Infrastructure for estimating probabilistic distributional regression models in a Bayesian framework. The distribution parameters may capture location, scale, shape, etc. and every parameter may depend on complex additive terms (fixed, random, smooth, spatial, etc.) similar to a generalized additive model. The conceptual and computational framework is introduced in Umlauf, Klein, Zeileis (2017) .

Documentation

Manual: bamlss.pdf
Vignette: None available.

Maintainer: Nikolaus Umlauf <Nikolaus.Umlauf at uibk.ac.at>

Author(s): Nikolaus Umlauf*, Nadja Klein*, Achim Zeileis*, Meike Koehler*

Install package and any missing dependencies by running this line in your R console:

install.packages("bamlss")

Depends R (>= 3.2.3), coda, colorspace, mgcv
Imports Formula, MBA, mvtnorm, sp, spam, Matrix, survival, methods, parallel
Suggests akima, bit, fields, gamlss, geoR, rjags, BayesX, BayesXsrc, mapdata, maps, maptools, raster, spatstat, spdep, zoo
Enhances
Linking to
Reverse
depends
Reverse
imports
Reverse
suggests
Reverse
enhances
Reverse
linking to

Package bamlss
Materials
URL
Task Views
Version 0.1-2
Published 2017-04-14
License GPL-2 | GPL-3
BugReports
SystemRequirements
NeedsCompilation yes
Citation
CRAN checks bamlss check results
Package source bamlss_0.1-2.tar.gz