy path finding algorithms

> weights <- c(2,1,3,4)

> G <- newgraph(nodeNames = LETTERS[1:5], mat = ftEmat, weights = weights)

> edgeData(G, attr = "weight")

$`A|B`
[1] 2

17

$`A|C`
[1] 1

$`B|A`
[1] 2

$`B|C`
[1] 3

$`C|B`
[1] 3

$`C|D`
[1] 4

$`C|A`
[1] 1

$`D|C`
[1] 4

Alternatively you can add weights after the graph creation process

> G <- newgraph(nodeNames = LETTERS[1:5], mat = ftEmat, weights = weights, directed = TRUE)

> edgeData(G, attr = "weight")

$`A|B`
[1] 2

$`A|C`
[1] 1

$`C|B`
[1] 3

$`C|D`
[1] 4

> edgeData(G, from = "A", to = "B", attr = "weight")

$`A|B`
[1] 2

> edgeData(G, from = "A", to = "B", attr = "weight") <- 8

As mentioned earlier, the newgraph function takes also adjacency matrices as an argument, use the
argument isAdjacency=TRUE

> adjM <- matrix(c(0,1,1,0,1,0,1,1,1,1,0,0,0,1,0,0), ncol = 4)

> all(adjM == t(adjM)) ## is symmetric (undirected)

18

[1] TRUE

> G <- newgraph(nodeNames = V, mat= adjM, isAdjacency=TRUE)

> plot(G,"neato")

s.L

s.W

p.L

p.W

Note that all the graphs from the graph class have the function nodes and edges defined

> nodes(G)

[1] "s.L" "s.W" "p.L" "p.W"

> edges(G)

$s.L

[1] "s.W" "p.L"

$s.W

[1] "s.L" "p.L" "p.W"

$p.L

[1] "s.L" "s.W"

$p.W

[1] "s.W"

If you use an adjacency matrix to create a graph, you can also pass on a weight matrix

> adjM <- matrix(c(0,0,1,0,1,0,1,1,0,0,0,0,0,1,0,0), ncol = 4)

> weightsM <- matrix(c(0,0,5,0,2,0,1,3,0,0,0,0,0,7,0,0), ncol = 4)

> G <- newgraph(nodeNames = V, mat= adjM, weights = weightsM, directed = TRUE, isAdjacency=TRUE)

> edgeData(G, attr = "weight")

19

$`s.L|s.W`
[1] 2

$`s.W|p.W`
[1] 7

$`p.L|s.L`
[1] 5

$`p.L|s.W`
[1] 1

$`p.W|s.W`
[1] 3

Further, the ftM2adjM function converts a from-to-edge matrix into a adjacency matrix

> ftM2adjM(ftEmat)

1 3 2 4

1 0 1 1 0

3 0 0 1 1

2 0 0 0 0

4 0 0 0 0

4.1.1 linegraph and its complement

After creating a variable graph, getting its linegraph and the complement of the linegraph yields the
3d- and 4d transition graph. We provide the linegraph function, and the graph package provides
the complement function. The linegraph function has the separator sep argument to distinguish
the node names. You must chose a string that does not occur within any of the node names within
the graph.

> G <- completegraph(V)

> LG <- linegraph(G, sep = '::')
> nodes(LG)

[1] "s.L::s.W" "s.L::p.L" "s.L::p.W" "s.W::p.L" "s.W::p.W" "p.L::p.W"

Notice, if G had edge weights, then they are lost now. Also, the line graph is only defined for
undirected graphs at the moment.

4.2 The NG_graph object

The good thing about using the graph package is, that it makes the graph construction process very
flexible. In the end, however, the node names of the graph must be in sync with the shortnames
or the names of the NG_data object, and the graph must be from the graph class and subsequently
the NG_graph class.

It stays to create an NG_graph object

20

> ng.LG <- ng_graph(name = "3D Transition", graph = LG, sep = '++', layout = "circle")

[ng_graph]: warning, sep does not occur in some node names

> ng.LG

NG_graph object from ng_graph()

name: 3D Transition

layout: circle

Note that you have to specify the sep argument again. The reason herefore is that you could pass
on any graph with any dimensionality of node names (e.g. “A:B:C:D” for four dimensions). In
addition, you can specify the graph layout. Currently circle, random (currently not working),
kamadaKawaiSpring and fruchtermanReingold are possible options for the layout. We use the
RBGL package to get the latter two layouts. The complement function does not need any special
considerations:

> LGnot <- complement(LG)

> ng.LGnot <- ng_graph(name = "4D Transition",

+ graph = LGnot, sep = "::", layout = "circle")

The name of each NG_graph object, as for the NG_data object, must be unique within all graphs
passed on to the navGraph function. NG_graph objects can also be plotted, however they get
rendered by RnavGraph according to the layout argument.

> par(mfrow = c(1,2))

> plot(ng.LG)

> plot(ng.LGnot)

3D Transition ('circle' layout)
0 400

40
0

0

●

●●

●

● ●

s.L::s.W

s.L::p.Ls.L::p.W

s.W::p.L

s.W::p.W p.L::p.W

4D Transition ('circle' layout)
0 400

40
0

0

●

●●

●

● ●

s.L::s.W

s.L::p.Ls.L::p.W

s.W::p.L

s.W::p.W p.L::p.W

Further, similarly as for the NG_data object, you can access or modify with the ng_get and ng_set

function, respectively.

> ng_get(ng.LG)

Get what? Possible options are: name, graph, visitedEdges, layout

> ng_set(ng.LG, "name") <- "3d transition graph"

Careful with the use of ng_set, some things are linked: graph, visitedEdges and layout. Changing
one should affect the whole object (which it does not at the moment). So it’s better not to use
ng_set on NG_graph objects.

21

5 Visualization Instructions

Once the NG_data and NG_graph objects have been defined, they have to be connected with some
visualization instructions. That is, the visualization instructions tell navGraph what and how nav-

Graph should visualize when the ball gets moved along the edges of the graph. Conceptually,
navGraph allows for any visualization of the data, as long the user can implement them. That is,
there are no constrains to dimensionality of data represented by a node or the “morphing” defined
along an edge. This task is especially easy if the ng_2d_myplot function is used. However for best
efficiency the methods initializeViz, updateViz and closeViz can be used to implement own
–possibly new– ideas.

For the 2d- scatterplot example, we need a device that plots some objects at the x and y euclidean
coordinate. The objects could be either dots, images, glyphs, text or anything else you can imagine
(and implement). There are many plotting devices available in R (e.g. traditional graphics, grid,
and rgl) and navGraph can deal with most of them. However when it comes to speed and double
buffering, only few of them produce satisfactory output. In addition, different devices allow for
different objects to be plotted. We have implemented a new device, lets call it tk2d, that builds
upon the tk canvas widget (so does the interactive graph).

5.1 tk2d

The tk2d device can either display dots, images, glyphs or text (strings).

linked 2d dots scatterplot linked 2d image scatterplot

linked 2d glyph scatterplot

JaneJane

Lea

Lea

MaxMax
Joe Mike

Bill
Bill

linked 2d text scatterplot

Figure 7: tk2d can visualize dots, images, glyphs and text.

Once the tk2d device is started, there is a whole set of interaction tools like brushing, changing
colors, resizing images etc. We will discuss them in the “Starting a navGraph Session” section. For
now lets define some visualization instructions that use the tk2d device and only show dots

22

> viz1 <- ng_2d(data = ng.iris, graph = ng.lg)

> viz1

tk2d scatter plot: ng_2d()

Graph: 3D Transition

Data: iris

Notice the output of the viz1 object. It says that it addresses the tk2d device which displays
a scatterplot and that it connects the NG_graph object with the name “3D Transition” with the
NG_data object with the name “iris”. Hence if you weren’t to choose the graph and data names
unique, navGraph would not know how to link them correctly. navGraph has no lower bound on the
number of visualization instructions you can pass on as an argument. So lets define another tk2d

visualization object

> viz2 <- ng_2d(data = ng.iris, graph = ng.lgnot)

5.1.1 Working with Images (from some text source)

The main reason we have implemented the tk2d device is because we wanted the RnavGraph package
to be useful to explore image data. All images get imported as tcl image objects since they later
will be displayed on a tk canvas widget. If you want to import images from image files (such as
jpg or png), you need running Img tcl extension set up for the tcltk version R connects to via the
tcltk R package, see the section installation instructions. If the images, however, eventually exist
as an R object of some sort (e.g. a matrix), the tcl Img extension is not needed. For the examples
in this vignette and for some of the demos, we require the RnavGraphImageData package.

> library(RnavGraphImageData)

you can get an overview of the data provided by the package with

> data(package='RnavGraphImageData')

Much of this data is from the webpage of Sam Roweis http://www.cs.nyu.edu/\simroweis/data.html.

Lets start with the USPS digits image data

> data(digits)

> dim(digits)

[1] 256 11000

from the help documentation for the data set

> help("digits")

we get that the digits data consists of 16 × 16 8-bit grayscale images of “0” through “9”; 1100
examples of each class. That is, one image is stored in one column (which is often the case in the
machine learning field). For example the data of one handwritten 8 is

> matrix(digits[,7*1100+1],ncol = 16, byrow=FALSE)

23

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13] [,14] [,15] [,16]

[1,] 0 0 0 7 71 156 156 156 156 125 37 0 0 0 0 0

[2,] 0 19 170 217 255 255 255 252 252 255 173 8 0 0 0 0

[3,] 8 255 255 247 186 120 87 66 66 87 144 161 0 0 0 0

[4,] 7 244 255 127 0 0 0 0 0 0 44 34 0 0 24 13

[5,] 0 100 255 246 166 27 0 0 0 0 0 0 32 173 214 88

[6,] 0 1 85 240 255 224 41 0 0 30 119 174 138 121 15 0

[7,] 0 0 0 61 255 255 190 94 121 242 255 220 91 5 0 0

[8,] 0 0 0 1 117 255 255 255 255 185 105 18 0 0 0 0

[9,] 0 0 1 79 237 250 253 255 228 32 0 0 0 0 0 0

[10,] 0 34 129 255 200 31 86 238 255 131 0 0 0 0 0 0

[11,] 4 193 253 163 13 0 0 129 255 213 21 0 0 0 0 0

[12,] 93 255 195 0 0 0 0 20 213 255 81 0 0 0 0 0

[13,] 131 255 123 0 0 0 0 8 202 255 153 0 0 0 0 0

[14,] 89 255 249 188 124 88 88 178 255 228 30 0 0 0 0 0

[15,] 0 17 172 255 255 255 255 255 243 49 0 0 0 0 0 0

[16,] 0 0 5 67 154 154 154 130 40 0 0 0 0 0 0 0

Hence the gray scales are coded from 0 to 255. Since visualizing 11000 digits is computationally
expensive, we will continue with a sub-sample of the data for this demo

> sel <- sample(x=1:11000,size = 600)

> p.digits <- digits[,sel]

In order for tk2d to be able to display the images, they need to be wrapped into a NG_image object.
Now, contrary to all the NG_... objects we have encountered so far, the NG_image class does
not wrap the image data within itself. The NG_image object contains only the names (character
strings) of the images that tcl did automatically assign. That is, when importing an image into
tcl, tcl names them consecutively, i.e. image1, image2, ..., so that they can readily be displayed
when needed. Coming back to our digits example, the ng_image_array_gray R function creates
a NG_image object from a data.frame object with values ranging from 0 to 255.

> ng.i.digits <- ng_image_array_gray('USPS Handwritten Digits',
+ p.digits,16,16,invert = TRUE,

+ img_in_row = FALSE)

the images can be seen with

> ng.i.digits

which would yield something like (it’s random because of the sampling!)

where the scroll bar can be used to navigate through all the images. The name you specified does
not have to be unique since here the image ids are the only important part. The name is only used
for the print output of the NG_image object. We also need meta-data on the images. Many scenario

24

are possible, i.e. we could have measured data for each image or we could perform some kind of
feature extraction for each image or we reduce the dimensionality (number of pixel) of each image
to something manageable, say 4 or 5 dimension –rather than the commonly conveniently chosen
two dimensions–. For the rest of this vignette, we choose the dimensionality reduction approach
using isomap provided in the vegan (or also by the RDRToolbox) R package.

> library(vegan)

We need to transpose the digit data first, since each image is saved as one column and not within
a row (the statistics- and computer science field seem to disagree on a common convention).

> p.digitsT <- t(p.digits)

Next, we need to generate a distance matrix (euclidean distance of one image to another) and
perform isomap on the distances

> dise <- vegdist(p.digitsT, method="euclidean")

> ord <- isomap(dise,k = 8, ndim=6, fragmentedOK = TRUE)

Next we create an NG_data object

> digits_group <- rep(c(1:9,0), each = 1100)

> ng.iso.digits <- ng_data(name = "ISO_digits",

+ data = data.frame(ord$points),

+ shortnames = paste('i',1:6, sep = ''),
+ group = digits_group[sel],

+ labels = as.character(digits_group[sel]))

and the NG_graph objects

> V <- shortnames(ng.iso.digits)

> G <- completegraph(V)

> LG <- linegraph(G)

> LGnot <- complement(LG)

> ng.LG <- ng_graph(name = "3D Transition", graph = LG)

> ng.LGnot <- ng_graph(name = "4D Transition", graph = LGnot)

And finally, the visualization instruction allow for adding the images to the tk2d plot

> vizDigits1 <- ng_2d(data = ng.iso.digits, graph = ng.LG, images = ng.i.digits)

> vizDigits2 <- ng_2d(data = ng.iso.digits, graph = ng.LGnot, images = ng.i.digits)

Starting a navGraph session is simple (but in more detail discussed later on)

> nav <- navGraph(data = ng.iso.digits, graph = list(ng.LG, ng.LGnot), viz = list(vizDigits1, vizDigits2))

25

For other examples of importing greyscale images from txt data file see the ng_2d_images_alpha_letter,
ng_2d_images_alpha_letter and ng_2d_images_umist_faces demos.

5.1.2 Working with color Images (jpeg, png, etc...)

If your image source is a file such as a bmp, gif, ico, jpeg, pcx, pixmap, png, ppm, postscript, sgi,
sun, tga, tiff, window, xbm or xpm file, the ng_image_files R function helps you to import these
images into the tcl layer provided the Img tcl extension works properly. If you need to precess the
image data in R, the R packages in table 5.1.2 provide some functionality, however not for all the
formats the Img tcl extension is capable of importing. Note however with the shell R command
and an installed Imagemagik you can convert any images to almost any format you could wish for.

> shell("convert image.png image.jpg")

Function Package Image Format Returned Object
read.pnm pixmap pbm, pgm, ppm objects of diverse pixmap classes
read.jpeg rimage jpeg image.matrix object
readRiff rtiff tiff pixmap objcet
readPNG png png array

Table 1: Table (almost) directly from the useR book ”Morphometrics with R” page 33.

We work with a data set from the Library of Amsterdam http://staff.science.uva.nl/~aloi/.

26

Note that these images are not part of the RnavGraphImageData package any more.

> imgPath <- "path to folder with png files"

> aloi_images <- list.files(path=imgPath, full.names=TRUE)

We sample 400 images, so that we do not have to deal with all 2250 images at once.

> sel <- sample(1:length(aloi_images),replace=FALSE)

> p.aloi_images <- aloi_images[sel]

Note that the rimage package needs the fftw-dev (in ubuntu) package to perform Fast Fourier
Transformations.

Now, lets import the images first into the tcl layer, herefore the universal function (for jpg, png,
etc.) is ng_image_files:

> ng.i.objects <- ng_image_files(name="ALOI_Objects_Images", path=p.aloi_images)

and again, you can see the images using

> ng.i.objects

In order to work with the image data in R, we use the readPNG function from the png package.
readPNG returns a three dimensional array with the red-blue-green contents for each pixel. For the
ease of our demonstration we just get for each image the total (sum) of red, green and blue content.

> library(png)

> imgData <- t(sapply(p.aloi_images, FUN=function(path){

+ x <- readPNG(path)

+ r <- sum(x[,,1])

+ g <- sum(x[,,2])

+ b <- sum(x[,,3])

+ return(c(r,g,b))

+ }))

27

Initializing a navGraph session on this data and the images stays the same as in the previous example

> ng.iso.objects <- ng_data(name = "Aloi_Objects",

+ data = data.frame(imgData),

+ shortnames = paste('i',1:3, sep = ''))
> ## 3d and 4d transition graph Graphs

> V <- shortnames(ng.iso.objects)

> G <- completegraph(V)

> LG <- linegraph(G)

> LGnot <- complement(LG)

> ng.LG <- ng_graph(name = "3D Transition", graph = LG)

> ng.LGnot <- ng_graph(name = "4D Transition", graph = LGnot)

> ## visualization instructions

> vizObjects1 <- ng_2d(data = ng.iso.objects, graph = ng.LG, images = ng.i.objects)

> vizObjects2 <- ng_2d(data = ng.iso.objects, graph = ng.LGnot, images = ng.i.objects)

> ## start navGraph

> nav <- navGraph(data = ng.iso.objects, graph = list(ng.LG, ng.LGnot),

+ viz = list(vizObjects1, vizObjects2))

and you should expect to see something like

5.1.3 Working with Star Glyphs

A star glyph is a visual representation of one data entity. If the entity has p-dimensional data
associated, say xi = (x11, x12, ..., x1p), the glyph gets constructed as the following graphic outlines:

x1

x2
x3

x4

x5

x1

x2
x3

x4

x5

x1

x2
x3

x4

x5

We decided to use the last image as our star glyph visualization. We take a look at glyphs using
the iris data example. Data and graph object have been defined previous in this vignette. It just
stays to define the visualization instructions with the glyph definition

28

> vizGlyph1 <- ng_2d(data = ng.iris, graph=ng.lg,

+ glyph=names(ng.iris)[c(1,2,3,4,3,2,3,4,1)])

> vizGlyph2 <- ng_2d(data = ng.iris, graph=ng.lgnot,

+ glyph=shortnames(ng.iris)[c(1,2,3,4,3,2,3,4,1)])

> vizGlyph2

tk2d scatter plot: ng_2d()

Graph: 4D Transition

Data: iris

Note that you can either use the shortnames or the names to define the glyph sequence. It stays
to call navGraph

> nav <- navGraph(ng.iris, list(ng.lg,ng.lgnot), list(vizGlyph1, vizGlyph2))

5.1.4 Working with Text

When defining the NG_data object, one can specify the labels argument (character) which directly
maps to the text radiobutton in the tk2d display.

5.2 ggobi

As from RnavGraph version 3.0 we have removed ggobi support. If you need to use navigation
graphs with the ggobi visualization display feel free to contact us.

5.3 Custom visualization instructions

5.3.1 with the ng_2d_myplot function

If you want to create your own visualization from scratch instead of using for example the tk2d

display, you can define a display function that takes any subset of the following as arguments

29

argument description
x x-coordinate
y y-coordinate
group group slot from NG_data object
labels labels slot from NG_data object
order order of points. In 3d rigid rotation, the order increases

with the distance of a the point from the viewer.
from node name the bullet moves from
to node name the bullet moves to
percentage in between percentage of bullet
data data name of NG_data object

Let’s go over an example with the traditional graphic device. First of all, a plotting function is
needed

> myPlot <<- function(x,y,group,labels) {

+ plot(x,y,col = group, pch = 19)

+ }

note that the order argument only gives an order while the bullet is traversing a 3d rotation (no
order at a node).
then, a visualization instruction has to be defined using ng_2d_myplot

> viz1 <- ng_2d_myplot(ng.iris,ng.lg,fnName = "myPlot", device = "base")

> viz1

2D Axis Plot: nd_2d_myplot()

Plot function: myPlot

Graph: 3D Transition

Data: iris

and finally, you can call navGraph as used

> nav <- navGraph(ng.iris,ng.lg, viz1)

Note, that by default the base graphics system stores all the plotting instructions onto a device in
order to be able to redraw the device if it gets moved or scaled etc... In context with navGraph

were we are to plot and re-plot the data many times, this behavior is a nuisance and slows down
your computer. Hence you can turn off this behavior for the current active display (once it exists)
with the following command

> dev.control(displaylist = "inhibit")

Note that OSX has a weird implementation of double buffering. You need to let the bullet rest for
a while before the display gets refreshed. Hence animations wont work.

Further, see the demos: ng_2d_myplot_base and ng_2d_myplot_base.

30

5.3.2 with the initializeViz, updateViz and closeViz methods

This is a more advanced way to get custom visualization instructions running. If you do not know
much about the S4 object model you are probably better off using the ng_2d_myplot method de-
scribed above. In fact, if you do not plan to learn much about how RnavGraph works, you probably
should skip this section.

RnavGraph works internally with a “viz” object (S4). For every bullet status update or graph
change, the method initializeViz, updateViz or closeViz gets called with the viz object as the
first argument. We will give here a complete working example where we just print on the R promt
what transition we are currently on. If you decide to implement your own visualization instructions
this way, it’s best to also study the Viz2D_Axis.R file, found in the package source. This will server
for a more complex example.

First, you need to create a new class for your particular viz object, say testVizClass. testViz-

Class needs to inherit from the NG_Visualization class. NG_Visualization provides, among
others, two slots for data name and graph name that the visualization instructions connect. We do
not need to store additional information for our example, hence the following class definition will
do

> setClass(

+ Class="testVizClass",

+ representation =

+ representation(

+ ## No additional slots

+),

+ contains = "NG_Visualization"

+)

Now that we have defined a new class for our viz object, we need an object creator, much as ng_2d:

> myViz <- function(data,graph) {

+ if(is(data,"NG_data") == FALSE){

+ stop("data is no NG_data object.\n")

+ }

+ if(is(graph,"NG_graph") == FALSE){

+ stop("graph is no NG_graph object.\n")

+ }

+

+ return(new(

+ "testVizClass",

+ graph = graph@name,

+ data = data@name

+))

+ }

The object creator function myViz needs to know at least which graph and data set to associate the
visualization instructions to. Only pass the graph- and data name to the new function. Next, we
need to define what to do when the bullet get moved along the navigation graph. First we define

31

how the visualization gets initialized when we switch to the particular graph that is associated with
the viz object:

> setMethod(

+ f = "initializeViz",

+ signature = "testVizClass",

+ definition = function(viz,ngEnv){

+ print(paste('You switched to the graph', viz@graph))

+ return(viz)

+ })

As already mentioned, these methods are very much the core functionality of the navGraph function,
hence they need careful handling. The ngEnv object points to the navGraph session environment so
that the data and graph, etc..., can be accessed from the visualization instructions. Now we look
at the updateViz method which gets called every time the bullet gets moved

> setMethod(

+ f = "updateViz",

+ signature = "testVizClass",

+ definition = function(viz,ngEnv){

+ print(paste('You current state is:',
+ ngEnv$bulletState$from, 'to',
+ ngEnv$bulletState$to, 'and',
+ floor(ngEnv$bulletState$percentage*100), 'percent in between'))
+ return(viz)

+ })

Finally the method gets called when we switch away from the graph that is linked to our visualization
instructions

> setMethod(

+ f = "closeViz",

+ signature = "testVizClass",

+ definition = function(viz,ngEnv){

+ print(paste('Bye Bye', viz@graph))

+ return(viz)

+ })

You can test this code with the demo ng_own_viz.

> demo("ng_own_viz")

5.3.3 grid

See demo: ng_2d_myplot_grid.

5.3.4 rgl

See demo: ng_2d_myplot_grid.

32

6 Starting a navGraph Session

The navGraph function is the heart of the RnavGraph package. Once the NG_data, NG_graph and
NG_visualization objects have been correctly defined, one can pass them to the navGraph func-
tion which in turn starts the graphical user interface consisting of the graph with a bullet and the
visualizations.

We will first discuss the different scenarios the navGraph function accommodates. Then we move
on to the graphical user interface description. And finally we show how one can communicate with
the graphical user interface from the R prompt via the navGraph handler.

6.1 Calling navGraph

The navGraph R function has four arguments: data, graph, viz and settings, where the latter
three are optional. Except the settings argument, all of them accommodate either their corre-
sponding NG_ object or a list of their corresponding NG_ objects. A special case poses the data

argument which also accepts a navGraph handler in order to continue a saved session. More about
that later. There are no constraints about how graphs and data sets are connected via visualization
instructions as long they are consistent. For example, say we run 5 simulations and we would like
to compare their results via some visualization with navGraph. Further there might be three graphs
we are interested in traversing to explore the difference in the simulation results. This scenario
would look like

DataVisualization InstructionGraph

sim1

sim2

sim3

sim4

sim5

graph1

graph2

graph3

where each connecting line represents an NG_visualization instruction object. One could also
only choose a subset of these visualization instructions. Once the graphical user interface is started,
the user can then choose the graph he wants to explore and navGraph switches to the visualizations
connected to this graph. Hence, for a single navGraph the user “looks” form a single graph per-
spective (from the left side in the diagram above) at all the data connected via their visualization
instructions. For the iris example we have the following scenario

DataVisualization InstructionGraph

LG

LG

iris

tk2d

tk2d

If the navGraph only gets a NG_data- or a list of NG_data objects, it creates the graphs and
visualization instructions for a 3d and 4d transition graphs connected to the data with the tk2d

display.

33

6.1.1 Settings

The settings argument of the navGraph function determines the look and feel of the graph inter-
action interface. Currently one can not control the look and feel of the tk2d display. The settings

argument has to be a list optionally containing other named lists. The grand scheme of what can
be modified looks like

color (char) interaction (num) display tk2d (num)
background bulletRadius NSteps bg (char)
bullet nodeRadius animationTime brush colors (vect

char)
bulletActive lineWidth dragSelectRadius brush color (char)
nodes highlightedLineWidth labelDistRadius linked (logical)
nodesActive
adjNodes
adjNodesActive
notVisitedEdge
visitedEdge
edgeActive
labels
labelsActive
adjLabels
adjLabelsActive
path

where the color elements must be character string (recognized as a color) and the interaction

and display elements must be numeric. For example the following settings object would work

> navGraph(..., settings=list(color=list(background="green"),

+ interaction=list(bulletRadius=4, nodeRadius=3)))

Note that everything is case sensitive according to the table.

All, except the tk2, settings can be controlled once a navGraph session is running via the File >

Settings menu in the navigation graph GUI, see figure 6.1.1.

6.2 Graphical User Interface

Once navGraph has initialized the all displays, you will see one window with a graph similar to

A:B

A:D

B:C

C:D0

34

Figure 8: File > Settings menu in the navigation graph GUI.

and all the data visualization displays connected to the current graph. We will first cover how to
interact with the graph display and then move on to the interaction with the tk2d display.

Further, in the sections that follow, we will show some stripes of graphics about the interactions.
We refer to them via state1, state2, etc... (reset the numbers every time you see new stripe of
graphics).

6.2.1 Move the bullet

The bullet can be dragged in a intuitive way along the edges of the graph.

A:B

A:D

B:C

C:D40

A:B

A:D

B:C

C:D

Left Click and Drag

0

A:B

A:D

B:C

C:D0

1. Bullet on A:B

• All adjoining nodes and their connecting edges are highlighted via line with or color.

• The number in the upper left corner indicates the percentage the bullet has progressed
towards another node

2. Bullet between A:B and C:D

35

• now only the active edge and nodes are highlighted

3. Bullet arrived on C:D

• Same as in 1) but the edge A:B to C:D has a different color to indicate that we have
traversed along this edge.

When you drag the bullet in State 1 towards a node, navGraph won’t constrain the bullets move
for some small radius around the current node position. This way, as soon as you cross the pre-
specified radius, navGraph calculates which edge is closest to the direction you moved the bullet
and constrains the bullet to move along this edge. If your graph is so large that it is very hard for
you to land on the desired edge, you can also select an adjoining node with a single left mouse click
while in state 1. If the node you select is not adjoining, the bullet jumps to this non adjoining node.

A:B

A:D

B:C

C:D

drag

40

A:B

A:D

B:C

C:D0

A:B

A:D

B:C

C:D

Select adjoining node

0

Note that once you move along an edge, you can also use your scroll wheel on the mouse to control
the bullet.

6.2.2 Modify the Graph Layout

The user can also modify the layout of the graph by dragging nodes on the canvas while pressing
the CTRL key.

A:B

A:D

B:C

C:D
Ctrl & drag

0

A:B

A:D

B:C

C:D drag
0

A:B

A:D

B:C

C:D0
Ctrl Key & Left Mouse Button

There are no constraints for the nodes to be moved around even outside the canvas border!. However
the labels of the nodes must be moved within the in the settings defined labelDistRadius radius
(coloured blue here).

6.2.3 Animate

Once you move the bullet on an edge, you can let the bullet move towards one of the two nodes
that define the edge by double clicking on that node. If you click on another node, the bullet
jumps there. For the case of the bullet being on one node, you can double click on an adjoining

36

node, the first click will act as edge selection and the second click as an animation command. The
animation speed is determined by the animationTime variable in the interaction settings. That is,
animationTime/NSteps is the pause before the bullet moves an increment towards the node. Note
however that the time from one node to the other is not equal animationTime, since the updating
displays and doing other “housekeeping” in navGraph also take up time. (More precisely as long as
if you select animationTime=0).

A:B

A:D

B:C

C:D40

A:B

A:D

B:C

C:D

Double Click

0

A:B

A:D

B:C

C:D0

6.2.4 Paths

Instead of guiding the bullet by dragging it along edges, you can also select a path in order to later
animate the path (in the sense of animation above). You create a path by selecting adjoining nodes
while having the Shift key pressed down. Once you are done, you can double click on the last node
while still holding the Shift key pressed down and navGraph will animate or walk along the just
specified path

A:B

A:D

B:C

C:D0
Shift & Click

A:B

A:D

B:C

C:D

Shift & Click

0

A:B

A:D

B:C

C:D

Shift & Double Click

0

A:B

A:D

B:C

C:D

Note that as soon as you release the shift key, you are out of the path mode. However if you go to
the Tools > Paths menu on the graph display window, you will find your path as Active Path saved.

You can also animate a path with the ng_walk function from the R prompt. The ng_walk function
takes as an argument a navGraph handler and a path either in the form of a vector of node names
or in the form of a single string where the sequence of node names is separated by a space. Lets see
an example

> nav <- navGraph(ng.iris)

> ng_walk(nav,"s.L:s.W s.L:p.L p.L:p.W s.L:p.W")

or the path as a vector

> ng_walk(nav,c("s.L:s.W","s.L:p.L","p.L:p.W","s.L:p.W"))

Note that every path sent to ng_walk gets stored as the active path in the path tool.

Currently, a path is considered to be a sequence of adjoining nodes (no gaps).

37

6.2.5 The navGraph Handler

The navGraph handler links the graphical user interface with the R prompt. A good example of
its use was the ng_walk function we introduced in the last section. The navGraph handler contains
all the data, graphs and settings but not the images of the navGraph session in progress. Hence if
you work with large data, you want to avoid having a many navGraph handlers in your workspace.
The navGraph handler gets returned from a navGraph function call

> library(RnavGraph)

> ## import the data

> ng.iris <- ng_data(name = "iris", data = iris[,1:4],

+ shortnames = c('s.L', 's.W', 'p.L', 'p.W'),
+ group = iris$Species,

+ labels = substr(iris$Species,1,2))

> ## start navGraph

> nav <- navGraph(ng.iris)

Session 1, Data iris is new!

> nav

RnavGraph handler:

created : Tue Apr 30 15:34:51 2013

last updated : not

graphs : iris : 3D, iris : 4D

data : iris

You can now brush data and change color and size of objects and add paths. You can save the
current state of a navGraph session with ng_update

> nav <- ng_update(nav)

> nav

RnavGraph handler:

created : Tue Apr 30 15:34:51 2013

last updated : Tue Apr 30 15:34:51 2013

graphs : iris : 3D, iris : 4D

data : iris

Note that the last updated field changed. Updating the navGraph handler is particular useful for
getting the new groups (according to color and size of the tk2d display).

> ng_get(nav)

possible options are: graphs, paths, data, viz

38

the objects graphs, data and viz are lists of their corresponding NG_object. However if only one
element is in the list, ng_get unlists the object

> ng_get(nav,"data")

object from NG_data class.

name: iris

data: 150 x 4

Variable Names | Short Names

Sepal.Length | s.L

Sepal.Width | s.W

Petal.Length | p.L

Petal.Width | p.W

group: 4 groups.

labels: se, ve, vi.

> ng_get(ng_get(nav,"data"),"group")[1:5]

[1] "c{#377EB8};s5" "c#377EB8;s5" "c#377EB8;s5" "c#377EB8;s5"

[5] "c#377EB8;s5"

the coding for the tk2d display is “c<color>;s<size>”. However, note that you can also obtain color
and size with the ng_get_color and ng_get_sizefunction discussed below. Getting the group for
each data point only works with the tk2d data display. For any other custom display the user must
provide his own way to get the new group classifiers whenever he incorporates a brushing tool. The
navGraph handler can also be used to restart a navGraph session

> nav1 <- navGraph(nav)

however note that this way the images get lost in the new tk2d display. This is because the images
are stored in the tcl layer, and the images are usually too large to be saved in navGraph handlers.

Again the example with the ng_walk function

> ng_walk(nav,"s.L:s.W s.L:p.L p.L:p.W s.L:p.W")

> ng_walk(nav,c("s.L:s.W","s.L:p.L","p.L:p.W","s.L:p.W"))

Theoretically, the navGraph handler can be saved using save and restored in a new R session using
the load command. However we recommend to initialize a new navGraph session from scratch if
possible.

6.3 The tk2d Display

The tk2d display was programmed by us especially for the RnavGraph package. It accommodates
displaying dots, images, glyphs and text. It also provides the user with a lot of interactivity pos-
sibilities such as brushing, zooming and resizing of the window. Further if for a particular graph
two tk2d windows display the same data, then the data points are linked between the windows.

39

This means that if you for example change the color or size of some points on one display, the same
points in the other window also change color or size.

The tk2d window for the iris data looks as follows

The display is designed to be intuitive. So getting familiar with it should not pose any big problems.

6.3.1 Zooming and Moving the viewing region

The tk2d display shows the data always twice, in the “main view” on the left and in the “world
view” in the upper right corner. The “world view” in the upper right corner always displays all the
data points and provides as its name suggest a view of “your whole data world”. The “main view”
allows the user to zoom in and out, brush points and deactivate and reactivate points. The zoom
factor of the “main view” is displayed above the world view. The mouse scroll wheel is used to
zoom in and out either while the mouse is placed within the “world view” or “main view”. If the
user zooms in or out in the “main view” the center of zooming is where the mouse cursor points
at, where in the “world view” the zooming center is always in the middle of the viewing rectangle.
When you zoom in, your current view at the data is shown in the “world view” with a rectangle of
the same color as background color of the “main view”.

If zoomed in, you can move your current view in the “main view” by pressing the right mouse button
and dragging your view to the desired place. In the “world view” you can just drag and drop the
viewing rectangle (left mouse button).

6.3.2 Brushing and Selecting

The tk2d display allows to change the color and size of objects, but also to hide (deactivate)
objects. We use size and color since they are (the only) two attributes that are shared between
points, glyphs, images and text. Currently the text size however does not change!. You can select
points objects only in the “main view” by either selecting and deselecting them with a left mouse
click or by using the brush tool. Selecting them with a mouse click deselects the previously with
a mouse click selected point. If you want to select points permanently you need to press the Shift key.

40

When you check the brush checkbox, a gray rectangle appears in the upper right corner. You can
resize the brush rectangle by dragging the solid rectangle on its right lower corner. You can move
the rectangle by clicking anywhere in the “main view” and the brush rectangle jumps to your mouse
cursor and also moves with it while your mouse button is still pressed. By default, the points below
the brush rectangle don’t get brushed permanently. If you want to brush permanently you need to
press the Shift key while brushing. Points can only be deselected individually by clicking on them
with the shift key pressed, or all together by either pressing the none button or by double clicking
the right mouse button while pointing the courser on the main view.

6.3.3 Moving Individual Points Temporarily

If you need to spread out some points in order to get a closer look at each point, you can either
zoom in or move the selected points by mouse drag and drop while pressing the Ctrl key. Once
you change the bullet state, all points go back to their location according the bullet state.

6.3.4 Deactivating and Reactivating points

Once you have grouped a set of points by assigning them different color and size, you might want
to hide them so you can group the rest of the points without the distraction of the already grouped
points. You can do this by selecting these points and then press “deactivate” in the modify menu.
The button will then stay highlighted to indicate that not all the data is shown. You can deactivate
different data points in multiple steps by selecting them and repeatedly pressing the “deactivate”
button. Once you press the “reactivate” button all point will appear again.

6.3.5 Changing Color and Size

Once you have some points selected, you can change their size and color. You can change the size of
the points immediately pressing the“abs”or“rel”+ or -. The tk2d gives each object a size attribute.
Absolute (abs) resizing changes all selected objects to the minimum of the object’s sizes plus or
minus one size. The relative (rel) resizing increments or decrements all sizes by one. If you were
to select five objects with the sizes {2, 3, 3, 4, 6} and press the rel - button, your new sizes would
be {1, 2, 2, 3, 5} and if you were to press the rel - button again you would get {0, 1, 1, 2, 5}. Note
that you can get negative sizes which theoretically would not show on the “main view” anymore,
we chose however to display them with minimal possible display size. This might be confusing at
the beginning. If you have a set of points selected with the sizes {2, 3, 3, 4, 6} and you were to press
the abs + button you would get {3, 3, 3, 3, 3} or the abs - button you would get {1, 1, 1, 1, 1}. Size
changes take effect immediately.

Changing the color of objects takes place once you have some points brushed and select a colorbox.
However you wont notice the change until you deselect all the points. (Use Selection none, invert
or all).

6.3.6 Getting and Setting Color and Size

You can get (retrieve) and set the color and size for each point back to your R session, as long your
navGraph session is still active (running). Note that you can get the colors and sizes also from an
navGraph handler that does not point to an active navGraph session (more on this later).

41

For an active navGraph session, you can use the ng_get_color, ng_get_size, ng_set_color<-
and ng_set_size<- functions.

> data(olive)

> ng.olive <- ng_data(name = "Olive",

+ data = data.frame(olive[,-c(1,2)]))

> nav <- navGraph(list(ng.iris,ng.olive)) ## Start navGraph Session with two data sets

Session 2, Data iris is linked!

Session 2, Data Olive is new!

> ## get colors

> colIris <- ng_get_color(nav, "iris")

> sizeOlive <- ng_get_size(nav, "Olive")

> ## the following will tell you to specify your data set

> col <- ng_get_color(nav)

Specify data name. Choose from:

iris, Olive

> ## set all points for iris data to red

> ng_set_color(nav,"iris") <- "red"

> ## set to random colors

> ng_set_color(nav,"iris") <- sample(c("red","yellow","green"),replace = TRUE, 150)

> ## set all points to same size

> ng_set_size(nav,"iris") <- 1

> ## set set points to random sizes

> ng_set_size(nav,'iris') <- sample(1:7, replace=TRUE, 150)

Consult the manual entries for more details.

If you have an updated! (ng_update) navGraph handler and closed the navGraph session, you can
still access color and size as follows

> nav <- ng_update(nav)

> ## For iris

> attrIris <- ng_get(ng_get(nav,"data")[[1]],"group")

> attrIris[1:4]

[1] "cgreen;s5" "cyellow;s7" "cgreen;s1" "cgreen;s3"

> ## For olive

> attrOlive <- ng_get(ng_get(nav,"data")[[2]],"group")

> attrOlive[1:4]

[1] "c{#377EB8};s5" "c#377EB8;s5" "c#377EB8;s5" "c#377EB8;s5"

where the returned string combines the color code and size information.

42

6.3.7 Linking Data between two tk2d displays

If you display twice (or more) the same data in two tk2d displays that are controlled from within
the same or different navGraph sessions, modifying one point in a particular tk2d display modifies
all the points from the same data in all tk2d displays. Such an example session could be

> V <- shortnames(ng.iris)

> G <- completegraph(V)

> LG <- linegraph(G)

> LGnot <- complement(LG)

> ng.lg <- ng_graph(name = '3D Transition', graph = LG, layout = 'circle')
> ng.lgnot <- ng_graph(name = '4D Transition', graph = LGnot, layout = 'circle')
> viz1 <- ng_2d(ng.iris,ng.lg, glyphs = V[c(1,2,3,4,1,3,2,4)])

> viz2 <- ng_2d(ng.iris,ng.lg)

> viz <- list(viz1, viz2)

> graphs <- list(ng.lg, ng.lgnot)

> nav <- navGraph(graph = graphs, data = ng.iris, viz = viz)

Note how ng.lg points twice to the ng.iris data.

Alternatively you can also start navGraph twice

> nav1 <- navGraph(ng.iris)

> nav2 <- navGraph(ng.iris)

note how a message pops up in the R prompt saying the iris data has been linked. You can tell
navGraph that it should not link the data

> nav3 <- navGraph(ng.iris, settings = list(tk2d=list(linked = FALSE)))

Currently, if you wish you had a complete new state, close R and start it again.

7 Scagnostics and RnavGraph

Scagnostics allows one to find graphs that have certain properties, such as the nodes representing
clumpy, stringy or convex scatterplots. See Wilkinson, Anand and Grossman 2005. We will demon-
strate how you can use scagnostics to the define the variable graphs. The example data in this
section is the olive data, provided in the RnavGraph package.

> library(scagnostics)

> data(olive)

> ng.olive <- ng_data(name = "Olive",

+ data = olive[,-c(1,2)],

+ shortnames = c("p1","p2","s","ol","l1","l2","a","e"),

+ group = as.numeric(olive$Area)+1

+)

43

7.1 The quick way

The scagNav R function initializes a navGraph session, with 3d and 4d transition graphs that have
nodes which satisfy the desired scagnostic property defined with the scag argument. When calling
the scagnostics function in the scagnostics R package, scagnostics returns a matrix with all
the possible satterplot combinations in the column and all the scagnostic measures in the rows

> scagMat <- scagnostics(olive)

> rownames(scagMat)

[1] "Outlying" "Skewed" "Clumpy" "Sparse" "Striated" "Convex"

[7] "Skinny" "Stringy" "Monotonic"

The names of these scagnostic measures in combination with a preceding “Not” can be used for the
scag argument. If you, for example, look for NotClumpy, a variable 1 − Clumpy gets generated.
Further, you can choose a top fraction of scatterplots showing a certain measure most to be displayed
in the graph using the topFrac argument. scagNav will generate for each scag element a 3d and 4d
transition graph, except if the combineFn arguments gets specified. The combineFn argument takes
any function defined on a vector of scagnostic measure weights such as sum or max. This is for
example useful, if you would like to create a graph that either displays clumpy or stringy patterns
in its 2d scatterplot nodes.

> nav <- scagNav(data = ng.olive,

+ scags = c("Skinny", "Sparse", "NotConvex"),

+ topFrac = 0.2,

+ combineFn = max,

+ glyphs = shortnames(ng.olive)[1:8],

+ sep = ':')

or

> nav <- scagNav(data = ng.olive,

+ scags = c("Skinny", "Sparse", "NotConvex"),

+ topFrac = 0.2,

+ glyphs = shortnames(ng.olive)[1:8],

+ sep = '+')

Careful, scags is case sensitive.

7.2 The detailed way

The scagNav function generates 3d and 4d transition graphs with their corresponding tk2d vi-
sualization. We now show how to do each step so that the user can work with the graphs and
visualization instructions and finally call the navGraph function. For every navGraph session needs
to know the data, graphs and the visualization instruction (this should be your mantra for the next
few days). We have already defined the ng.olive data object, we now want to create a variable
graph or a set of variable graphs who’s edges carry weights from the scagnostics function. Hence
we first have to extract the weights of interest. This is done using our scagEdgeWeights function

44

> edgeWts <- scagEdgeWeights(data = ng.olive, scags = c("Clumpy", "Skinny"))

> edgeWts$fromToEdgeMatrix[1:3,]

from to Clumpy Skinny

[1,] 1 2 0.01425229 0.5928461

[2,] 1 3 0.01101357 0.5185595

[3,] 1 4 0.02674608 0.5791038

> edgeWts$nodeNames

[1] "p1" "p2" "s" "ol" "l1" "l2" "a" "e"

the numbers in the from and to column correspond with the order of the nodeNames. Note that
the data argument can either be a NG_data object or a data.frame. There is also a combineFn

argument which takes a function:

> edgeWts <- scagEdgeWeights(data = ng.olive,

+ scags = c("Clumpy", "Skinny"),

+ combineFn = max)

> edgeWts$fromToEdgeMatrix[1:3,]

from to combined weights

[1,] 1 2 0.5928461

[2,] 1 3 0.5185595

[3,] 1 4 0.5791038

or

> edgeWts <- scagEdgeWeights(data = ng.olive,

+ scags = c("Clumpy", "Skinny"),

+ combineFn = function(x){2*x[1]+3*x[2]})

> edgeWts$fromToEdgeMatrix[1:3,]

from to combined weights

[1,] 1 2 1.807043

[2,] 1 3 1.577706

[3,] 1 4 1.790803

Currently, the combineFn only takes a function which returns a single value.

We now could manually create a variable graph using newgraph where we only draw an edge if the
combined weight of an edge lies within the top 20% quantile

> weights <- edgeWts$fromToEdgeMatrix[,"combined weights"]

> ii <- weights>quantile(weights,0.8)

> G <- newgraph(nodeNames = edgeWts$nodeNames,

+ mat = edgeWts$fromToEdgeMatrix[ii,c(1,2)], weights = weights[ii])

> plot(G)

45

p1 p2 s ol l1 l2a

e

where the weights are part of the graph G, see for example

> edgeData(G, attr="weight")$'p1|e'

[1] 2.968342

and hence we could run navGraph

> ng.lg <- ng_graph("3d olive",linegraph(G))

> viz <- ng_2d(ng.olive,ng.lg)

> nav <- navGraph(ng.olive,ng.lg,viz)

Now this becomes tedious if you have multiple scagnostic measures and hence you would have to
create graph for each measure. The scagGraph function simplifies this task. Note how scagGraph

creates graph object or a list of graph objects with one single call

> par(mfrow = c(2,2))

> G_1 <- scagGraph(edgeWts, topFrac = 0.2)

> plot(G_1)

> edgeData(G_1,attr = "weight")$'p1|e'

[1] 2.968342

> G_1 <- scagGraph(edgeWts, topFrac = 0)

> plot(G_1)

> G_1 <- scagGraph(edgeWts, topFrac = 1)

> plot(G_1)

> G_1 <- scagGraph(edgeWts, topFrac = 0.0001)

> plot(G_1)

46

p1 p2 s ol l1 l2a

e

●p1 ●p2 ●s ●ol ●l1 ●l2 ●a ●e

●p1

●p2

●s

●ol

●l1

●l2

●a

●e

p1 p2 s ol l1 l2 a

e

And for multiple scagnostic measures

> edgeWts <- scagEdgeWeights(data = ng.olive,

+ scags = c("Clumpy","NotClumpy","Monotonic"),

+ combineFn = NULL)

> graphList <- scagGraph(edgeWts, topFrac = 0.2)

> graphList

$Clumpy

A graphNEL graph with undirected edges

Number of Nodes = 8

Number of Edges = 6

$NotClumpy

A graphNEL graph with undirected edges

Number of Nodes = 8

Number of Edges = 6

$Monotonic

A graphNEL graph with undirected edges

Number of Nodes = 8

Number of Edges = 6

Now start navGraph

> nav <- navGraph(ng.olive, graphList)

47

8 Example sessions on different data

In this last section, we will give example code for navGraph sessions using different well known data
sets. Some of them are provided by the MASS library

> library(MASS)

8.1 Iris

> ng.iris <- ng_data(name = "iris", data = iris[,1:4],

+ shortnames = c('s.L', 's.W', 'p.L', 'p.W'),
+ group = as.numeric(iris$Species),

+ labels = substr(iris$Species,1,2))

> nav <- navGraph(ng.iris)

8.2 Olive

> library(PairViz)

> data(olive)

> d.olive <- data.frame(olive[,-c(1,2)])

> ng.olive <- ng_data(name = "Olive",

+ data = d.olive,

+ shortnames = c("p1","p2","s","oleic","l1","l2","a","e"),

+ group = as.numeric(olive[,"Area"]),

+ labels = as.character(olive[,"Area"])

+)

> ng.olive

> G <- completegraph(shortnames(ng.olive))

> LG <- linegraph(G)

> ng.lg <- ng_graph("3d olive",LG, layout = 'kamadaKawaiSpring')
> ng.lgnot <- ng_graph("4d olive",complement(LG), layout = 'kamadaKawaiSpring')
> nav <- navGraph(ng.olive,

+ list(ng.lg,ng.lgnot),

+ list(ng_2d(ng.olive,ng.lg),ng_2d(ng.olive,ng.lgnot)))

> ng_walk(nav, eulerian(as(LG,"graphNEL"))[1:7])

8.3 US Judge Ratings

> library(MASS)

> ng.data <- ng_data(name = "US Judge Ratings", data = USJudgeRatings)

> p <- ncol(USJudgeRatings)

> adjM <- matrix(0,ncol=p,nrow=p)

> adjM[c(1:8,11),c(9,10,12)] <- 1

> adjM[c(9,10,12),c(1:8,11)] <- 1

> G <- newgraph(names(ng.data),adjM, isAdjacency = TRUE)

> ng.lg <- ng_graph("3d Us Judge",linegraph(G),layout = 'fruchtermanReingold')
> nav <- navGraph(ng.data,ng.lg,ng_2d(ng.data,ng.lg))

48

8.4 Storm Tracks

> names(stormtracks)

> storms <- stormtracks[,c(2:9,11)]

> ng.storms <- ng_data(name = "Storm tracks",

+ data = stormtracks[,c(2:9,11)],

+ group = as.numeric(stormtracks[,"type"]),

+ labels = stormtracks[,"type"])

> p <- ncol(ng_get(ng.storms,"data"))

> adjM <- matrix(0,ncol=p,nrow=p)

> adjM[c(1,2,4,5,6),c(7,8,9)] <- 1

> adjM[c(7,8,9),c(1,2,4,5,6)] <- 1

> adjM[c(7,8,9),c(7,8,9)] <- 1

> adjM[7,7] <- adjM[8,8] <- adjM[9,9] <- 0

> adjM[c(5,6),c(5,6)] <- 1

> adjM[5,5] <- adjM[6,6] <- 0

> G <- newgraph(names(ng.storms),adjM, isAdjacency = TRUE)

> LG <- linegraph(G)

> ng.lg <- ng_graph("3d storm tracks", LG, layout = 'kamadaKawaiSpring')
> ng.lgnot <- ng_graph("4d storm tracks", complement(LG), layout = 'kamadaKawaiSpring')
> viz1 <- ng_2d(ng.storms,ng.lg)

> viz2 <- ng_2d(ng.storms,ng.lgnot)

> nav <- navGraph(ng.storms,

+ list(ng.lg,ng.lgnot),

+ list(viz1,viz2))

8.5 US cereal

> ng.data <- ng_data(name = "USCereal",

+ data = UScereal[,c(2:8,10)],

+ shortnames = c("cal","prot","fat","sod","fib","carb","sug","pt"),

+ group = UScereal[,1],

+ labels = UScereal[,1])

> nav <- navGraph(ng.data)

> nav <- scagNav(ng.data, scags = "Outlying", topFrac = 0.2)

8.6 Boston Housing

> ng.data <- ng_data(name = "Boston",

+ data = Boston[,-9],

+ shortnames = names(Boston[,-9]),

+ group = Boston[,"rad"])

> nav <- navGraph(ng.data)

> nav <- scagNav(ng.data, scags = "Clumpy", topFrac = 0.2)

49

8.7 Birth Weight

> ng.data <- ng_data(name = "Birth Weight Data",

+ data = birthwt[,c(1:3,5:10)],

+ group = birthwt[,4])

> p <- ncol(ng_get(ng.data,"data"))

> adjM <- matrix(0,ncol=p,nrow=p)

> adjM[c(1:8),c(9)] <- 1

> adjM[c(9),c(1:8)] <- 1

> G <- newgraph(names(ng.data),adjM,isAdjacency = TRUE)

> LG <- linegraph(G, sep = "++")

> ng.lg <- ng_graph("3d birth weight", LG, sep = "++")

> ng.lgnot <- ng_graph("34 birth weight", complement(LG), sep = "++")

> nav <- navGraph(ng.data, list(ng.lg, ng.lgnot), list(ng_2d(ng.data,ng.lg),ng_2d(ng.data,ng.lgnot)))

8.8 Swiss bank note data

> require(alr3)

> data(banknote)

> names(banknote[,1:6])

> ng.data <- ng_data(name = "Swiss bank note Data",

+ data = banknote[,1:6],

+ shortnames = names(banknote[,1:6]),

+ group = banknote[,7])

> nav <- navGraph(ng.data)

> nav <- scagNav(ng.data, scags = "Clumpy", topFrac = 0.2)

8.9 Body Dimensions Data

> require(gclus)

> data(body)

> names(body[,1:10])

> ng.data <- ng_data(name = "Body Dimensions",

+ data = body[,1:24],

+ group = body[,25])

> nav <- navGraph(ng.data)

> nav <- scagNav(ng.data, scags = "Clumpy", topFrac = 0.1)

8.10 Ozone Data

> require(gclus)

> data(ozone)

> ng.data <- ng_data(name = "Ozone data",

+ data = ozone)

> nav <- navGraph(ng.data)

> ## Breiman and Friedman's selection

> p <- ncol(ng_get(ng.data,"data"))

> adjM <- matrix(0,ncol=p,nrow=p)

50

> adjM[c(1),c(2,4,5,6)] <- 1

> adjM[c(2,4,5,6),c(1)] <- 1

> G <- newgraph(names(ng.data),adjM, isAdjacency = TRUE)

> LG <- linegraph(G)

> ng.lg <- ng_graph("3d ozone", LG, layout="circle")

> ng.lgnot <- ng_graph("4d ozone", complement(LG), layout="circle")

> nav <- navGraph(ng.data, list(ng.lg, ng.lgnot), list(ng_2d(ng.data,ng.lg), ng_2d(ng.data,ng.lgnot)))

8.11 Swiss fertility

> ng.data <- ng_data(name = "SwissFertility",

+ data = swiss,

+ shortnames = c("Fer","Agri","Exam","Edu","Cath","IM"))

> p <- ncol(swiss)

> adjM <- matrix(0,ncol=p,nrow=p)

> adjM[1:5,6] <- 1

> adjM[6,1:5] <- 1

> G <- newgraph(shortnames(ng.data),adjM,isAdjacency=TRUE)

> LG <- linegraph(G)

> ng.lg <- ng_graph("3d fertility", LG, layout='circle')
> ng.lgnot <- ng_graph("4d fertility", complement(LG), layout="fruchtermanReingold")

> nav <- navGraph(ng.data, list(ng.lg, ng.lgnot), list(ng_2d(ng.data,ng.lg), ng_2d(ng.data,ng.lgnot)))

8.12 Challenger

> require(alr3)

> data(challeng)

> ng.data <- ng_data(name = "Challenger Data",

+ data = challeng[,c(1:3,5:7)])

> p <- ncol(ng_get(ng.data,"data"))

> adjM <- matrix(0,ncol=p,nrow=p)

> adjM[c(1,2),c(3:6)] <- 1

> adjM[c(3:6),c(1,2)] <- 1

> G <- newgraph(names(ng.data),adjM,isAdjacency = TRUE)

> LG <- linegraph(G)

> ng.lg <- ng_graph("3d challenger", LG)

> ng.lgnot <- ng_graph("4d challenger", complement(LG))

> nav <- navGraph(ng.data, list(ng.lg, ng.lgnot), list(ng_2d(ng.data,ng.lg), ng_2d(ng.data,ng.lgnot)))

8.13 Animal

> library(PairViz)

> require(cluster)

> data(animals)

> names(animals)

> ng.data <- ng_data(name = "Animal Data",

+ data = animals)

51

> nav <- navGraph(ng.data)

> ng_walk(nav, eulerian(as(ng_get(ng_get(nav,"graphs")[[1]],"graph")),"graphNEL"))

9 Acknowledgments

We’d like to thank the R community who contributes actively to the R mailing list. We’d like to
thank Simon Urbanek in particular, as he helped us to deal with a few problems that caused us
headaches for some time.
RnavGraph is partially supported by an Ontario Graduate Scholarship.

References

• Hurley, C. B.; and R. W. Oldford. “Graphs as Navigational Infrastructure for High Dimen-
sional Data Spaces.” Computational Statistics (February 2011).

• Wilkinson, Leland; Anushka Anand; Robert Grossman. “Graph-theoretic Scagnostics.” Pro-
ceedings - IEEE Symposium on Information Visualization (2005): 157-164.

52

