CRAN Package Check Results for Package dplyr

Last updated on 2014-10-02 01:48:14.

Flavor Version Tinstall Tcheck Ttotal Status Flags
r-devel-linux-x86_64-debian-clang 0.2 67.49 40.85 108.34 ERROR
r-devel-linux-x86_64-debian-gcc 0.2 90.46 38.09 128.55 ERROR
r-devel-linux-x86_64-fedora-clang 0.2 240.51 ERROR
r-devel-linux-x86_64-fedora-gcc 0.2 259.07 ERROR
r-devel-osx-x86_64-clang 0.2 158.72 ERROR
r-devel-windows-ix86+x86_64 0.2 230.00 96.00 326.00 ERROR
r-patched-linux-x86_64 0.2 88.84 43.50 132.34 ERROR
r-patched-solaris-sparc 0.2 1941.70 ERROR
r-patched-solaris-x86 0.2 325.30 ERROR
r-release-linux-ix86 0.2 114.66 56.13 170.78 ERROR
r-release-linux-x86_64 0.2 89.98 44.58 134.56 ERROR
r-release-osx-x86_64-mavericks 0.2 NOTE
r-release-osx-x86_64-snowleopard 0.2 NOTE
r-release-windows-ix86+x86_64 0.2 231.00 106.00 337.00 ERROR
r-oldrel-windows-ix86+x86_64 0.2 238.00 121.00 359.00 ERROR

Check Details

Version: 0.2
Check: package dependencies
Result: NOTE
    Package suggested but not available for checking: ‘bigrquery’
Flavors: r-devel-linux-x86_64-debian-clang, r-devel-linux-x86_64-debian-gcc, r-devel-linux-x86_64-fedora-clang, r-devel-linux-x86_64-fedora-gcc, r-patched-linux-x86_64, r-release-linux-ix86, r-release-linux-x86_64, r-release-osx-x86_64-snowleopard

Version: 0.2
Check: installed package size
Result: NOTE
     installed size is 14.9Mb
     sub-directories of 1Mb or more:
     libs 13.2Mb
Flavors: r-devel-linux-x86_64-debian-clang, r-devel-linux-x86_64-debian-gcc, r-devel-linux-x86_64-fedora-clang, r-devel-linux-x86_64-fedora-gcc, r-devel-windows-ix86+x86_64, r-patched-linux-x86_64, r-patched-solaris-sparc, r-patched-solaris-x86, r-release-linux-ix86, r-release-linux-x86_64, r-release-osx-x86_64-mavericks, r-release-osx-x86_64-snowleopard, r-release-windows-ix86+x86_64, r-oldrel-windows-ix86+x86_64

Version: 0.2
Check: dependencies in R code
Result: NOTE
    Namespaces in Imports field not imported from:
     ‘Lahman’ ‘hflights’ ‘magrittr’ ‘methods’
     All declared Imports should be used.
    See the information on DESCRIPTION files in the chapter ‘Creating R
    packages’ of the ‘Writing R Extensions’ manual.
Flavors: r-devel-linux-x86_64-debian-clang, r-devel-linux-x86_64-debian-gcc, r-devel-linux-x86_64-fedora-clang, r-devel-linux-x86_64-fedora-gcc, r-devel-osx-x86_64-clang, r-devel-windows-ix86+x86_64, r-patched-linux-x86_64, r-patched-solaris-sparc, r-patched-solaris-x86, r-release-linux-ix86, r-release-linux-x86_64, r-release-osx-x86_64-mavericks, r-release-osx-x86_64-snowleopard, r-release-windows-ix86+x86_64, r-oldrel-windows-ix86+x86_64

Version: 0.2
Check: R code for possible problems
Result: NOTE
    anti_join.tbl_dt: no visible global function definition for ‘setkeyv’
    auto_copy.tbl_dt: no visible global function definition for
     ‘as.data.table’
    compare_tbls: no visible global function definition for ‘expect_true’
    db_data_type.DBIConnection: no visible binding for global variable
     ‘dbDataType’
    db_info: no visible global function definition for ‘dbGetInfo’
    db_list_tables.DBIConnection: no visible global function definition for
     ‘dbListTables’
    dbi_connect.DBIDriver: no visible global function definition for
     ‘dbConnect’
    dbi_connect.SQLiteDriver: no visible global function definition for
     ‘dbConnect’
    dt_col_compute: no visible global function definition for
     ‘is.data.table’
    grouped_dt: no visible global function definition for ‘is.data.table’
    grouped_dt: no visible global function definition for ‘setkeyv’
    inner_join.tbl_dt: no visible global function definition for ‘setkeyv’
    left_join.tbl_dt: no visible global function definition for ‘setkeyv’
    qry_fetch.DBIConnection: no visible global function definition for
     ‘dbSendQuery’
    qry_fetch.DBIConnection: no visible global function definition for
     ‘dbClearResult’
    qry_fetch_paged: no visible global function definition for
     ‘dbSendQuery’
    qry_fetch_paged: no visible global function definition for
     ‘dbClearResult’
    qry_fetch_paged: no visible global function definition for
     ‘dbHasCompleted’
    qry_fields.DBIConnection: no visible global function definition for
     ‘dbSendQuery’
    qry_fields.DBIConnection: no visible global function definition for
     ‘dbClearResult’
    qry_fields.DBIConnection: no visible global function definition for
     ‘dbGetInfo’
    qry_fields.MonetDBConnection: no visible global function definition for
     ‘dbGetQuery’
    qry_run: no visible global function definition for ‘dbBeginTransaction’
    qry_run: no visible global function definition for ‘dbCommit’
    qry_run: no visible global function definition for ‘dbSendQuery’
    qry_run: no visible global function definition for
     ‘dbSendPreparedQuery’
    qry_run: no visible global function definition for ‘dbClearResult’
    res_warn_incomplete: no visible global function definition for
     ‘dbHasCompleted’
    res_warn_incomplete: no visible global function definition for
     ‘dbGetRowCount’
    reset.src_sql: no visible global function definition for
     ‘dbRemoveTable’
    select.data.table: no visible global function definition for ‘setnames’
    select.grouped_dt: no visible global function definition for ‘setnames’
    semi_join.tbl_dt: no visible global function definition for ‘setkeyv’
    sql_begin_trans.SQLiteConnection: no visible global function definition
     for ‘dbBeginTransaction’
    sql_commit.DBIConnection: no visible global function definition for
     ‘dbCommit’
    sql_rollback: no visible global function definition for ‘dbRollback’
    src_monetdb: no visible global function definition for ‘MonetDB.R’
    src_mysql: no visible global function definition for ‘MySQL’
    src_postgres: no visible global function definition for ‘PostgreSQL’
    src_sqlite: no visible global function definition for ‘SQLite’
    table_fields.DBIConnection: no visible global function definition for
     ‘dbListFields’
    tbl_dt: no visible global function definition for ‘as.data.table’
Flavors: r-devel-linux-x86_64-debian-clang, r-devel-linux-x86_64-debian-gcc, r-devel-linux-x86_64-fedora-clang, r-devel-linux-x86_64-fedora-gcc, r-devel-osx-x86_64-clang, r-devel-windows-ix86+x86_64

Version: 0.2
Check: examples
Result: ERROR
    Running examples in ‘dplyr-Ex.R’ failed
    The error most likely occurred in:
    
    > ### Name: tbl_df
    > ### Title: Create a data frame tble.
    > ### Aliases: tbl_df
    >
    > ### ** Examples
    >
    > ds <- tbl_df(mtcars)
    > ds
    Source: local data frame [32 x 11]
    
     mpg cyl disp hp drat wt qsec vs am gear carb
    Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
    Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
    Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
    Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1
    Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2
    Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1
    Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4
    Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2
    Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2
    Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4
    Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4
    Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3
    Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3
    Merc 450SLC 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3
    Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4
    Lincoln Continental 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4
    Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4
    Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
    Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
    Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
    Toyota Corona 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1
    Dodge Challenger 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2
    AMC Javelin 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2
    Camaro Z28 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4
    Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2
    Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1
    Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2
    Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2
    Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4
    Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6
    Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8
    Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2
    > as.data.frame(ds)
     mpg cyl disp hp drat wt qsec vs am gear carb
    Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
    Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
    Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
    Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1
    Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2
    Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1
    Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4
    Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2
    Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2
    Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4
    Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4
    Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3
    Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3
    Merc 450SLC 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3
    Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4
    Lincoln Continental 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4
    Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4
    Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
    Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
    Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
    Toyota Corona 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1
    Dodge Challenger 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2
    AMC Javelin 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2
    Camaro Z28 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4
    Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2
    Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1
    Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2
    Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2
    Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4
    Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6
    Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8
    Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2
    >
    > data("Batting", package = "Lahman")
    > batting <- tbl_df(Batting)
    > dim(batting)
    [1] 97889 24
    > colnames(batting)
     [1] "playerID" "yearID" "stint" "teamID" "lgID" "G"
     [7] "G_batting" "AB" "R" "H" "X2B" "X3B"
    [13] "HR" "RBI" "SB" "CS" "BB" "SO"
    [19] "IBB" "HBP" "SH" "SF" "GIDP" "G_old"
    > head(batting)
    Source: local data frame [6 x 24]
    
     playerID yearID stint teamID lgID G G_batting AB R H X2B X3B HR RBI SB CS
    1 aardsda01 2004 1 SFN NL 11 11 0 0 0 0 0 0 0 0 0
    2 aardsda01 2006 1 CHN NL 45 43 2 0 0 0 0 0 0 0 0
    3 aardsda01 2007 1 CHA AL 25 2 0 0 0 0 0 0 0 0 0
    4 aardsda01 2008 1 BOS AL 47 5 1 0 0 0 0 0 0 0 0
    5 aardsda01 2009 1 SEA AL 73 3 0 0 0 0 0 0 0 0 0
    6 aardsda01 2010 1 SEA AL 53 4 0 0 0 0 0 0 0 0 0
    Variables not shown: BB (int), SO (int), IBB (int), HBP (int), SH (int), SF
     (int), GIDP (int), G_old (int)
    >
    > # Data manipulation verbs ---------------------------------------------------
    > filter(batting, yearID > 2005, G > 130)
    Source: local data frame [1,126 x 24]
    
     playerID yearID stint teamID lgID G G_batting AB R H X2B X3B HR RBI
    1 abreubo01 2007 1 NYA AL 158 158 605 123 171 40 5 16 101
    2 abreubo01 2008 1 NYA AL 156 156 609 100 180 39 4 20 100
    3 abreubo01 2009 1 LAA AL 152 152 563 96 165 29 3 15 103
    4 abreubo01 2010 1 LAA AL 154 154 573 88 146 41 1 20 78
    5 abreubo01 2011 1 LAA AL 142 142 502 54 127 30 1 8 60
    6 ackledu01 2012 1 SEA AL 153 NA 607 84 137 22 2 12 50
    7 alonsyo01 2012 1 SDN NL 155 NA 549 47 150 39 0 9 62
    8 altuvjo01 2012 1 HOU NL 147 NA 576 80 167 34 4 7 37
    9 alvarpe01 2012 1 PIT NL 149 NA 525 64 128 25 1 30 85
    10 amezaal01 2006 1 FLO NL 132 132 334 42 87 9 3 3 19
    .. ... ... ... ... ... ... ... ... ... ... ... ... .. ...
    Variables not shown: SB (int), CS (int), BB (int), SO (int), IBB (int), HBP
     (int), SH (int), SF (int), GIDP (int), G_old (int)
    > select(batting, playerID:lgID)
    Source: local data frame [97,889 x 5]
    
     playerID yearID stint teamID lgID
    1 aardsda01 2004 1 SFN NL
    2 aardsda01 2006 1 CHN NL
    3 aardsda01 2007 1 CHA AL
    4 aardsda01 2008 1 BOS AL
    5 aardsda01 2009 1 SEA AL
    6 aardsda01 2010 1 SEA AL
    7 aardsda01 2012 1 NYA AL
    8 aaronha01 1954 1 ML1 NL
    9 aaronha01 1955 1 ML1 NL
    10 aaronha01 1956 1 ML1 NL
    .. ... ... ... ... ...
    > arrange(batting, playerID, desc(yearID))
    Source: local data frame [97,889 x 24]
    
     playerID yearID stint teamID lgID G G_batting AB R H X2B X3B HR RBI
    1 aardsda01 2013 1 NYN NL 43 43 0 0 0 0 0 0 0
    2 aardsda01 2012 1 NYA AL 1 NA NA NA NA NA NA NA NA
    3 aardsda01 2010 1 SEA AL 53 4 0 0 0 0 0 0 0
    4 aardsda01 2009 1 SEA AL 73 3 0 0 0 0 0 0 0
    5 aardsda01 2008 1 BOS AL 47 5 1 0 0 0 0 0 0
    6 aardsda01 2007 1 CHA AL 25 2 0 0 0 0 0 0 0
    7 aardsda01 2006 1 CHN NL 45 43 2 0 0 0 0 0 0
    8 aardsda01 2004 1 SFN NL 11 11 0 0 0 0 0 0 0
    9 aaronha01 1976 1 ML4 AL 85 85 271 22 62 8 0 10 35
    10 aaronha01 1975 1 ML4 AL 137 137 465 45 109 16 2 12 60
    .. ... ... ... ... ... ... ... ... .. ... ... ... .. ...
    Variables not shown: SB (int), CS (int), BB (int), SO (int), IBB (int), HBP
     (int), SH (int), SF (int), GIDP (int), G_old (int)
    > summarise(batting, G = mean(G), n = n())
    Source: local data frame [1 x 2]
    
     G n
    1 51.65408 97889
    > mutate(batting, rbi2 = if(is.null(AB)) 1.0 * R / AB else 0)
    Source: local data frame [97,889 x 25]
    
     playerID yearID stint teamID lgID G G_batting AB R H X2B X3B HR RBI
    1 aardsda01 2004 1 SFN NL 11 11 0 0 0 0 0 0 0
    2 aardsda01 2006 1 CHN NL 45 43 2 0 0 0 0 0 0
    3 aardsda01 2007 1 CHA AL 25 2 0 0 0 0 0 0 0
    4 aardsda01 2008 1 BOS AL 47 5 1 0 0 0 0 0 0
    5 aardsda01 2009 1 SEA AL 73 3 0 0 0 0 0 0 0
    6 aardsda01 2010 1 SEA AL 53 4 0 0 0 0 0 0 0
    7 aardsda01 2012 1 NYA AL 1 NA NA NA NA NA NA NA NA
    8 aaronha01 1954 1 ML1 NL 122 122 468 58 131 27 6 13 69
    9 aaronha01 1955 1 ML1 NL 153 153 602 105 189 37 9 27 106
    10 aaronha01 1956 1 ML1 NL 153 153 609 106 200 34 14 26 92
    .. ... ... ... ... ... ... ... ... ... ... ... ... .. ...
    Variables not shown: SB (int), CS (int), BB (int), SO (int), IBB (int), HBP
     (int), SH (int), SF (int), GIDP (int), G_old (int), rbi2 (dbl)
    >
    > # Group by operations -------------------------------------------------------
    > # To perform operations by group, create a grouped object with group_by
    > players <- group_by(batting, playerID)
    > head(group_size(players), 100)
     [1] 8 23 7 13 3 4 2 10 6 5 1 3 12 5 11 10 4 1 12 8 1 3 1 5 3
     [26] 17 2 3 3 7 10 1 1 19 1 1 5 3 3 9 5 5 10 12 4 3 2 4 3 3
     [51] 6 6 4 15 1 6 19 8 1 2 15 1 8 2 1 1 1 1 8 3 1 1 3 2 2
     [76] 3 5 10 1 1 3 5 1 14 4 12 5 2 17 2 5 4 1 7 1 6 3 1 2 2
    >
    > summarise(players, mean_g = mean(G), best_ab = max(AB))
    Source: local data frame [18,107 x 3]
    
     playerID mean_g best_ab
    1 aardsda01 37.25000 NA
    2 aaronha01 143.39130 631
    3 aaronto01 62.42857 334
    4 aasedo01 34.46154 NA
    5 abadan01 5.00000 17
    6 abadfe01 31.50000 7
    7 abadijo01 6.00000 45
    8 abbated01 85.50000 610
    9 abbeybe01 13.16667 75
    10 abbeych01 90.20000 523
    .. ... ... ...
    > best_year <- filter(players, AB == max(AB) | G == max(G))
    > progress <- mutate(players, cyear = yearID - min(yearID) + 1,
    + rank(desc(AB)), cumsum(AB))
    >
    > # When you group by multiple level, each summarise peels off one level
    > per_year <- group_by(batting, playerID, yearID)
    > stints <- summarise(per_year, stints = max(stint))
    > # filter(stints, stints > 3)
    > # summarise(stints, max(stints))
    > # mutate(stints, cumsum(stints))
    >
    > # Joins ---------------------------------------------------------------------
    > data("Master", "HallOfFame", package = "Lahman")
    > player_info <- select(tbl_df(Master), playerID, hofID, birthYear)
    Error in eval(expr, envir, enclos) : object 'hofID' not found
    Calls: select ... select_vars -> select_vars_q -> lapply -> FUN -> eval
    Execution halted
Flavors: r-devel-linux-x86_64-debian-clang, r-devel-linux-x86_64-debian-gcc, r-devel-linux-x86_64-fedora-clang, r-devel-linux-x86_64-fedora-gcc, r-devel-osx-x86_64-clang, r-patched-linux-x86_64, r-patched-solaris-sparc, r-patched-solaris-x86, r-release-linux-ix86, r-release-linux-x86_64

Version: 0.2
Check: package dependencies
Result: NOTE
    Packages suggested but not available for checking: ‘RMySQL’ ‘bigrquery’
Flavors: r-devel-osx-x86_64-clang, r-devel-windows-ix86+x86_64, r-patched-solaris-x86, r-release-windows-ix86+x86_64, r-oldrel-windows-ix86+x86_64

Version: 0.2
Check: running examples for arch 'i386'
Result: ERROR
    Running examples in 'dplyr-Ex.R' failed
    The error most likely occurred in:
    
    > ### Name: tbl_df
    > ### Title: Create a data frame tble.
    > ### Aliases: tbl_df
    >
    > ### ** Examples
    >
    > ds <- tbl_df(mtcars)
    > ds
    Source: local data frame [32 x 11]
    
     mpg cyl disp hp drat wt qsec vs am gear carb
    Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
    Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
    Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
    Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1
    Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2
    Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1
    Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4
    Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2
    Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2
    Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4
    Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4
    Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3
    Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3
    Merc 450SLC 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3
    Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4
    Lincoln Continental 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4
    Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4
    Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
    Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
    Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
    Toyota Corona 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1
    Dodge Challenger 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2
    AMC Javelin 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2
    Camaro Z28 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4
    Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2
    Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1
    Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2
    Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2
    Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4
    Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6
    Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8
    Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2
    > as.data.frame(ds)
     mpg cyl disp hp drat wt qsec vs am gear carb
    Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
    Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
    Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
    Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1
    Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2
    Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1
    Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4
    Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2
    Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2
    Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4
    Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4
    Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3
    Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3
    Merc 450SLC 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3
    Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4
    Lincoln Continental 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4
    Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4
    Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
    Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
    Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
    Toyota Corona 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1
    Dodge Challenger 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2
    AMC Javelin 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2
    Camaro Z28 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4
    Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2
    Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1
    Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2
    Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2
    Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4
    Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6
    Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8
    Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2
    >
    > data("Batting", package = "Lahman")
    > batting <- tbl_df(Batting)
    > dim(batting)
    [1] 97889 24
    > colnames(batting)
     [1] "playerID" "yearID" "stint" "teamID" "lgID" "G"
     [7] "G_batting" "AB" "R" "H" "X2B" "X3B"
    [13] "HR" "RBI" "SB" "CS" "BB" "SO"
    [19] "IBB" "HBP" "SH" "SF" "GIDP" "G_old"
    > head(batting)
    Source: local data frame [6 x 24]
    
     playerID yearID stint teamID lgID G G_batting AB R H X2B X3B HR RBI SB CS
    1 aardsda01 2004 1 SFN NL 11 11 0 0 0 0 0 0 0 0 0
    2 aardsda01 2006 1 CHN NL 45 43 2 0 0 0 0 0 0 0 0
    3 aardsda01 2007 1 CHA AL 25 2 0 0 0 0 0 0 0 0 0
    4 aardsda01 2008 1 BOS AL 47 5 1 0 0 0 0 0 0 0 0
    5 aardsda01 2009 1 SEA AL 73 3 0 0 0 0 0 0 0 0 0
    6 aardsda01 2010 1 SEA AL 53 4 0 0 0 0 0 0 0 0 0
    Variables not shown: BB (int), SO (int), IBB (int), HBP (int), SH (int), SF
     (int), GIDP (int), G_old (int)
    >
    > # Data manipulation verbs ---------------------------------------------------
    > filter(batting, yearID > 2005, G > 130)
    Source: local data frame [1,126 x 24]
    
     playerID yearID stint teamID lgID G G_batting AB R H X2B X3B HR RBI
    1 abreubo01 2007 1 NYA AL 158 158 605 123 171 40 5 16 101
    2 abreubo01 2008 1 NYA AL 156 156 609 100 180 39 4 20 100
    3 abreubo01 2009 1 LAA AL 152 152 563 96 165 29 3 15 103
    4 abreubo01 2010 1 LAA AL 154 154 573 88 146 41 1 20 78
    5 abreubo01 2011 1 LAA AL 142 142 502 54 127 30 1 8 60
    6 ackledu01 2012 1 SEA AL 153 NA 607 84 137 22 2 12 50
    7 alonsyo01 2012 1 SDN NL 155 NA 549 47 150 39 0 9 62
    8 altuvjo01 2012 1 HOU NL 147 NA 576 80 167 34 4 7 37
    9 alvarpe01 2012 1 PIT NL 149 NA 525 64 128 25 1 30 85
    10 amezaal01 2006 1 FLO NL 132 132 334 42 87 9 3 3 19
    .. ... ... ... ... ... ... ... ... ... ... ... ... .. ...
    Variables not shown: SB (int), CS (int), BB (int), SO (int), IBB (int), HBP
     (int), SH (int), SF (int), GIDP (int), G_old (int)
    > select(batting, playerID:lgID)
    Source: local data frame [97,889 x 5]
    
     playerID yearID stint teamID lgID
    1 aardsda01 2004 1 SFN NL
    2 aardsda01 2006 1 CHN NL
    3 aardsda01 2007 1 CHA AL
    4 aardsda01 2008 1 BOS AL
    5 aardsda01 2009 1 SEA AL
    6 aardsda01 2010 1 SEA AL
    7 aardsda01 2012 1 NYA AL
    8 aaronha01 1954 1 ML1 NL
    9 aaronha01 1955 1 ML1 NL
    10 aaronha01 1956 1 ML1 NL
    .. ... ... ... ... ...
    > arrange(batting, playerID, desc(yearID))
    Source: local data frame [97,889 x 24]
    
     playerID yearID stint teamID lgID G G_batting AB R H X2B X3B HR RBI
    1 aardsda01 2013 1 NYN NL 43 43 0 0 0 0 0 0 0
    2 aardsda01 2012 1 NYA AL 1 NA NA NA NA NA NA NA NA
    3 aardsda01 2010 1 SEA AL 53 4 0 0 0 0 0 0 0
    4 aardsda01 2009 1 SEA AL 73 3 0 0 0 0 0 0 0
    5 aardsda01 2008 1 BOS AL 47 5 1 0 0 0 0 0 0
    6 aardsda01 2007 1 CHA AL 25 2 0 0 0 0 0 0 0
    7 aardsda01 2006 1 CHN NL 45 43 2 0 0 0 0 0 0
    8 aardsda01 2004 1 SFN NL 11 11 0 0 0 0 0 0 0
    9 aaronha01 1976 1 ML4 AL 85 85 271 22 62 8 0 10 35
    10 aaronha01 1975 1 ML4 AL 137 137 465 45 109 16 2 12 60
    .. ... ... ... ... ... ... ... ... .. ... ... ... .. ...
    Variables not shown: SB (int), CS (int), BB (int), SO (int), IBB (int), HBP
     (int), SH (int), SF (int), GIDP (int), G_old (int)
    > summarise(batting, G = mean(G), n = n())
    Source: local data frame [1 x 2]
    
     G n
    1 51.65408 97889
    > mutate(batting, rbi2 = if(is.null(AB)) 1.0 * R / AB else 0)
    Source: local data frame [97,889 x 25]
    
     playerID yearID stint teamID lgID G G_batting AB R H X2B X3B HR RBI
    1 aardsda01 2004 1 SFN NL 11 11 0 0 0 0 0 0 0
    2 aardsda01 2006 1 CHN NL 45 43 2 0 0 0 0 0 0
    3 aardsda01 2007 1 CHA AL 25 2 0 0 0 0 0 0 0
    4 aardsda01 2008 1 BOS AL 47 5 1 0 0 0 0 0 0
    5 aardsda01 2009 1 SEA AL 73 3 0 0 0 0 0 0 0
    6 aardsda01 2010 1 SEA AL 53 4 0 0 0 0 0 0 0
    7 aardsda01 2012 1 NYA AL 1 NA NA NA NA NA NA NA NA
    8 aaronha01 1954 1 ML1 NL 122 122 468 58 131 27 6 13 69
    9 aaronha01 1955 1 ML1 NL 153 153 602 105 189 37 9 27 106
    10 aaronha01 1956 1 ML1 NL 153 153 609 106 200 34 14 26 92
    .. ... ... ... ... ... ... ... ... ... ... ... ... .. ...
    Variables not shown: SB (int), CS (int), BB (int), SO (int), IBB (int), HBP
     (int), SH (int), SF (int), GIDP (int), G_old (int), rbi2 (dbl)
    >
    > # Group by operations -------------------------------------------------------
    > # To perform operations by group, create a grouped object with group_by
    > players <- group_by(batting, playerID)
    > head(group_size(players), 100)
     [1] 8 23 7 13 3 4 2 10 6 5 1 3 12 5 11 10 4 1 12 8 1 3 1 5 3
     [26] 17 2 3 3 7 10 1 1 19 1 1 5 3 3 9 5 5 10 12 4 3 2 4 3 3
     [51] 6 6 4 15 1 6 19 8 1 2 15 1 8 2 1 1 1 1 8 3 1 1 3 2 2
     [76] 3 5 10 1 1 3 5 1 14 4 12 5 2 17 2 5 4 1 7 1 6 3 1 2 2
    >
    > summarise(players, mean_g = mean(G), best_ab = max(AB))
    Source: local data frame [18,107 x 3]
    
     playerID mean_g best_ab
    1 aardsda01 37.25000 NA
    2 aaronha01 143.39130 631
    3 aaronto01 62.42857 334
    4 aasedo01 34.46154 NA
    5 abadan01 5.00000 17
    6 abadfe01 31.50000 7
    7 abadijo01 6.00000 45
    8 abbated01 85.50000 610
    9 abbeybe01 13.16667 75
    10 abbeych01 90.20000 523
    .. ... ... ...
    > best_year <- filter(players, AB == max(AB) | G == max(G))
    > progress <- mutate(players, cyear = yearID - min(yearID) + 1,
    + rank(desc(AB)), cumsum(AB))
    >
    > # When you group by multiple level, each summarise peels off one level
    > per_year <- group_by(batting, playerID, yearID)
    > stints <- summarise(per_year, stints = max(stint))
    > # filter(stints, stints > 3)
    > # summarise(stints, max(stints))
    > # mutate(stints, cumsum(stints))
    >
    > # Joins ---------------------------------------------------------------------
    > data("Master", "HallOfFame", package = "Lahman")
    > player_info <- select(tbl_df(Master), playerID, hofID, birthYear)
    Error in eval(expr, envir, enclos) : object 'hofID' not found
    Calls: select ... select_vars -> select_vars_q -> lapply -> FUN -> eval
    Execution halted
Flavors: r-devel-windows-ix86+x86_64, r-release-windows-ix86+x86_64, r-oldrel-windows-ix86+x86_64

Version: 0.2
Check: running examples for arch 'x64'
Result: ERROR
    Running examples in 'dplyr-Ex.R' failed
    The error most likely occurred in:
    
    > ### Name: tbl_df
    > ### Title: Create a data frame tble.
    > ### Aliases: tbl_df
    >
    > ### ** Examples
    >
    > ds <- tbl_df(mtcars)
    > ds
    Source: local data frame [32 x 11]
    
     mpg cyl disp hp drat wt qsec vs am gear carb
    Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
    Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
    Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
    Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1
    Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2
    Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1
    Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4
    Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2
    Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2
    Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4
    Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4
    Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3
    Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3
    Merc 450SLC 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3
    Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4
    Lincoln Continental 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4
    Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4
    Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
    Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
    Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
    Toyota Corona 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1
    Dodge Challenger 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2
    AMC Javelin 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2
    Camaro Z28 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4
    Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2
    Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1
    Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2
    Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2
    Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4
    Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6
    Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8
    Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2
    > as.data.frame(ds)
     mpg cyl disp hp drat wt qsec vs am gear carb
    Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
    Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
    Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
    Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1
    Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2
    Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1
    Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4
    Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2
    Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2
    Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4
    Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4
    Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3
    Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3
    Merc 450SLC 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3
    Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4
    Lincoln Continental 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4
    Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4
    Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
    Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
    Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
    Toyota Corona 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1
    Dodge Challenger 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2
    AMC Javelin 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2
    Camaro Z28 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4
    Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2
    Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1
    Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2
    Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2
    Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4
    Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6
    Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8
    Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2
    >
    > data("Batting", package = "Lahman")
    > batting <- tbl_df(Batting)
    > dim(batting)
    [1] 97889 24
    > colnames(batting)
     [1] "playerID" "yearID" "stint" "teamID" "lgID" "G"
     [7] "G_batting" "AB" "R" "H" "X2B" "X3B"
    [13] "HR" "RBI" "SB" "CS" "BB" "SO"
    [19] "IBB" "HBP" "SH" "SF" "GIDP" "G_old"
    > head(batting)
    Source: local data frame [6 x 24]
    
     playerID yearID stint teamID lgID G G_batting AB R H X2B X3B HR RBI SB CS
    1 aardsda01 2004 1 SFN NL 11 11 0 0 0 0 0 0 0 0 0
    2 aardsda01 2006 1 CHN NL 45 43 2 0 0 0 0 0 0 0 0
    3 aardsda01 2007 1 CHA AL 25 2 0 0 0 0 0 0 0 0 0
    4 aardsda01 2008 1 BOS AL 47 5 1 0 0 0 0 0 0 0 0
    5 aardsda01 2009 1 SEA AL 73 3 0 0 0 0 0 0 0 0 0
    6 aardsda01 2010 1 SEA AL 53 4 0 0 0 0 0 0 0 0 0
    Variables not shown: BB (int), SO (int), IBB (int), HBP (int), SH (int), SF
     (int), GIDP (int), G_old (int)
    >
    > # Data manipulation verbs ---------------------------------------------------
    > filter(batting, yearID > 2005, G > 130)
    Source: local data frame [1,126 x 24]
    
     playerID yearID stint teamID lgID G G_batting AB R H X2B X3B HR RBI
    1 abreubo01 2007 1 NYA AL 158 158 605 123 171 40 5 16 101
    2 abreubo01 2008 1 NYA AL 156 156 609 100 180 39 4 20 100
    3 abreubo01 2009 1 LAA AL 152 152 563 96 165 29 3 15 103
    4 abreubo01 2010 1 LAA AL 154 154 573 88 146 41 1 20 78
    5 abreubo01 2011 1 LAA AL 142 142 502 54 127 30 1 8 60
    6 ackledu01 2012 1 SEA AL 153 NA 607 84 137 22 2 12 50
    7 alonsyo01 2012 1 SDN NL 155 NA 549 47 150 39 0 9 62
    8 altuvjo01 2012 1 HOU NL 147 NA 576 80 167 34 4 7 37
    9 alvarpe01 2012 1 PIT NL 149 NA 525 64 128 25 1 30 85
    10 amezaal01 2006 1 FLO NL 132 132 334 42 87 9 3 3 19
    .. ... ... ... ... ... ... ... ... ... ... ... ... .. ...
    Variables not shown: SB (int), CS (int), BB (int), SO (int), IBB (int), HBP
     (int), SH (int), SF (int), GIDP (int), G_old (int)
    > select(batting, playerID:lgID)
    Source: local data frame [97,889 x 5]
    
     playerID yearID stint teamID lgID
    1 aardsda01 2004 1 SFN NL
    2 aardsda01 2006 1 CHN NL
    3 aardsda01 2007 1 CHA AL
    4 aardsda01 2008 1 BOS AL
    5 aardsda01 2009 1 SEA AL
    6 aardsda01 2010 1 SEA AL
    7 aardsda01 2012 1 NYA AL
    8 aaronha01 1954 1 ML1 NL
    9 aaronha01 1955 1 ML1 NL
    10 aaronha01 1956 1 ML1 NL
    .. ... ... ... ... ...
    > arrange(batting, playerID, desc(yearID))
    Source: local data frame [97,889 x 24]
    
     playerID yearID stint teamID lgID G G_batting AB R H X2B X3B HR RBI
    1 aardsda01 2013 1 NYN NL 43 43 0 0 0 0 0 0 0
    2 aardsda01 2012 1 NYA AL 1 NA NA NA NA NA NA NA NA
    3 aardsda01 2010 1 SEA AL 53 4 0 0 0 0 0 0 0
    4 aardsda01 2009 1 SEA AL 73 3 0 0 0 0 0 0 0
    5 aardsda01 2008 1 BOS AL 47 5 1 0 0 0 0 0 0
    6 aardsda01 2007 1 CHA AL 25 2 0 0 0 0 0 0 0
    7 aardsda01 2006 1 CHN NL 45 43 2 0 0 0 0 0 0
    8 aardsda01 2004 1 SFN NL 11 11 0 0 0 0 0 0 0
    9 aaronha01 1976 1 ML4 AL 85 85 271 22 62 8 0 10 35
    10 aaronha01 1975 1 ML4 AL 137 137 465 45 109 16 2 12 60
    .. ... ... ... ... ... ... ... ... .. ... ... ... .. ...
    Variables not shown: SB (int), CS (int), BB (int), SO (int), IBB (int), HBP
     (int), SH (int), SF (int), GIDP (int), G_old (int)
    > summarise(batting, G = mean(G), n = n())
    Source: local data frame [1 x 2]
    
     G n
    1 51.65408 97889
    > mutate(batting, rbi2 = if(is.null(AB)) 1.0 * R / AB else 0)
    Source: local data frame [97,889 x 25]
    
     playerID yearID stint teamID lgID G G_batting AB R H X2B X3B HR RBI
    1 aardsda01 2004 1 SFN NL 11 11 0 0 0 0 0 0 0
    2 aardsda01 2006 1 CHN NL 45 43 2 0 0 0 0 0 0
    3 aardsda01 2007 1 CHA AL 25 2 0 0 0 0 0 0 0
    4 aardsda01 2008 1 BOS AL 47 5 1 0 0 0 0 0 0
    5 aardsda01 2009 1 SEA AL 73 3 0 0 0 0 0 0 0
    6 aardsda01 2010 1 SEA AL 53 4 0 0 0 0 0 0 0
    7 aardsda01 2012 1 NYA AL 1 NA NA NA NA NA NA NA NA
    8 aaronha01 1954 1 ML1 NL 122 122 468 58 131 27 6 13 69
    9 aaronha01 1955 1 ML1 NL 153 153 602 105 189 37 9 27 106
    10 aaronha01 1956 1 ML1 NL 153 153 609 106 200 34 14 26 92
    .. ... ... ... ... ... ... ... ... ... ... ... ... .. ...
    Variables not shown: SB (int), CS (int), BB (int), SO (int), IBB (int), HBP
     (int), SH (int), SF (int), GIDP (int), G_old (int), rbi2 (dbl)
    >
    > # Group by operations -------------------------------------------------------
    > # To perform operations by group, create a grouped object with group_by
    > players <- group_by(batting, playerID)
    > head(group_size(players), 100)
     [1] 8 23 7 13 3 4 2 10 6 5 1 3 12 5 11 10 4 1 12 8 1 3 1 5 3
     [26] 17 2 3 3 7 10 1 1 19 1 1 5 3 3 9 5 5 10 12 4 3 2 4 3 3
     [51] 6 6 4 15 1 6 19 8 1 2 15 1 8 2 1 1 1 1 8 3 1 1 3 2 2
     [76] 3 5 10 1 1 3 5 1 14 4 12 5 2 17 2 5 4 1 7 1 6 3 1 2 2
    >
    > summarise(players, mean_g = mean(G), best_ab = max(AB))
    Source: local data frame [18,107 x 3]
    
     playerID mean_g best_ab
    1 aardsda01 37.25000 NA
    2 aaronha01 143.39130 631
    3 aaronto01 62.42857 334
    4 aasedo01 34.46154 NA
    5 abadan01 5.00000 17
    6 abadfe01 31.50000 7
    7 abadijo01 6.00000 45
    8 abbated01 85.50000 610
    9 abbeybe01 13.16667 75
    10 abbeych01 90.20000 523
    .. ... ... ...
    > best_year <- filter(players, AB == max(AB) | G == max(G))
    > progress <- mutate(players, cyear = yearID - min(yearID) + 1,
    + rank(desc(AB)), cumsum(AB))
    >
    > # When you group by multiple level, each summarise peels off one level
    > per_year <- group_by(batting, playerID, yearID)
    > stints <- summarise(per_year, stints = max(stint))
    > # filter(stints, stints > 3)
    > # summarise(stints, max(stints))
    > # mutate(stints, cumsum(stints))
    >
    > # Joins ---------------------------------------------------------------------
    > data("Master", "HallOfFame", package = "Lahman")
    > player_info <- select(tbl_df(Master), playerID, hofID, birthYear)
    Error in eval(expr, envir, enclos) : object 'hofID' not found
    Calls: select ... select_vars -> select_vars_q -> lapply -> FUN -> eval
    Execution halted
Flavors: r-devel-windows-ix86+x86_64, r-release-windows-ix86+x86_64, r-oldrel-windows-ix86+x86_64

Version: 0.2
Check: package dependencies
Result: NOTE
    Packages suggested but not available for checking:
     ‘RMySQL’ ‘bigrquery’ ‘microbenchmark’
Flavor: r-patched-solaris-sparc

Version: 0.2
Check: R code for possible problems
Result: NOTE
    src_mysql: no visible global function definition for ‘MySQL’
Flavors: r-patched-solaris-sparc, r-patched-solaris-x86, r-release-windows-ix86+x86_64, r-oldrel-windows-ix86+x86_64

Version: 0.2
Check: Rd cross-references
Result: NOTE
    Package unavailable to check Rd xrefs: ‘microbenchmark’
Flavor: r-patched-solaris-sparc

Version: 0.2
Check: package dependencies
Result: NOTE
    Packages suggested but not available for checking:
     ‘RMySQL’ ‘RPostgreSQL’ ‘bigrquery’
Flavor: r-release-osx-x86_64-mavericks

Version: 0.2
Check: R code for possible problems
Result: NOTE
    src_mysql: no visible global function definition for ‘MySQL’
    src_postgres: no visible global function definition for ‘PostgreSQL’
Flavor: r-release-osx-x86_64-mavericks