Regression models for functional data, i.e., scalar-on-function, function-on-scalar and function-on-function regression models, are fitted by a component-wise gradient boosting algorithm.

Maintainer: Sarah Brockhaus <Sarah.Brockhaus at stat.uni-muenchen.de>

Author(s): Sarah Brockhaus*, David Ruegamer*, Torsten Hothorn*, with contributions by many others (see inst/CONTRIBUTIONS)*

Install package and any missing dependencies by running this line in your R console:

install.packages("FDboost")

Depends R (>= 3.0.0), methods, mboost(>=2.8-0)
Imports graphics, grDevices, utils, stats, Matrix, gamboostLSS(>=2.0-0), stabs, mgcv, MASS, zoo
Suggests fda, fields, ggplot2, maps, mapdata, knitr, refund
Enhances
Linking to
Reverse
depends
Reverse
imports
Reverse
suggests
Reverse
enhances
Reverse
linking to

Package FDboost
Materials
URL https://github.com/boost-R/FDboost
Task Views FunctionalData
Version 0.3-0
Published 2017-05-31
License GPL-2
BugReports https://github.com/boost-R/FDboost/issues
SystemRequirements
NeedsCompilation no
Citation
CRAN checks FDboost check results
Package source FDboost_0.3-0.tar.gz